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Abstract The fuzzy c-means (FCM) clustering algorithm

is an unsupervised learning method that has been widely

applied to cluster unlabeled data automatically instead of

artificially, but is sensitive to noisy observations due to its

inappropriate treatment of noise in the data. In this paper, a

novel method considering noise intelligently based on the

existing FCM approach, called adaptive-FCM and its

extended version (adaptive-REFCM) in combination with

relative entropy, are proposed. Adaptive-FCM, relying on

an inventive integration of the adaptive norm, benefits from

a robust overall structure. Adaptive-REFCM further inte-

grates the properties of the relative entropy and normalized

distance to preserve the global details of the dataset. Sev-

eral experiments are carried out, including noisy or noise-

free University of California Irvine (UCI) clustering and

image segmentation experiments. The results show that

adaptive-REFCM exhibits better noise robustness and

adaptive adjustment in comparison with relevant state-of-

the-art FCM methods.

Keywords Fuzzy c-means clustering � Adaptive norm �
Noise robustness � Relative entropy

1 Introduction

Clustering is a significant and promising method to

uncover the structure of a given dataset by pattern recog-

nition. To capture the overall structure of the data, specific

hypotheses including linear and nonlinear embedding

constraints have been suggested, such as k-means [1], fuzzy

logic [2, 3], etc.

Hard clustering techniques, such as k-means, stick to the

rigid principle that an observation strictly belongs to one

specific cluster, which means that an observation will not

interact with other clusters at all. As a result, the potential

distribution of a dataset is not well reflected by such hard

clustering methods. Later, Zadeh pioneered the concept of

fuzzy sets, with a tangible definition [4], to interpret the

potential distribution. Further clustering methods inspired

by fuzzy logic have been presented, including the class of

isodata clustering algorithms which can effectively detect

compact structures [5] and for unsupervised clustering of

datasets into a given number of classes [2]. Among clus-

tering algorithms, fuzzy clustering techniques have bene-

fited from successive extensions [6–9] and have been

widely used, e.g., for cloud intrusion detection [10], color

image segmentation [11], brain segmentation enhancement

[12], etc.

Inspired by such fuzzy logic and hard clustering meth-

ods, the FCM approach considers the relative relationship

between all the observations in order to make fuzzier

judgements. The FCM approach allows an observation to

belong to different clusters, offering greater flexibility to

handle the uncertainties found in real-word datasets.

Specifically, the FCM approach provides a reasonable

representation of clustering probabilities, known as the

‘‘membership degree.’’ In comparison with hard clustering

algorithms, the FCM approach removes the ‘‘all or none’’
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restriction, making the boundaries much fuzzier, which is

more in line with real-world situations and facilitates out-

lier detection. Researchers have advanced the study of

FCM and related approaches in recent decades using

approaches such as kernel fuzzy clustering, algorithms

based of weighted methods [e.g., new weighted fuzzy

c-means (NWFCM) [13] and fuzzy clustering with the

entropy of attribute weights (EWFCM) [14]], sparse rep-

resentation-based methods [e.g., fuzzy double c-means

(FDCM-SSR) [6]], etc.

Although the FCM approach has been refined in many

ways, data processing remains a thorny issue. To the best

of the authors’ knowledge, noise can vary between differ-

ent events. For clustering tasks, how to define noise and

how to avoid the impact of noise are two tough problems,

and increased noise can make the prediction process dif-

ficult. Therefore, the subject of noise rejection is still of

great importance.

To further improve the robustness of such methods to

noise, great efforts have been made by researchers from

many directions; For instance, spectral subtraction can

extract the interesting features of the implied error resulting

from noise estimation in the power-spectral domain.

However, in FCM, noise is treated in an intuitive way. In

ordinary fuzzy logic, a point is identified as noise with an

extremely low membership degree. However, this approach

does not offer perfect noise robustness, so different forms

of regularization have been adopted to improve this aspect

of its performance. This problem is discussed below based

on various approaches to noise robustness, after the dis-

cussion of the following two essential questions:

• There is no reasonable standard for the evaluation of

noise, so how can one define noise universally?

• How can one address noise compatibly when applying

the FCM approach?

In fact, noise is indeed undefinable in real-world data-

sets because noise can behave in different ways, resulting

in unmeasurable uncertainty. Mathematically, of all types

of noise, the outlier is the most typical and definable form.

Outliers generally have abnormal features in contrast to

some cluster and fall into the category that one would like

to describe as UNCLASSIFIABLE [3]. Practically speaking, to

obviate the undesirable effects of such outliers, outlier

detection methods are applied to try to reveal their con-

trasting features based on statistical methods [15].

Various methods have been applied in this regard for

FCM in recent years. To eliminate noisy features in high-

dimensional data, Chang et al. proposed L1=2-CM, which

introduces Lq-norm ð0\q� 1Þ sparse regularization into

FCM to shrink the weights of irrelevant features in an

analytic form when q = 1/2, although its performance may

be limited by the fact that such sparse feature selection

cannot deal with outliers that are hidden in relevant fea-

tures [16]. Brayda addressed this problem from the stand-

point of the sensitivity to noise estimation errors and

proposed the TeFCM (L2) L2R and TeFCM (L2) L1R based

on the use of tolerance vectors [17, 18], although how to

determine suitable parameters for the upper bound of the

tolerance vectors and regularization parameters remains a

problem [17]. To deal with the uncertainty of fuzzy coef-

ficients and limit the impact of outliers, the setting of

empirical intervals to design and manage the uncertainty of

fuzzy coefficients is another idea. Rubio et al. combined a

pattern set with interval type-2 fuzzy sets using more than

one fuzzification to handle uncertainty and susceptibility to

noise [19], with applications such as website hotel selection

[20]. To reduce the computational complexity of this

approach, all the secondary memberships are weighted

uniformly for each primary membership, hence limiting its

generalizability. To improve the performance of interval

type-2 FCM, Minh et al. applied multiple kernels [21],

although this requires the introduction of more fuzzifica-

tions, which greatly increases the parameter complexity.

Instead of assigning a single possible interval to each ele-

ment in a given reference set, with detailed analysis of

fuzzy multisets [22] and intuitionistic fuzzy sets [23], the

concept of hesitant fuzzy sets based on the application of a

set of membership functions to each element to deal with

uncertainty has also been introduced [24–26].

To avoid high computational complexity, we add rele-

vant regularization to remove as much uncertainty as

possible. We take the noise robustness and retention

capacity of fuzzy clustering as the starting point and

attempt to disperse the impact of outliers within the overall

range. Besides, it is vital to promote the divisibility

between different clusters as well as the similarity within

each cluster.

To achieve this goal, the distance from an observation to

a cluster, denoted as kdk, could be a good criterion to judge

the reliability of an observation. The less reliable the

observation, the more serious the penalty it produces. In

other words, the penalty guides how the loss function

behaves. Besides, the loss caused by unreliable observa-

tions should not be so severe that the the impact of noise is

overemphasize and unstable clustering results are induced.

It is well validated that norm normalization techniques can

efficiently inhibit the undesirable impact of noisy data

[16, 27, 28]. Applying norm regularization with respect to

kdk in FCM helps a lot to control the overall effect in

theory [6, 16, 17].

Ding [29] and Nie [30] proposed the adaptive-loss

concept, which serves as an assembling type of norm

regularization as an adaptive embedding for semisuper-

vised learning. The adaptive norm [30] smoothly
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interpolates between L1 and L2 error functions, consistent

with the expected effects of unsupervised fuzzy clustering

tasks. To advance such research, the application of adap-

tive loss in unsupervised cluster algorithms represents a

great innovation. Stimulated by Ding’s and Nie’s work, we

first study the adaptive loss function in fuzzy clustering

algorithms in this paper. Note that the outlier sensitivity of

FCM originates from the fact that constrained member-

ships cannot distinguish between EQUAL EVIDENCE and IG-

NORANCE when two points are quite far away from the

centroid of a cluster, resulting in heavy tails on the mem-

bership assignment [31]. Based on this observation, we

explore a membership-assignment-based strategy, which

differs from previous distance-based ones, with the aid of

an adaptive norm.

In terms of fuzzy logic, a troublesome obstacle to the

application of the adaptive norm is that the L2-norm and

L1-norm restrain the fuzzy level of FCM, hence limiting its

clustering performance. Taking the adaptive norm as a

prototype, we extend it to a general norm called the

adaptive L1;m-norm to fit FCM. The adaptive L1;m-norm is

expressed as

kuk1;m ¼
Xn

i¼1

ð1þ dÞjuijm

dþ juijm�1
; ð1Þ

where u denotes the membership degree of a point and d is

a positive coefficient controlling the adjustment of the Lm-

norm and L1-norm. We bridge the L1;m-norm over the

standard FCM objective function, resulting in a novel

model called adaptive-FCM, with the aim of achieving

noise robustness, divisibility, and similarity. Sects. 2.2

and 5 analyze the characteristics of adaptive-FCM and

different types of norm regularization.

In addition, entropy information contained in the data

should be fully utilized to achieve noise robustness.

Researchers have used the maximum-entropy model as a

regularization to make the clusters much fuzzier or more

dissimilar via its maximizing strategy [14, 32]. Li et al.

proposed a maximum approach to fuzzy clustering, and

Zhou et al. proposed fuzzy clustering with the entropy of

attribute weights (EWFCM) by combining attribute-

weighted information with the theory of entropy [14].

EWFCM provides a good criterion for attribute weight

assignment and works well for nonspherically shaped

clusters. Zarinbal et al. introduced the distribution metric

characteristic of relative entropy, the general case of

entropy, into FCM (REFCM) to measure the distance

between two distributions [32]. This combination combines

the objective loss with a Gaussian distribution, making

FCM more robust to noise to some degree.

Recall that, for real-world datasets, erratic noise occurs

by chance in any distribution. However, in addition to the

problem of how to treat noise compatibly, another issue is

the treatment of the imbalance which exists between dif-

ferent dimensions. To deal with high-dimensional datasets,

Donald et al. embedded a fuzzy covariance matrix as a

nature metric into the FCM model and obtained more

accurate clustering [33].

Ultimately, inspired by recent entropy-based FCM

methods, we further include the relative entropy function

and propose a novel FCM model (adaptive-REFCM) to

address these problems and capture the overall structure of

the dataset.

In summary, the contributions of this paper are

threefold:

• To study the use of the adaptive-loss function in the

FCM domain to achieve superior noise robustness.

• To provide a membership-assignment-based viewpoint

to address the impact of outliers in FCM, in contrast to

traditional distance-based approaches.

• To propose two complete FCM-based models (adap-

tive-FCM and its extension adaptive-REFCM) to

handle noisy and dimensionally imbalanced situations,

which outperform related state-of-the-art FCM methods

according to experiments on real-world (noise-free or

noisy UCI repository and image segmentation) and

artificial datasets.

2 Related Work

Definition Given x1; x2; . . .; xnf g as n unsupervised data

points of the same dimensionality, denote the data matrix

as X ¼ x1; x2; . . .; xnf g;X 2 Rs�n, where s is the dimen-

sionality. Define c as the expected number of clusters and

C ¼ v1; v2; . . .; vcf g as the vectors of all the clusters.

2.1 FCM

In fuzzy c-means clustering algorithms, m is defined and

given as the fuzzy coefficient. The goal is to achieve the

best assignment for uij 8i; j. The Euclidean distance from

the jth observation to the centroid of the ith cluster is

defined as dij ¼ kxj � vik2;1. The whole loss function is

defined as

argmin
u;d

Jðu; dÞ ¼ argmin
u;d

Pn

j¼1

Pc

i¼1

umij d
2
ij

s:t:
Pc

i¼1

uij ¼ 1; 0� uij � 1:

8
>>><

>>>:
ð2Þ

Applying the Lagrange multiplier method to complete the

whole iterative optimization computation with respect to

uij, the optimization can be expressed as
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uij ¼
Xc

k¼1

d2ij

d2kj

 ! 1
m�1

0

@

1

A

0

@

1

A
�1

i ¼ 1; 2. . .c; j ¼ 1; 2. . .n:

8
>>><

>>>:
ð3Þ

As m increases, all the uij tend to become closer, making

the assignment fuzzier, which increases the impact on the

whole dataset and individual observations. In comparison

with hard clustering algorithms, such fuzzy assignment

extracts the information about clusters more reasonably,

because the interaction among the observations is taken

into consideration.

It is natural to identify points with extremely low

membership degree as noise. However, this definition of uij
suffers from the disadvantage that one cannot automati-

cally assign observations with quite low membership

degree to noise, resulting in serious noise sensitivity.

2.2 Norm Regularization

To handle outliers in optimization problems, norm regu-

larization techniques such as the well-known Lq-norm

family mainly concentrate on the reasonable applications

of distance-based loss function strategies.

Typically, kdk2 (L2-norm) and kdk1 (L1-norm) are taken

as the two major forms for such regularization methods,

among the Lq-norm family. From the perspective of

numerical analysis, kdknðn[ 1Þ is smaller than kdk1 when
0\d\1, and kdk1 grows more slowly than kdkn (n[ 1)

when d[ 1. In comparison with kdk2, the use of kdk1 as a
penalty softens the treatment of unreliable observations but

penalizes reliable ones too much. In conclusion, use of

kdk2 results in central representations while use of kdk1
aids regularization to achieve noise robustness.

Moreover, the L1-norm has also been proven to be

effective for variable selection. The least absolute shrink-

age and selection operator (LASSO) method uses the L1-

norm penalty function, viz. kxk1 ¼
Pn

i¼1ðjxijÞ, to achieve

complete variable selection while also reducing the com-

putational complexity [34]. However, in the case of vari-

ables that are highly correlated or when p � n, LASSO

tends to select parts of the variables while ignoring others

because it is not strictly convex and does not have a unique

solution [35]. The use of an elastic net [35] overcomes the

overfitting problem of LASSO by bridging the L2-norm

penalty function into the estimation of b̂, which is defined

as b̂ ¼ argminbðkY � Xbk2 þ k1kbk1 þ k2kbk2Þ. By

adjusting k1 and k2 separately, the elastic net controls the

behavior of the L2-norm and L1-norm to achieve the

desired benefits of group effects and noise robustness.

For noise rejection, the above-mentioned regularization

theories can be introduced into the knowledge system of

FCM; For instance, L1-norm regularization provides a rigid

constraint on the positive membership degree, resulting in

sparse assignments during the iterations of the optimiza-

tion. This operation extracts the principal characters

adaptively. In comparison with the L1-norm, application of

the L2-norm for regularization in FCM promotes the

compactness within each class but does not favor the

divisibility between different classes. Nie et al. studied an

adaptive norm as an elastic embedding constraint for linear

models, ultimately simplifying the adjustment of the L2-

norm and L1-norm functions [30] to enhance the robustness

of noise during semisupervised learning.

The adaptive loss function, first studied by Ding [29],

serves as an assembling type of regularization which

smoothly interpolates between the L1 and L2 error

functions.

From the perspective of optimization, we extend the

adaptive norm to fit the FCM approach and design adap-

tive-FCM as shown in Eq. 4 to serve as a fuzzy clustering

model that combines the L1-norm ðkxk1 ¼
P

i xij jÞ and the

Lm-norm ðkxkm ¼
P

i xij jmÞ.

argmin
u;d

Jðu; dÞ ¼ argmin
u;d

Xn

j¼1

Xc

i¼1

ð1þ dÞumij
uijm�1 þ d

dij
2

s.t.
Xc

i¼1

uij ¼ 1; 0� uij � 1; d[ 0:

8
>>>><

>>>>:

ð4Þ

In Sect. 5, we discuss and compare the properties of the

original adaptive-norm and the proposed adaptive-FCM in

detail.

2.3 Relative Entropy

The relative entropy, also called the Kullback–Leibler

(KL) divergence, of two distributions Q and P is defined as

DKLðQkPÞ ¼
Xc

i¼1

ln
QðiÞ
PðiÞ ;

which has the nonnegative property that DKLðQkPÞ� 0,

while DKLðQkPÞ equals zero if and only if 8i; PðiÞ ¼ QðiÞ.
These properties of cooperation and nonnegativity make it

suitable for convex optimization.

Considering relative entropy as the general case of

entropy that measures the distance between two distribu-

tions, it can be applied for noise robustness in both hard

and soft clustering.

REFCM adds the relative entropy to the objective

function of FCM by considering the degree of fuzziness

[32]. The objective function of REFCM can be expressed

as
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argmin
u;d

Jðu; dÞ ¼ argmin
u;d

Xn

j¼1

Xc

i¼1

umij d
2
ij

� b
Xn

j¼1

Xc

i¼1

Xc

k¼1;k 6¼i

uij ln
uij

ukj

s:t:
Xc

i¼1

uij ¼ 1; 0� uij � 1;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð5Þ

where b is the tradeoff coefficient to adjust the impact of

the relative entropy term. Based on the summation of the

relative entropy of uij and ukj ðk 6¼ iÞ, REFCM achieves

discriminable assignment to the membership degrees,

thereby maximizing the dissimilarity between clusters and

more effectively detecting true negative data points to

improve the robustness to noise. However, REFCM does

not handle dimension normalization and thus is not suit-

able for nonspherical datasets.

2.4 Dimension Normalization

In practical applications such as geographic information

integration or text classification, some elements always

behave according to Gaussian distributions with different

variances. It is thus advisable to normalize the feature

dimensions. EWFCM applies different weights to each

dimension in order to achieve the desired improvement

[14]. Later, the Mahalanobis distance was introduced into

FCM for dimensional regularization. In terms of statistical

analysis, the Mahalanobis distance is used to establish a

unified measurement standard for each feature dimension

and to achieve better adjustment for existing membership

estimation. Liu et al. improved FCM by using the standard

Mahalanobis distance [36]. The Mahalanobis distance has

been proved to be effective for complex clustering tasks.

Zhao et al. introduced the Mahalanobis distance based on a

fuzzy clustering algorithm for image segmentation [37].

In this paper, we apply the normalized negative expo-

nential of the Mahalanobis distance as a form for the

membership possibility. We then apply this possibility for

the relative entropy regularization in combination with the

membership degrees of the observations.

In this paper, the Mahalanobis distance in the dataset is

defined as DM ¼ X� Cð ÞTR
X

�1 X� Cð Þ, where C and

X are defined as

Definition Under this full-rank linear transformation of

the data space, hidden information is fully preserved.

In summary, adaptive-REFCM introduces the adaptive

norm, relative entropy regularization, and Gaussian coop-

eration with the Mahalanobis distance into FCM. A com-

plete analysis of the modeling process is presented in

Sect. 5.

3 Algorithm Process

Adaptive-REFCM is designed based on standard FCM. The

viable objective function of this model is defined as

argminu;d Jðu; dÞ ¼ argminu;d
Pn

j¼1

Pc
i¼1

ð1þ dÞumij
uijm�1 þ d

dij
2

þb
Pn

j¼1

Pc
i¼1 uij ln

uij

cij
s:t:
Pc

i¼1 uij ¼ 1; 0� uij � 1; d; b[ 0;

8
>>>>><

>>>>>:

ð6Þ

which satisfies

cij ¼
exp�ðxj�CjÞTRi

�1ðxj�CiÞ
Pc

k¼1 exp
�ðxj�CkÞTRk

�1ðxj�CkÞ

Ri ¼
1

n

Xn

j¼1

pijðxi � CjÞTðxi � CjÞ

pij ¼
umijPn

k¼1 ukj
m
;

8
>>>>>>>>>><

>>>>>>>>>>:

ð7Þ

where dij denotes the distance from the jth observation to

the centroid of the ith cluster, uij denotes the membership

degree of the jth datum with respect to the ith cluster, cij
denotes the prior approximate evaluation of uij, and d and b
are positive coefficients for the adaptive norm and relative

entropy terms, respectively.

The algorithm is completed via the following steps:

Step 1: Simplify the model

We discuss the adaptive norm term separately. The

objective function can be modified to

oJ u; dð Þ
ouij

¼ f 0 uð Þ

þ 2ð1þ dÞ mdþ gijðuÞ
2ðgijðuÞ þ dÞ2

d2ij gij uð Þg0ij uð Þ;
ð8Þ

where f uð Þ is the relative entropy term. To minimize Eq. 8

w.r.t. uij, let

gij uð Þ ¼ um�1
ij

gij
0 uð Þ ¼ m� 1ð Þum�2

ij

Mij ¼ 1þ dð Þ mdþ gij uð Þ
gij uð Þ þ d
� �2 :

8
>>>><

>>>>:

ð9Þ

Equation 8 is equivalent to

oJ u; dð Þ
ouij

¼ f 0 uð Þ þ Mij d
2
ij gij uð Þ g0ij uð Þ ¼ 0; ð10Þ

Mij is considered as a variable uncorrelated with uij. This

upfront operation reduces the computational complexity.
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Thus, the optimization of the model is simplified to the

solution of Eq. 11.

min
u

f uð Þ þ 1

2

Xn

j¼1

Xc

i¼1

Mijgij uð Þ2 d2ij: ð11Þ

Step 2: Apply the Lagrangian multiplier method
Following step 1, kj ¼ 1; 2; 3; . . .;N, the following

function is minimized by the application of Lagrangian

multipliers:

J u; k; dð Þ ¼min
u

b
Xn

j¼1

Xc

i¼1

uij ln uij � ln cij
� �

þ 1

2

Xn

j¼1

Xc

i¼1

Mijgij uð Þ2 d2ij

�
Xn

j¼1

kj
Xc

i¼1

uij � 1

 !

ð12Þ

Minimization of Eq. 11 w.r.t. uij while satisfying Eq. 10

yields

b ln uij � ln cij þ 1
� �

� kj ¼ �Mijd
2
iju

2m�3
ij m� 1ð Þ: ð13Þ

Both sides of the equation are multiplied by �2mþ3
b to give

�2mþ 3ð Þ ln uij � ln cij þ 1
� �

� kj
b

� �

¼ 2m� 3ð Þ m� 1ð Þ
b

Mijd
2
iju

2m�3
ij :

ð14Þ

In Sect. 4, it is proved that the solution uij of Eq. 14 is the

optimum solution of Eq. 11.

Step 3: Determine uij

Letting Yij ¼ � ln uij and uij ¼ eð�YijÞ, Eq. 14 can be

converted to

2m� 3ð Þ Yij þ ln cij � 1
� �

þ kj
b

� �

¼ 2m� 3ð Þ m� 1ð Þ
b

Mijd
2
ije

� 2m�3ð ÞYij :

ð15Þ

Let

C ¼ 2m� 3ð Þ Yij þ ln cij � 1
� �

þ kj
b

� �

D ¼ 2m� 3ð Þ m� 1ð Þ
b

Mijd
2
ije

� 2m�3ð ÞYij

E ¼ DeC

8
>>>>><

>>>>>:

ð16Þ

Then, based on the computation method of the Lambert W

function, we get

E ¼ 2m� 3ð Þ m� 1ð Þ
b

Mijd
2
ije

2m�3ð Þ ln cij�1þki
b½ �: ð17Þ

Note that ceC ¼ E is expressed as a transcendental equa-

tion, viz. the Lambert W function, which is also called the

omega function, suggested to calculate the solution C ¼
W0 Eð Þ [38]. With the aid of the auxiliary function, Yij can

be determined.

Yij ¼
1

2m� 3
W0 Eð Þ þ 1� ln cij �

kj
b
; ð18Þ

then

uij¼e�Yij¼e�
1

2m�3
W0ðEÞþ1�lncij�

kj
b

E¼
2m�3ð Þ m�1ð Þ 1þdð Þ mdþgij uð Þ

� �

2b gij uð Þþd
� �2 d2ije

2m�3ð Þ lncij�1þkj
b

� �

8
>><

>>:

ð19Þ

Step 4: Determine kj
Because of the complex form of kj, it is hard to obtain an

analytical solution kj. However, this situation can be han-

dled by supposing a range for kj. According to the equation

uij ¼ e�Yij ¼ e
�1

2m�3
W0 Eð Þe�1þln cijþ

kj
b , we get

W0 Eð Þ uij

e�1þln cijþ
ki
b

 !� 2m�3ð Þ

¼ W0 Eð ÞeW0 Eð Þ;

W0 Eð ÞeW0 Eð Þ ¼ E:

8
>><

>>:
ð20Þ

E¼
2m�3ð Þ m�1ð Þ 1þdð Þ mdþgij uð Þ

� �

2b gij uð Þþd
� �2 d2ije

2m�3ð Þ lncij�1þkj
b

� �

uij¼
E e�1þlncijþ

kj
b

� 	� 2m�3ð Þ

W0 Eð Þ

0
BBB@

1
CCCA

� 1
2m�3

8
>>>>>>>>><

>>>>>>>>>:

ð21Þ

It is obvious that E� 0 when m� 1. Thus, we explore how

to determine kj to allow uij to satisfy 0� uij � 1 as follows:

• According to the mapping relationship in Eq. 20, it is

inevitable that Eq. 22 makes sense.

sgn Eð Þ ¼ sgn W0 Eð Þð Þ ð22Þ

Furthermore, uij satisfies Eq. 23,

sgn e�1þln cijþ
kj
b

� 	� 2m�3ð Þ
 !

¼ 1; ð23Þ

so uij is positive and uij � 0 is a necessary inequality,

which proves the first condition of uij � 0.

• We now explore the other condition, viz. uij � 1, which

is equivalent to
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E e�1þln cijþ
kj
b

� 	� 2m�3ð Þ

W0 Eð Þ

0

BBB@

1

CCCA

� 1
2m�3

� 1 ð24Þ

Applying simple operations, Eq. 24 is equivalent to

kj � b
�1

2m� 3
ln
W0 Eð Þ

E
þ 1� ln cij

� 	
ð25Þ

Finally, the upper bound on kj is determined as

kj � b
1

2m� 3
W0 Eð Þ þ 1� ln cij

� 	
: ð26Þ

In conclusion, the range of kj is determined to be ð�1;

bð 1
2m�3

W0ðEÞ þ 1� ln cijÞ�.
Step 5: Update the centers of the clusters

dij ¼ xj � ci

oJ u; dð Þ
oci

¼ 0

8
>><

>>:
ð27Þ

The ith center is updated using Eq. 28,

ci ¼

Pn
j¼0

dþ1ð Þþum�1
ij

dþum�1
ij

xj

Pn
k¼0

dþ1ð Þþum�1
ik

dþum�1
ik

: ð28Þ

4 Convergence and Constancy

Proof The solution uij of Eq. 14 is the optimum solution

of Eq. 11.

• Compute the Hessian matrix of J u; dð Þ as
o2J u; dð Þ

ou2ij
¼ b

uij
þ m� 1ð Þ 2m� 3ð ÞMijd

2
iju

2m�4
ij :

Because Mij ¼ 1þ dð Þ mdþgij uð Þ
gij uð Þþdð Þ2 [ 0, all the elements

of
o2J u;dð Þ

ou2
ij

satisfy
o2J u;dð Þ

ou2
ij

[ 0.

• Compute the first-order derivative of J u; dð Þ as
oJ u; dð Þ
ouij

¼b ln uij � ln cij þ 1
� �

þMijd
2
iju

2m�3
ij m� 1ð Þ � kj:

ð29Þ

oJ u;dð Þ
ouij

is a monotonically increasing function of uij and

o2J u;dð Þ
ou2

ij

[ 0, which proves the theorem. h

5 Analysis of the Algorithm

To solve the clustering task properly with multiclass

datasets, adaptive-REFCM effectively integrates the

adaptive norm, relative entropy term, and Gaussian mixture

model (GMM), which cooperate with each other in this

method. Great performance is achieved in experiments. In

this section, three main properties of adaptive-REFCM are

analyzed.

5.1 Property I: Noise Robustness

The adaptive loss-minimizing method [30] relaxes the rigid

linear model constraint by applying an elastic constraint,

such that the data structure can be better explored. The

original adaptive norm can be expressed in vector form as

shown in Eq. 30 or in matrix form as shown in Eq. 31,

where xi denotes the ith vector of matrix X:

xd ¼
X

i

dþ 1ð Þx2i
dþ xij j ; ð30Þ

Xd ¼
X

i

dþ 1ð Þxi22
dþ xi2

: ð31Þ

Nie [30] pointed out that the adaptive norm is an inte-

gration of the L1-norm and L2-norm with the adaptive

coefficient d. In Fig. 1, the abscissa represents the Eucli-

dean distance dij between a random point and the center of

a cluster while the ordinate represents the value that the

loss function gains. In comparison with the L1-norm and

L2-norm, Fig. 1 shows the results for the adaptive norm

obtained from the L1-norm and L2-norm based on the value

of d, here set to 0.01, 0.1, or 1, to reveal its behavior.

The core of the design for the clustering loss function is

to set a proper standard for the evaluation of observations

in the dataset. Generally speaking, it is more reasonably

that those points which are closely gathered into a compact

structure belong to the same cluster. To follow this core

concept of clustering, an increase in the absolute value of

dijði ¼ 1; 2; . . .; c; j ¼ 1; 2; . . .; nÞ indicates that the point

will make a larger contribution to the total loss. On the

other hand, qualitatively speaking, a point that deviates a

lot from the centroids of all the clusters is more likely to be

considered as noise. From this perspective, one tends to

allocate a relatively smaller cost for small dij values but

larger values for large dij.

However, this is accompanied by another problem, i.e.,

that outliers produce too high a cost, seriously affecting the

retention of the potential structure of the data when

extracted by the clustering process. Thus, it is advisable to

adjust the cost into a reliable range for large dij values, to

enhance the robustness of the algorithm to noise.
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Use of the L1-norm as the loss function offers the

advantage of weakening the effect of noise, but is less

favorable for cluster concentration compared with use of

the L2-norm. Nevertheless, using the squared L2-norm as

the loss function can preserve the local structure but is

sensitive to outliers.

Therefore, the adaptive norm based on a mixture of the

L1-norm with the L2-norm is a compromise to increase the

degree of compactness by adjusting the cost function of

smaller dij values to approach the L2-norm while increasing

the robustness to noise by decreasing the cost of higher dij
values to approach the L1-norm, as shown in Fig. 1.

Inspired by this adaptive norm, we extend it to Eq. 1 and

propose the adaptive-FCM shown in Eq. 32 (m = 2) by

adopting the adaptive norm with the cost of membership

assignment. Note that uij and dij are negatively correlated,

so the effects of the L2-norm and L1-norm in the FCM are

opposite.

min J u; dð Þ ¼ min
Xn

j¼1

Xc

i¼1

1þ dð Þjuijjm

juijjm�1 þ d
d2ij ð32Þ

Consider the situation of c ¼ 2. Limited by the rigid

constraint
Pc

i¼1 uij ¼ 1; 0� uij � 1, in case the jth obser-

vation is likely to be outlier, one of the two membership

degrees of the jth observation tends to drop from 1 while

the other tends to be quite small and increase from 0

(Fig. 2). However, it is suggested that uijði ¼ 1; 2Þ be

allocated more uniformly for a outlier, so as to decentralize

the impact of noise on all the clusters and reduce the loss.

From this point of view, standard FCM (Eq. 2) allocates

more uniformly for a outlier with larger m, leading to the

fact that the L2-norm offers better noise robustness than the

L1-norm. Moreover, the L2-norm simultaneously makes the

margin between clusters softer compared with the L1-norm,

providing greater potential for partition between clusters.

On the other hand, adding the L1-norm to uij tends to make

the judgement explicit for observations quite close to the

centroid of some cluster, resulting in better condensation

within clusters.

However, a problem occurs in that FCM combined with

the original adaptive norm loss suffers from an inherent

limitation in the regulation of the fuzzy level, because the

integration of the L1-norm and L2-norm limits the fuzzy

ability from k-means to standard FCM. To confirm this, we

consider a dataset with a uniform distribution and cluster

into two subclusters using FCM and adaptive-FCM

(Eq. 32) with different values of d. The curves representing
the membership degrees in the different situations are

shown in Fig. 2 to prove this inference. The ordinate refers

to the value of the membership degree u, while the abscissa

shows the absolute one-dimensional position of an obser-

vation. For a fuzzier result, the curve tends to be closer to

the middle horizontal line in Fig. 2a. It can also be seen

from Fig. 2a that the curves of the original adaptive-FCM

with different values of d always lie between those of FCM

and k-means (dark-red-shaded region in Fig. 2a) and can-

not get fuzzier than the results of FCM.

To achieve better robustness to outliers in FCM, one

approach is to blur the impact of outliers by making their

membership fuzzier than FCM. A larger value of m assigns

fuzzier membership in FCM, at the cost of reduced com-

pactness within clusters, which may result in unexpected

uncertainty. Pal concluded based on cluster validity that the

best interval for m is [1.5, 2.5] [39]. Bezdek concluded that,

when m = 2, the most meaningful partition can be

obtained by FCM [40]. Therefore, simply increasing the

value of m is not a compatible strategy. Alternative ways to

handle this situation include interpolative selecting of dif-

ferent values of m (e.g., interval-FCM [21]) or to retain the

compactness of the L1-norm in adaptive-FCM and expand

the properties of the Lm-norm (m ¼ 2) by using a larger

value of m.

To achieve flexibility in the regulation of the fuzzy level

to work better with noisy datasets, we further expand its

form into a novel form by combining the L1-norm with the

Lm-norm ðm[ 2Þ as shown in Eq. 4. Use of a larger value

for the fuzzy coefficient m enables fuzzier performance.

According to Pal’s range for m, we choose m = 2.5 for

adaptive-FCM. Taking Fig. 2a as a reference, it can be seen

Fig. 1 Loss of L1-norm, L2-norm, and adaptive norm with d ¼ 0:01; 0:1; 1
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from Fig. 2b that, in comparison with adaptive-FCM

(m = 2), adaptive-FCM (m = 2.5) further expands the

domain of Uij (dark-blue-shaded region) w.r.t. the value of

d.
Figure 3 shows the clustering results of FCM (m = 2)

and adaptive-FCM (m = 2.5, d = 1), confirming the

effectiveness of adaptive-REFCM in terms of the mem-

bership degrees. Define p as the position of an observation.

As shown in Fig. 3, the p of the two cluster centroids is

-0.25 and 0.25. In comparison with FCM, adaptive-FCM

keeps u explicit (close to 1 or 0) when p is close to -0.25

or 0.25, much fuzzier (closer to 0.5) when p is close to the

edges (p ¼ �0:5 and p ¼ 0:5), and much fuzzier when

p ranges from -0.2 to 0.2 (the margin that is fuzzy for

clustering). Obviously, the expected performance in terms

of noise robustness is achieved.

Summing up the results described above, the adaptive

loss minimization method extracts a holistic representation

of the whole dataset while showing robustness to noise.

5.2 Property II: Global Adaptive Adjustment

In this section, we focus on the global adaptive adjustment

of the algorithm and explore the effect of the relative

entropy. Firstly, recall the relative entropy (RE) from

Eq. 6:

REpart ¼ min
u

Xn

j¼1

Xc

i¼1

uij ln uij � ln cij
� �

: ð33Þ

In our method, we combine GMM in the RE for the reason

that datasets behave differently in different situations and

an underlying mechanism associated with such a mixture

model is observable in fields such as documents, hand-

writing recognition, iris datasets, etc. In the RE, cij denotes
the probabilistic presence of subpopulations within the

overall population to correspond to the distribution of the

clusters. The concept of membership degree is similar to

the probability of a subpopulation, thus GMM provides

prior knowledge for the learning of degrees of belonging in

our clustering method. To minimize the RE ideally, uij and

cij must satisfy uij ¼ cij 8i; j, which indicates that cij
expresses the prior presence of all the subpopulations.

5.3 Property III: Dimensional-Wise Normalization

As mentioned in GMM, the Mahalanobis distances of all

the observations to all the centroids of the clusters are

calculated. The Mahalanobis distance uses the covariance

matrix of Euclidean distances of observations to clusters in

order to normalize high-dimensional data to a specific

standardization in order to eliminate the side-effect of

dimensional scale disunity, making the method more reli-

able for calculating the imbalance between different

observations and clustering high-dimensional data such as

nonspherical, ellipsoidal, or speech recognition datasets.

For standard FCM, the membership degree is obtained

by Eq. 34,

uij ¼
Xc

k¼1

d2ij=d
2
kj


 �1= m�1ð Þ !�1

; ð34Þ

Fig. 2 Comparison of membership degrees of k-means, FCM, and adaptive-FCM w.r.t. d and m

Fig. 3 Membership degrees of FCM and adaptive-FCM in terms of

distances
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where d2ij=d
2
kj is the decisive factor used to determine uij. As

a result, the fuzzy degree is not associated with the size of

the different clusters. In Fig. 4, we take the clustering of

two clusters as an example to represent the shortcoming of

FCM. The two thick black circles indicate the different

distribution ranges of the two clusters, while the two inner

blue circles filled with diagonal lines indicate the range

where the membership degrees of the two clusters are more

unambiguous than a given fuzzy threshold.

Figure 4a shows that FCM results in two blue circles

with the same radius, while Fig. 4b shows that adaptive-

REFCM results in two blue circles with different radii. In

Fig. 4b, the dark-grey part retains the blue region resulting

from FCM in Fig. 4a. For the same threshold a, a cluster

with larger variance results in a larger blue region for the

reason that the Gaussian collaborates with the Maha-

lanobis distance. This indicates that adaptive-REFCM is

beneficial compared with FCM to tackle the problem of

variance imbalance by assigning membership degrees in

line with the variance of each cluster, making the model

more general for fuzzy clustering tasks.

In summary, this section presents in-depth analysis of

the three main properties of this model. Its experimental

performance is reported in Sect. 6.

6 Experimental Analyses

This section further evaluates the classification capability

of the proposed methods on noise-free and noisy datasets

and nonspherical datasets. In addition, several related state-

Fig. 4 Comparison of fuzzy regions of FCM and adaptive-REFCM

Table 1 Comparison of average accuracy in 100 trials over 25 datasets without extra outliers

Name FCM AWFCM NWFCM EWFCM FDCM-SSR L1=2-CM REFCM ADFCM ADREFCM

E. coli 0.7888 0.8024 0.8219 0.7885 0.8006 0.8332 0.8076 0.8142 0.8428

Auto 0.7534 0.7658 0.7751 0.7894 0.7534 0.8332 0.7534 0.7604 0.7619

Dermatology 0.6986 0.8694 0.6911 0.7958 0.7057 0.6817 0.7013 0.7103 0.7038

Iris 0.8797 0.8270 0.8977 0.8797 0.8859 0.9187 0.8923 0.8925 0.8977

Zoo 0.8325 0.8352 0.6252 0.9559 0.8485 0.8586 0.8523 0.8702 0.8720

Transfusion 0.5853 0.5458 0.5799 0.6368 0.5929 0.5798 0.5853 0.5853 0.5992

Parkinson’s 0.5929 0.5196 0.5758 0.6218 0.5928 0.6270 0.5929 0.6084 0.6167

Banknote 0.5236 0.5214 0.5194 0.5236 0.5245 0.5243 0.5249 0.5249 0.5252

Credit 0.5048 0.6751 0.5058 0.5182 0.5048 0.5073 0.5048 0.5153 0.5153

Breast cancer 0.9159 0.9375 0.9294 0.9159 0.9348 0.9026 0.9458 0.9267 0.9486

Wine 0.7105 0.8294 0.7269 0.6295 0.7105 0.7239 0.7105 0.7187 0.7187

Automobile 0.6882 0.6947 0.7269 0.6889 0.6882 0.6937 0.6882 0.6981 0.6986

Car 0.5330 0.5347 0.5387 0.5330 0.5330 0.5425 0.5456 0.5425 0.5487

Fertility 0.5000 0.4958 0.5083 0.5711 0.5010 0.5136 0.5056 0.5224 0.5533

Seeds 0.8744 0.8505 0.8621 0.8744 0.8744 0.8441 0.8744 0.8762 0.8840

Balance 0.5818 0.5818 0.4300 0.5918 0.6159 0.5807 0.5916 0.6152 0.6152

House votes 0.7752 0.7820 0.4300 0.7820 0.7752 0.7820 0.7786 0.7821 0.7925

Vowel 0.7290 0.5161 0.5923 0.7951 0.7590 0.7576 0.7378 0.8506 0.8605

Glass 0.7117 0.7180 0.6621 0.7117 0.7124 0.7277 0.7117 0.7160 0.7235

Mammographic 0.5683 0.6840 0.5738 0.6702 0.5683 0.6473 0.5729 0.5762 0.5776

Pima 0.5499 0.5841 0.5293 0.5458 0.5499 0.5427 0.5499 0.5516 0.5516

Bankruptcy 0.9453 0.9082 0.9010 0.9453 0.9454 0.9082 0.9453 0.9762 0.9762

Phishing 0.6614 0.6886 0.6460 0.6827 0.6649 0.6587 0.6676 0.6614 0.6622

Yeast 0.7148 0.7148 0.7148 0.7216 0.7148 0.6409 0.7193 0.7498 0.7498

User knowledge 0.6749 0.6630 0.6120 0.6813 0.6749 0.6672 0.6871 0.6829 0.6939

Average 0.6918 0.7018 0.6691 0.7140 0.6973 0.6999 0.6979 0.7091 0.7156

The bold numbers note the best performances of all the models listed in Table 2
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of-the-art (SOTA) methods from recent years are compared

under the same experimental settings and using the same

initialization.

It should be emphasized that the details of the experi-

ments are deliberately chosen for comparison of the per-

formance of the proposed model with RE (adaptive-

REFCM) and without RE (adaptive-FCM) to confirm

whether the global adaptive adjustment of RE works or not.

Note that adaptive-FCM is referred to as ADFCM while

adaptive-REFCM is referred to as ADREFCM for short in

this section.

6.1 General Performance Comparison on UCI

Twenty-five real-world datasets are selected randomly

from the UCI repository [41]. We implement several

related state-of-the-art FCM methods, and Table 1 collects

the clustering accuracy (also called the Rand index [42]) of

the 25 UCI datasets without extra noise. It turns out that,

generally, ADFCM and ADREFCM achieve better per-

formances in comparison with FCM and REFCM. Note

that the clustering accuracy of ADREFCM is higher by

2.38% on average compared with FCM and that it out-

performs other enhanced fuzzy clustering algorithms in

these trials.

6.2 Robustness to Noise

6.2.1 Clustering of UCI Datasets with Outliers

This section compares the average accuracy in 100 trials

over 25 datasets with outliers. There is no explicit mathe-

matical definition for an outlier, so we apply the definition

of a small group of observations whose size is 1
100

of the

size of the original dataset and whose centroid is two times

the maximum distance of the original observations away

from the centroid of all the points in the dataset. The

performance results indicate that ADFCM and ADREFCM

are superior to standard FCM and REFCM in dealing with

outliers in real-world situations. The average clustering

accuracy of ADFCM and ADREFCM is 2.70% and 5.75%

higher compared with FCM, respectively, and both out-

perform other enhanced fuzzy clustering algorithms among

these trials.

6.2.2 Artificial Dataset Clustering

Figure 5 shows the noise robustness in a more intuitive

way by pointing out the displacements of the clusters’

centers with arrows, as shown in Fig. 5c, relative to the

clustering result of FCM. Moreover, the clustering convex

hulls are drawn for visualization. In this experiment, the
Fig. 5 Noise robustness of adaptive-FCM on two partially overlap-

ping noisy clusters in comparison with FCM
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dataset consists of two partially overlapped clusters sub-

jected to Gaussian distributions with equal l and equal d.
In addition, extra stochastic outliers are added. Theoreti-

cally, in this case, the overall dataset can be clustered into

two clusters with balanced distribution using FCM. How-

ever, the small amount of outlying observations whose

values in the first dimension are much smaller than the

normal data points serve as interference in the data struc-

ture when using FCM, resulting from the fact that the

computation of the membership degrees considers all the

clusters. This leads to a global shift toward the location of

the outliers during the clustering process. ADFCM weak-

ens this uncertain influence of the outliers and adjusts the

centers of the clusters to better positions (e.g., the centroid

of the first cluster toward the right in this case), ultimately

resulting in better clustering performance compared with

FCM (Table 2).

6.3 Global Adaptive Adjustment and Dimensional-

Wise Normalization

6.3.1 Image Segmentation

We carry out several trials on image segmentation using

ADFCM and ADREFCM in comparison with other related

algorithms. Taking red–green–blue (RGB) values (three

dimensions) and spatial information as two-dimensional

(2D) coordinate positions into consideration, Figs. 6 and 7

present the performance of the different clustering meth-

ods. Figure 6 focuses on object segmentation, while Fig. 7

focuses on computed tomography segmentation. Figure 6a

shows the original image where four unique subclasses

(three foreground subclasses and the background subclass)

are included. FCM does not perform very well in the image

segmentation because of the potential dimensional

Table 2 Comparison of average accuracy in 100 trials over 25 datasets with outliers

Name FCM AWFCM NWFCM EWFCM FDCM-SSR L1=2-CM REFCM ADFCM ADREFCM

E. coli 0.8068 0.8171 0.8169 0.8077 0.8185 0.8628 0.8097 0.8306 0.8527

Auto 0.7654 0.7942 0.7769 0.6363 0.7690 0.7790 0.7654 0.7931 0.8257

Dermatology 0.6764 0.6808 0.6728 0.8900 0.6782 0.6808 0.7004 0.6879 0.6879

Iris 0.7637 0.7599 0.8580 0.7934 0.7709 0.8107 0.8180 0.8629 0.8684

Zoo 0.8103 0.8856 0.8636 0.9743 0.8693 0.8310 0.8182 0.8874 0.8850

Transfusion 0.6368 0.6369 0.6368 0.6368 0.6368 0.6368 0.6368 0.6368 0.6368

Parkinson’s 0.6270 0.6270 0.6287 0.6270 0.6270 0.6270 0.6270 0.6270 0.6846

Banknote 0.5205 0.5165 0.5196 0.5373 0.5205 0.5229 0.5205 0.5290 0.7549

Credit 0.5036 0.5036 0.5194 0.5036 0.5412 0.5036 0.5036 0.5036 0.5048

Breast cancer 0.9000 0.8922 0.9080 0.9000 0.9026 0.9186 0.9000 0.9000 0.9431

Wine 0.6688 0.6882 0.6923 0.3451 0.6689 0.6928 0.6697 0.6879 0.7296

Automobile 0.6578 0.6536 0.6742 0.2450 0.6688 0.6697 0.6583 0.6759 0.6895

Car 0.5330 0.5430 0.5516 0.5364 0.5335 0.5515 0.5425 0.5514 0.5569

Fertility 0.5014 0.5080 0.5033 0.7286 0.5085 0.5190 0.5216 0.5392 0.7867

Seeds 0.8076 0.7695 0.7827 0.8147 0.8147 0.7875 0.8102 0.8147 0.8108

Balance 0.5160 0.5323 0.5181 0.5512 0.5182 0.5270 0.5604 0.5833 0.5800

House votes 0.7752 0.7718 0.7821 0.7855 0.7820 0.7821 0.7810 0.7881 0.7881

Vowel 0.6514 0.6482 0.6537 0.7509 0.6601 0.6514 0.6608 0.8543 0.8518

Glass 0.6791 0.7061 0.6574 0.6797 0.6799 0.6730 0.6842 0.6962 0.6929

Mammographic 0.5757 0.5757 0.5757 0.5785 0.5776 0.5725 0.5757 0.5757 0.5925

Pima 0.5450 0.5451 0.5451 0.5450 0.5451 0.5451 0.5450 0.5450 0.5668

Bankruptcy 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762

Phishing 0.6490 0.6629 0.6536 0.6608 0.6673 0.6598 0.6919 0.6492 0.6928

Yeast 0.7115 0.6488 0.6928 0.7204 0.7127 0.7115 0.7322 0.7376 0.7292

User knowledge 0.6782 0.6833 0.6666 0.6807 0.6782 0.6782 0.6791 0.6804 0.6876

Average 0.6775 0.6811 0.6850 0.6762 0.6850 0.6868 0.6875 0.7045 0.7350

The bold numbers note the best performances of all the models listed in Table 2
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imbalance between the RGB and spatial information.

Inheriting the result of FCM and restarting consecutive

iterations using AWFCM, EWFCM, NWFCM, and

ADFCM does not achieve much improvement for the same

reason as mentioned above, but in combination with GMM,

ADREFCM adaptively adjusts the situation. A seen in

Fig. 6d, the background and three foreground objects are

visibly separated when using ADREFCM.

As presented in Figs. 8, 9, 10, and 11, four more

experiments are carried out on a scenery picture and three

images under the condition of low illumination, where the

partially overlapping objects have limited color features.

Extra sparse outliers (extremely bright spots) are added to

these images as shown in the ‘‘original image’’ in each

case. The outliers pull the centers of the objects toward the

negative directions and destroy their structure in the ima-

ges, resulting in uncertainty in the data structure extracted

by the clustering process. By global adjustment of the RE

term, ADREFCM segments the components more effec-

tively, outperforming the other related FCM algorithms as

shown in Figs. 8, 9, 10, and 11.

6.3.2 Artificial Dataset Clustering

This section discusses the clustering results of two-di-

mensional nonspherical data belonging to two clusters.

As shown in Fig. 12a, the original dataset consists of

three rectangular clusters. Figure 12b–d presents the

clustering results achieved using the different algorithms.

Note that points of the same color belong to the same

cluster.

FCM is based on Euclidean distance, which can result in

improper clustering when dealing with nonspherical data-

sets, as shown in Fig. 12c. ADFCM is sensitive to

dimensional inconsistency, as shown in Fig. 12b. In com-

parison with FCM, the centroids of the clusters are adap-

tively pushed slightly when using ADREFCM to fit the

distribution of the dataset, which can capture its latent

structure well, as shown in Fig. 12d.

Fig. 6 Segmentation experiments on image containing three fore-

ground subclasses and one background subclass

Fig. 7 Image segmentation experiments on X-ray output of a

patient’s skull
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Fig. 8 Image segmentation experiments on industry image I under

low-illumination condition

Fig. 9 Image segmentation experiments on noisy scenery image I

Fig. 10 Image segmentation experiments on industry image II under

low-illumination condition

Fig. 11 Image segmentation experiments on noisy scenery image II
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6.4 Parameter Sensitivity Analysis

To analyze the sensitivity of the algorithm to its parame-

ters, we arbitrarily cluster 15 splits out of the UCI reposi-

tory with an extra 1
100

outliers using ADREFCM while

varying d and b, as done by Luo and Wen [43, 44]. b helps

consideration of the global information in the dataset.

However, outliers cause data distribution deviations, thus

excessive b will result in overconsideration of noisy global

information, so we set the value of b within a certain range.

In this experiment, d and b are tuned within the range of

½10�4; 103� and ½0; 102�, respectively. Figure 13 visualizes

the d-b accuracy histogram of ADREFCM, showing the

mean standard deviation (MS) of the clustering accuracy.

These results indicate greater sensitivity to b than d,
although they are both important for promoting the per-

formance of the algorithm. The optimal values of these

parameters are data dependent. In most cases, we conclude

that the optimal ranges of d and b are [0.01, 1] and [0, 10],

respectively.

In summary, the parameter sensitivity analysis and

properties of the proposed methods discussed in detail in

this section reveal that the proposed methods can achieve

the targeted performance in dozens of real-world and

artificial experiments.

Fig. 12 Two-dimensional clustering experiments indicating the global adaptive adjustment of RE

2646 International Journal of Fuzzy Systems, Vol. 21, No. 8, November 2019

123



7 Conclusions

Adaptive-FCM is proposed as an extension of the adaptive

norm to mth order, to weaken the impact of noise while

preserving the aggregation ability of FCM within clusters.

In addition, by combining the Gaussian mixture model

and the relative entropy, adaptive-REFCM is proposed to

solve the problems of both noise robustness and dimen-

sional normalization in clustering tasks, considering not

only fuzzy membership but also the distribution of clusters.

Great performance of adaptive-REFCM is achieved based

on its higher clustering accuracy in experiments on real-

world (noise-free or noisy UCI repositories and image

segmentation) and artificial datasets. With regard to future

research, it is recommended to study the integration of

existing noise-sensitive algorithms with the core design of

adaptive-FCM and adaptive-REFCM to address their

deficiency of noise sensitivity.
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