508 research outputs found

    Models of Control Channels in the LTE System

    Get PDF
    Dizertační práce se zabývá zpracováním signálu fyzických řídicích kanálů systému LTE a vyšetřováním bitové chybovosti při přenosu řídicí informace z vysílače do přijímače v závislosti na podmínkách příjmu. Práce je rozdělena do dvou hlavních částí. První část práce je zaměřena na simulaci přenosu řídicí informace LTE v základním pásmu. Jsou zde prezentovány vytvořené simulátory řídicích kanálů ve směru uplink i downlink. Simulace jsou provedeny pro všechny druhy nastavení systému a základní modely přenosového prostředí. Jsou zde popsány výsledky vlivu použití MIMO technologií na kvalitu příjmu řídicí informace především v únikových kanálech. Druhá část práce je zaměřena na možnost nasazení systému LTE ve sdíleném pásmu ISM (2.4 GHz). Jsou zde představeny základní koncepce použití, na jejichž základě je vytvořen scénář simulací. Kapitola dále popisuje tvorbu simulátoru koexistence LTE a systému Wi-Fi v přeneseném pásmu ISM 2.4GHz. Jsou zde uvedeny výsledky simulací koexistence LTE a rušivého systému Wi-Fi provedených dle vytvořeného scénáře. Výsledky simulací koexistence LTE a Wi-Fi jsou ověřeny měřením v laboratorních podmínkách. Toto porovnání je důležité z hlediska optimalizace simulátoru koexistence. Dle výsledků obou typů simulací a měření jsou stanovena provozní doporučení, která mají přispět k bezpečnému a spolehlivému vysílání a příjmu řídicích informací LTE i při nepříznivých podmínkách příjmu.The doctoral thesis is focused on a signal processing in the LTE physical control channels and performance analysis of control information transmission according to receiving conditions. The thesis is divided into two parts. The first part deals with simulation of the transmission of control information in baseband. The created simulators for uplink and downlink are presented. The simulations are performed for all possible system settings and various channel models. The MIMO influence on a quality of control information reception under fading channels is also presented. The second part of the thesis is focused on LTE utilization in shared channel ISM (2.4 GHz). The basic LTE application concept for ISM band is presented. This concept is fundamental to created simulation scenario. The chapter also presents the LTE and Wi-Fi coexistence simulator in 2.4 GHz ISM passband. The coexistence simulation are presented according to simulation scenario and the results are shown. The simulated coexistence analysis results are verified in laboratory environment. The comparison of the simulated and the measured coexistence analysis results is crucial for further optimization of the coexistence simulator. Recommendations for optimal and reliable operation of LTE are specified according to the simulated and the measured results. Recommendations should be useful to the reliable transmission of LTE control information in bad receiving conditions.

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Wireless Technologies for IoT in Smart Cities

    Full text link
    [EN] As cities continue to grow, numerous initiatives for Smart Cities are being conducted. The concept of Smart City encompasses several concepts being governance, economy, management, infrastructure, technology and people. This means that a Smart City can have different communication needs. Wireless technologies such as WiFi, ZigBee, Bluetooth, WiMax, 4G or LTE (Long Term Evolution) have presented themselves as solutions to the communication needs of Smart City initiatives. However, as most of them employ unlicensed bands, interference and coexistence problems are increasing. In this paper, the wireless technologies available nowadays for IoT (Internet of Things) in Smart Cities are presented. Our contribution is a review of wireless technologies, their comparison and the problems that difficult coexistence among them. In order to do so, the characteristics and adequacy of wireless technologies to each domain are considered. The problems derived of over-crowded unlicensed spectrum and coexistence difficulties among each technology are discussed as well. Finally, power consumption concerns are addressed.García-García, L.; Jimenez, JM.; Abdullah, MTA.; Lloret, J. (2018). Wireless Technologies for IoT in Smart Cities. Network Protocols and Algorithms. 10(1):23-64. doi:10.5296/npa.v10i1.12798S236410

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    The struggle for co-existence : communication policy by private technical standards making and its limits in unlicensed spectrum

    Get PDF
    Huge increase in the demand by the wireless sector to use the airwaves has trained focus on the classic policy problem of resource scarcity in the field. This article illuminates a part of wireless communication – unlicensed spectrum – where a particularly fractious debate over the future usage of such space has developed between incumbent Wi-Fi interests and new entrants from the field of licensed mobile communication. The case is novel in that private technical standards making has become a site aimed at resolving what is a contest for co-existence in unlicensed spectrum. In its conceptualisation of private technical standards making processes as communication policy activity, the article illuminates both their affordances and limitations. It also shows the enduring utility of public regulatory steer in what are, in effect, private self-regulatory processes aimed at creating solutions to problems with a complex socio-technical character

    Low-Power Wide-Area Networks: A Broad Overview of its Different Aspects

    Get PDF
    Low-power wide-area networks (LPWANs) are gaining popularity in the research community due to their low power consumption, low cost, and wide geographical coverage. LPWAN technologies complement and outperform short-range and traditional cellular wireless technologies in a variety of applications, including smart city development, machine-to-machine (M2M) communications, healthcare, intelligent transportation, industrial applications, climate-smart agriculture, and asset tracking. This review paper discusses the design objectives and the methodologies used by LPWAN to provide extensive coverage for low-power devices. We also explore how the presented LPWAN architecture employs various topologies such as star and mesh. We examine many current and emerging LPWAN technologies, as well as their system architectures and standards, and evaluate their ability to meet each design objective. In addition, the possible coexistence of LPWAN with other technologies, combining the best attributes to provide an optimum solution is also explored and reported in the current overview. Following that, a comparison of various LPWAN technologies is performed and their market opportunities are also investigated. Furthermore, an analysis of various LPWAN use cases is performed, highlighting their benefits and drawbacks. This aids in the selection of the best LPWAN technology for various applications. Before concluding the work, the open research issues, and challenges in designing LPWAN are presented.publishedVersio
    corecore