2,206 research outputs found

    Interpolation Methods for Binary and Multivalued Logical Quantum Gate Synthesis

    Full text link
    A method for synthesizing quantum gates is presented based on interpolation methods applied to operators in Hilbert space. Starting from the diagonal forms of specific generating seed operators with non-degenerate eigenvalue spectrum one obtains for arity-one a complete family of logical operators corresponding to all the one-argument logical connectives. Scaling-up to n-arity gates is obtained by using the Kronecker product and unitary transformations. The quantum version of the Fourier transform of Boolean functions is presented and a Reed-Muller decomposition for quantum logical gates is derived. The common control gates can be easily obtained by considering the logical correspondence between the control logic operator and the binary propositional logic operator. A new polynomial and exponential formulation of the Toffoli gate is presented. The method has parallels to quantum gate-T optimization methods using powers of multilinear operator polynomials. The method is then applied naturally to alphabets greater than two for multi-valued logical gates used for quantum Fourier transform, min-max decision circuits and multivalued adders

    Constructing all qutrit controlled Clifford+T gates in Clifford+T

    Full text link
    For a number of useful quantum circuits, qudit constructions have been found which reduce resource requirements compared to the best known or best possible qubit construction. However, many of the necessary qutrit gates in these constructions have never been explicitly and efficiently constructed in a fault-tolerant manner. We show how to exactly and unitarily construct any qutrit multiple-controlled Clifford+T unitary using just Clifford+T gates and without using ancillae. The T-count to do so is polynomial in the number of controls kk, scaling as O(k3.585)O(k^{3.585}). With our results we can construct ancilla-free Clifford+T implementations of multiple-controlled T gates as well as all versions of the qutrit multiple-controlled Toffoli, while the analogous results for qubits are impossible. As an application of our results, we provide a procedure to implement any ternary classical reversible function on nn trits as an ancilla-free qutrit unitary using O(3nn3.585)O(3^n n^{3.585}) T gates.Comment: 14 page

    Entanglement as a semantic resource

    Get PDF
    The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits (quregisters) or, more generally, mixtures of quregisters (qumixes), while logical connectives are interpreted as special quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly "Hilbert-space dependent". This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic

    Ternary Logic Design in Topological Quantum Computing

    Get PDF
    A quantum computer can perform exponentially faster than its classical counterpart. It works on the principle of superposition. But due to the decoherence effect, the superposition of a quantum state gets destroyed by the interaction with the environment. It is a real challenge to completely isolate a quantum system to make it free of decoherence. This problem can be circumvented by the use of topological quantum phases of matter. These phases have quasiparticles excitations called anyons. The anyons are charge-flux composites and show exotic fractional statistics. When the order of exchange matters, then the anyons are called non-Abelian anyons. Majorana fermions in topological superconductors and quasiparticles in some quantum Hall states are non-Abelian anyons. Such topological phases of matter have a ground state degeneracy. The fusion of two or more non-Abelian anyons can result in a superposition of several anyons. The topological quantum gates are implemented by braiding and fusion of the non-Abelian anyons. The fault-tolerance is achieved through the topological degrees of freedom of anyons. Such degrees of freedom are non-local, hence inaccessible to the local perturbations. In this paper, the Hilbert space for a topological qubit is discussed. The Ising and Fibonacci anyonic models for binary gates are briefly given. Ternary logic gates are more compact than their binary counterparts and naturally arise in a type of anyonic model called the metaplectic anyons. The mathematical model, for the fusion and braiding matrices of metaplectic anyons, is the quantum deformation of the recoupling theory. We proposed that the existing quantum ternary arithmetic gates can be realized by braiding and topological charge measurement of the metaplectic anyons

    Efficient Quantum Circuits for Non-Qubit Quantum Error-Correcting Codes

    Get PDF
    We present two methods for the construction of quantum circuits for quantum error-correcting codes (QECC). The underlying quantum systems are tensor products of subsystems (qudits) of equal dimension which is a prime power. For a QECC encoding k qudits into n qudits, the resulting quantum circuit has O(n(n-k)) gates. The running time of the classical algorithm to compute the quantum circuit is O(n(n-k)^2).Comment: 18 pages, submitted to special issue of IJFC
    • …
    corecore