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1. Introduction 

The reversibility of cellular automata (CAs) has received significant attention since John von Neumann and Stanisıaw

Ulam introduced these discrete dynamical systems in the late 1940s. This is due to the fact that many researchers have

further developed the theory of CAs to use them as a suitable computational tool for the simulation of physical systems.

Thus, as reversibility is one of the fundamental laws of physics at the microscopic scale, especially in quantum mechanics,

CAs should preferabley exhibit the same property. 

The first studies on the reversibility of CAs are due to Hedlund [19] and Richardson [29] . In particular, they proved that

a CA is reversible if and only if it is a injection. In the literature one can now find a number of results on this topic. Among

them are results regarding infinite CAs as well as finite CAs with various boundary conditions. However, the studies on the

reversibility of CAs concentrate on 1-dimensional ones and linear CAs with Z m 

as state set. 

When it comes to 1-dimensional CAs, it is safe to say that the problem has been completely resolved. Indeed, an effective

way to determine reversibility of infinite 1-dimensional CAs was shown by Amoroso and Patt [1] and also by Di Gregorio

and Trautteur [12] and Sutner [33] . For finite CAs, an algorithm to decide the reversibility was developed by Bhattacharjee

and Das [3] . Moreover, there are many results concerning specific Elementary CAs (ECAs) (see, for example, [8,9,16,30] ).

However, it is worth emphasizing that existing tools do not allow to enumerate all reversible 1-dimensional CAs even in the

case of few states (of course, except in the case of ECAs), because it is impossible to check all CAs with a given state set,

due to the inhibitive cardinality of the search space. 
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While 1-dimensional reversible CAs have been studied in detail and from many different points of view, the same cannot

be said about 2- or higher-dimensional ones. This is a consequence of the negative result of Kari [22] stating that there is

no algorithm that can decide whether or not an arbitrary 2-dimensional CA is reversible. 

Another class of CAs (1- or higher-dimensional) for which researchers have found methods to determine reversibility, is

the class of linear CAs (LCAs). The reason that LCAs have been extensively studied, especially with Z m 

as state set, is that

they are particularly amenable to theoretical analysis. Firstly, the linearity of local rules opens the door to the realm of

linear algebra and one can use powerful tools like transition matrices, since an LCA is reversible if and only if its transition

matrix is reversible (see, for example, [7,10,26,32] ). Secondly, the fact that the state set is a finite commutative ring allows

to use formal power series representations to state necessary and sufficient conditions for the reversibility of an LCA in

terms of the coefficients of its local rule. This method has been initiated by Itô et al. [21] and intensively developed by

other researchers (see, for example, [11,25,37] ). Thus, also in the case of LCAs with the state set Z m 

, we can say that the

problem of reversibility has been solved completely. In particular, LCAs have been thoroughly examined in terms of ergodic

theory: it was shown that a reversible LCA is either a Bernoulli automorphism or non-ergodic [6] . More information about

the reversibility problem of these types of CAs can be found in [23,24,27] . 

However, the transition matrix tool has fundamental limitations, since the matrix size depends on the number of cells,

so, it is useless when we deal with infinite CAs and for finite CAs, every grid size has to be considered separately. Moreover,

applying matrix theory for a ring Z m 

, which does not have to be a field, one has to be very careful (see [2] ). Also, the

linearity assumption as well as the use of a finite ring as state set are often not acceptable. For example, in particle motion

modeling, one would like two plus one to be three instead of zero as in the case of the field Z 3 . 

The aim of this paper is to present a method that allows to study the reversibility of another type of CAs: number-

conserving cellular automata (NCCAs). NCCAs represent a particularly interesting class of CAs that have the special feature

of preserving the sum of the states upon every update of the states (see, for example, [13] ). As state set, we will consider

{ 0 , 1 , . . . , q ∗} , where q ∗ is a given natural number. CAs with such a state set will be referred to as multi-state CAs. As we will

deal with d -dimensional CAs, we have to define the cell neighborhood. We opt for the closed unit ball in the d -dimensional

Manhattan distance metric, i.e. , the von Neumann neighborhood, the most popular neighborhood used in modeling physical

phenomena (for example, it is “the most common in overland flow models” [5] ). Unfortunately, studying multidimensional

CAs with this kind of neighborhood is very complicated, because the von Neumann neighborhood is not a Cartesian product

of one-dimensional neighborhoods (in contrast to the Moore neighborhood). 

So far, there are only a few results concerning the reversibility of multi-state NCCAs. Schranko and De Oliveira [31] per-

formed numerical experiments involving many rules to finally conjecture that the class of 1-dimensional such CAs is too

restrictive to be computationally universal. This was proved in the case of radius 1/2 CAs [18] , but it does not hold in gen-

eral as shown by Morita [28] . Boccara and Fuk ́s [4] found all 144 1-dimensional ternary NCCAs, but only three among them

are reversible: the identity rule and two shift rules. Imai et al. [20] listed all reversible 1-dimensional NCCAs with radius

1 and up to four states through an exhaustive search and they also constructed some with five states. In the case of two

dimensions, the situation does not look better. Dzedzej et al. [15] , using a characterization of number-conserving local rules

given in [35] , found that for the state set {0, 1} or {0, 1, 2}, i.e. , when we deal with binary or ternary 2-dimensional NCCAs

with the von Neumann neighborhood, there are only trivial reversible ones, namely, the identity and the shifts (in each of

the four possible directions). However, recently all four-state reversible 2-dimensional NCCAs with the von Neumann neigh-

borhood have been enumerated [14] , which until then was considered an intricate task because of two main reasons. Firstly,

as we mentioned earlier, there is no algorithm to decide whether or not a given 2-dimensional CA is reversible. Secondly,

there were no tools available to enumerate all four-state 2-dimensional NCCAs, so it was not possible to use the method of

exhaustive search. The method used in [14] is based on the split-and-perturb decomposition of the local rule of an NCCA

with the von Neumann neighborhood, proved in [36] . The same novel approach to study number conservation of CAs was

used to find all binary d -dimensional NCCAs with the von Neumann neighborhood in [34] , proving that for any given d there

are exactly 4 d + 1 such cellular automata: the identity rule and the shift and traffic rules in each of the 2 d possible direc-

tions. Thus, if we ask for reversible binary NCCAs in d dimensions, then only the identity rule and the shift rules remain,

since the traffic rules are not reversible. 

In this paper, we want to combine the ideas presented in [14] and [34] to create a method that allows to enumerate all

reversible ternary d -dimensional NCCAs with the von Neumann neighborhood. It is known that the behavior of a CA can be

quite different depending on whether we are considering finite, periodic or infinite configurations (see, for example, [23] ).

In our investigations, we adhere to the weakest version of CA reversibility: we consider a given CA on a fixed finite d -

dimensional grid (with periodic boundary conditions) and we require its global function to be an injection. We show that

there are only trivial reversible ternary NCCAs, namely, the identity and the shifts (in each of 2 d possible directions). The

proof of this fact is given in the case of a finite grid. However, our results also valid in the case of periodic and infinite CAs,

as we discuss at the end of Section 3 . 

This paper is organized as follows. Section 2 contains preliminaries and a description of the main idea of the split-and-

perturb decomposition of a number-conserving local rule. The formulation and the proof of the main theorem are given in

Section 3 . Conclusions, conjectures and open problems are discussed in Section 4 . 



182 B. Wolnik and B. De Baets / Information Sciences 513 (2020) 180–189 

Fig. 1. Examples of subgrids: (a) [ v 1 , v 2 ], (b) [ 0, v 1 ], (c) [ v 2 , - v 2 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Preliminaries 

In this section we recall some standard definitions about CAs and describe the approach to study number conserva-

tion presented in [36] : the split-and-perturb decomposition of a number-conserving local rule. We adhere to the notations

introduced there, where also some explanations and examples are given, so, we present only a short description without

details. 

Let us fix the dimension d ≥ 1. We consider the cellular space as a finite d -dimensional grid: 

C = { 0 , 1 , . . . , n 1 − 1 } × { 0 , 1 , . . . , n 2 − 1 } × . . . × { 0 , 1 , . . . , n d − 1 } , 
where the natural numbers n 1 , n 2 , . . . , n d are greater than three. With this notation, each cell i ∈ C is a d -tuple (i 1 , . . . , i d ) ,

where i k ∈ { 0 , 1 , . . . , n k − 1 } . 
For each k ∈ { 1 , 2 , . . . , d} , we define the vector v k = (0 , 0 , . . . , 0 , 1 , 0 , . . . , 0) ∈ R 

d , where the k th component equals 1 and

the other ones are 0. Let us denote the set of all directions as V + , i.e. , 

V + = { v 1 , - v 1 , v 2 , - v 2 , . . . , v d , - v d } . 
Additionally, let 0 = (0 , 0 , . . . , 0) ∈ R 

d and V = V + ∪ { 0 } . We consider periodic boundary conditions, i.e. , the cell adjacent to

the cell i = (i 1 , . . . , i d ) in the direction v k is equal to (i 1 , . . . , i k −1 , i k + 1 , i k +1 , . . . , i d ) , where the sum is understood modulo

n k . As a consequence, each cell in C has exactly 2 d adjacent cells: one in each of the directions from V + . 
For each cell i ∈ C, its von Neumann neighborhood P ( i ) consists of the cell itself and its 2 d adjacent cells: 

P (i ) = i + V := { i + v | v ∈ V } . (1)

We use the following notation: for i ∈ C and v ∈ V , i + v ∈ C is nothing else but the cell adjacent to i in direction v if v ∈ V + ,
or i itself if v = 0 . 

In the remainder of this paper, we consider only CAs with the von Neumann neighborhood, even if we do not always

emphasize it. 

If u, w are any vectors from V (we exclude the case u = w = 0 ), then by [ u, w ] we denote a subset of the grid C defined

as follows: 

[ u , w ] = { 0 + k 1 u + k 2 w | k 1 , k 2 ∈ Z } , (2)

i.e. , [ u, w ] is a 2-dimensional subgrid (or 1-dimensional, if the vectors u and w are linearly dependent) containing 0 and

spanned by u and w (see Fig. 1 ). 

Now, we define � as a set containing all pairs { 0, v }, where v ∈ V + , and all pairs { u, v } for, u , v ∈ V + for which u � = v and

u � = - v . Because the pairs { u, v } and { v, u } are equal, the set � contains exactly 2 d 2 elements. For a given pair { u, v } ∈ �,

the pair {- u , - v } is called the matching pair . If from each two matching pairs, we choose exactly one, then we get a set of

independent pairs , which we denote by �. We can construct � in 2 d 
2 

ways, for example we can choose 

� = 

d ⋃ 

i =1 

{ 

{ 0 , v i } 
} 

∪ 

d−1 ⋃ 

i =1 

d ⋃ 

j= i +1 

{ 

{ v i , v j } , { - v i , v j } 
} 

, (3)

but it always holds that | �| = d 2 . 

In this paper, we consider ternary CAs, i.e. , CAs whose state set is Q = { 0 , 1 , 2 } . These CAs appear in a natural way when

one wants to go beyond binary arithmetic or binary logic. A very good motivation for studying ternary CAs can be found, for

example, in [17] . Unfortunately, a small step from “binary” to “ternary” entails an amazingly large increase in the number

of possible local rules. For example, in the one-dimensional case there are only 256 binary CAs, while there are as many as

3 27 ≈ 7.6 · 10 12 ternary CAs. For this reason, there are almost no results concerning ternary CAs. 

By a configuration , we mean any function from the grid C to {0, 1, 2} and the set of all configurations is denoted by

X = { 0 , 1 , 2 } C . We consider also configurations in a wider sense : mappings from the grid C to R . The set of all configurations

in a wider sense is, of course, a superset of X and is denoted by ˜ X (we will simply write configuration also for elements

from 

˜ X , unless confusion is possible). The value of cell i in a configuration x ∈ ̃

 X is denoted by x ( i ) and we define the sum

of the states in x as σ (x ) = 

∑ 

i ∈C 
x (i ) . 
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We need to denote a particular kind of subsets of X : for a given subgrid [ u, w ], we denote the set of all configurations

in X that are zero outside [ u, w ] by X [ u , w ] . Furthermore, by X bin we denote the set of all binary configurations, i.e. , the

set { 0 , 1 } C . 
Let us recall that the neighborhood of each cell is labeled by the elements of the set V (see Eq. (1) ). Thus it is natural

to define a neighborhood configuration as a function N : V → {0, 1, 2} and we denote the set of all possible neighborhood

configurations by N . Some particular neighborhood configurations will be very important in the remainder of this paper.

Firstly, for any w ∈ V and q ∈ {0, 1, 2}, we define a monomer M w : q , which takes the value q in the direction w and zero in

the other directions, i.e. , for any v ∈ V , it holds that 

M w : q ( v ) = 

{
q, if v = w 

0 , if v � = w . 

Note that if q = 0 , then the neighborhood configuration M w : q is a zero function, irrespective of w , and we denote it also by

M 0 . Secondly, if { u, w } ∈ � and p, q ∈ {0, 1, 2}, we introduce a dimer D u : p 
w : q 

as the neighborhood configuration that takes the

value p in the direction u , the value q in the direction w and zero in the other directions, i.e. , for any v ∈ V it holds that 

D u : p 
w : q 

( v ) = 

{ 

p, if v = u 

q, if v = w 

0 , otherwise. 

Note that D u : p 
w : q 

equals D 

w : q 

u : p 

, and if p = 0 or q = 0 , then D u : p 
w : q 

is a monomer. As the pairs { u, w } and {- u , - w } are called

matching, we also use this term to refer to the dimers D u : p 
w : q 

and D - u : q 
- w : p 

. 

If the set of independent pairs � is chosen, we define the set of generating dimers as 

D � = 

{ 

D u : p 
w : q 

∣∣∣ { u , w } ∈ �, p, q ∈ { 1 , 2 } 
} 

. 

It is easy to see that D � contains exactly 4 d 2 elements. 

If x ∈ X and i ∈ C are given, then N x,i denotes the neighborhood configuration given by the von Neumann neighborhood

of the cell i in the configuration x , thus for v ∈ V we have N x , i ( v ) = x (i + v ) . 

Any function f : N → R is called a local function . If additionally f (N ) ⊆ { 0 , 1 , 2 } , then we call f a local rule . Each local

function f induces a global function A f : X → ̃

 X defined for x ∈ X and i ∈ C as follows 

A f (x )(i ) = f (N x , i ) . 

If f is a local rule, then we call A f a global rule and then A f : X → X . If a global function A f conserves the sum of states, i.e. ,

for each x ∈ X it holds that σ (A f (x )) = σ (x ) , then the local function f is called number-conserving . 

For example, if v is any vector from V , then the local rule f v given by f v (N) = N( v ) is number-conserving. Indeed, A f v is

a shift in the direction - v , which means that in each consecutive updating step, the new state of the cell i is equal to the

state of the cell i + v in the previous step. Note that if v = 0 , then A f 0 
is simply the identity on X and therefore f 0 is also

called the identity rule. However, sometimes it is convenient to regard the identity rule as a shift by the zero vector. 

Usually, a d -dimensional CA is a quadruple (C, P, Q, f ) , where C is a grid, P is a function returning the neighborhood for

each cell, Q is a state set and f is a local rule. However, here we assume that the grid C is fixed (note that it is not too small,

as we require that all n 1 , n 2 , ..., n d are greater than three) and use only the von Neumann neighborhood and the state set

Q = { 0 , 1 , 2 } . Thus, for the sake of simplicity, we will identify a CA with its global rule and also with its local rule. 

Next, we describe the approach to study number conservation we intend to rely on. It turns out that in the case of d -

dimensional CAs with the von Neumann neighborhood, any number-conserving local rule can be decomposed into two easy-

to-describe parts: a split function and a perturbation . Both of these objects were introduced in [36] . The theory presented

there is developed for the general case of an arbitrary state set Q ⊆ R . In this paper we consider the state set Q = { 0 , 1 , 2 }
and for this reason the definitions and facts from [36] can be reformulated. However, we do it without detailed explanations,

since in [34] this theory was described once again for the simplest state set, namely {0, 1}. We start with the definition of

split functions that, roughly speaking, act as follows: each state splits according to its recipe irrespective of the states of its

neighbors. 

Definition 2.1. (Split functions) A local function h is called a split function if it satisfies: 

(S1) h (M 0 ) = 0 , moreover, h (M v : q ) ∈ { 0 , 1 , 2 } , for any v ∈ V and q ∈ {1, 2}; 

(S2) 
∑ 

v ∈ V 
h (M v :1 ) = 1 and 

∑ 

v ∈ V 
h (M v :2 ) = 2 ; 

(S3) h (N) = 

∑ 

v ∈ V 
h (M v : N( v ) ) , for any N ∈ N . 
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The set of all split functions is denoted by S . Each split function is number-conserving (see [36] ) and is defined by the

values it takes on monomers, because its value on any neighborhood configuration is given by (S3). For example, if h is a

split function, then for any { u, w } ∈ � and p, q ∈ {0, 1, 2}, it holds that 

h 

(
D u : p 

w : q 

)
= h ( M u : p ) + h ( M w : q ) . (4) 

It is worth emphasizing that for every split function h there are at most three monomers on which h does not equal

zero. Indeed, according to (S1) and (S2), there exists exactly one vector v 0 ∈ V such that h 
(
M v 0 :1 

)
� = 0 (and then, of course,

h 
(
M v 0 :1 

)
= 1 ). Moreover, either there is exactly one vector u 0 ∈ V such that h 

(
M u 0 :2 

)
� = 0 (then h 

(
M u 0 :2 

)
= 2 and we say that

the state 2 is not disintegrating) or there are exactly two different vectors u 0 , w 0 ∈ V such that h 
(
M u 0 :2 

)
� = 0 and h 

(
M w 0 :2 

)
� =

0 (then h 
(
M u 0 :2 

)
= h 

(
M w 0 :2 

)
= 1 and we say that the state 2 is disintegrating). If 0 + v 0 , 0 + u 0 ∈ [ u , w ] (or 0 + v 0 , 0 + u 0 ,

0 + w 0 ∈ [ v , u ] in the case when the state 2 is disintegrating), for some subgrid [ u, w ], then we say that the split function

h acts inside [ u, w ]. 

Next, we introduce the definition of a perturbation. Similarly as in the case of a split function, we use the fact that

Q = { 0 , 1 , 2 } to present a simpler version of the definitions and facts given in [36] . Since the set of all perturbations is a

linear space, it is sufficient to define basic perturbations that form a basis of this space. Note that they depend on the choice

of �. 

Definition 2.2. (Perturbations) Let the set of independent pairs � be chosen. For a given { u, w } ∈ � and p, q ∈ {1, 2}, let

g 
p,q 
u , w 

be the local function that satisfies the following three conditions: 

(P1) g 
p,q 
u , w 

(M) = 0 , for any monomer M ; 

(P2) g 
p,q 
u , w 

(
D u : p 

w : q 

)
= 1 , while g 

p,q 
u , w 

( D ) = 0 for any other dimer D from D �; 

(P3) for any N ∈ N , it holds that 

g p,q 
u , w 

(N) = 

∑ 

{ v , z }∈ �

[
g p,q 

u , w 

(
D v : N( v ) 

z : N( z ) 

)
− g p,q 

u , w 

(
D v : N( - z ) 

z : N( - v ) 

)]
. (5) 

Let P be the linear space generated by { 

g p,q 
u , w 

| { u , w } ∈ �, p, q ∈ { 1 , 2 } 
} 

. 

The linear space P has dimension 4 d 2 and its elements are called perturbations. 

As we see, a perturbation is defined by the values it takes on generating dimers, because its value on any neighborhood

configuration is given by Eq. (5) . The next lemma shows the relationship between the values of a perturbation on matching

dimers, proved in [36] . 

Lemma 2.3. If a local function g : N → R is a perturbation, then for any { u, w } ∈ � and any p, q ∈ {0, 1, 2}, it holds that 

g 

(
D u : p 

w : q 

)
= −g 

(
D - u : q 

- w : p 

)
. 

�
The main result of [36] , reformulated in the case Q = { 0 , 1 , 2 } , is presented in the following theorem. 

Theorem 2.4. (The decomposition theorem) Let the set of independent pairs � be chosen. The local rule f of a ternary CA with

the von Neumann neighborhood is number-conserving if and only if it has the form 

f = h + 

∑ 

{ u , w }∈ � a 1 , 1 u , w 

· g 1 , 1 u , w 

+ 

∑ 

{ u , w }∈ � a 1 , 2 u , w 

· g 1 , 2 u , w 

+ 

∑ 

{ u , w }∈ � a 2 , 1 u , w 

· g 2 , 1 u , w 

+ 

∑ 

{ u , w }∈ � a 2 , 2 u , w 

· g 2 , 2 u , w 

, 
(6) 

where h ∈ S and the coefficients a 
p,q 
u , w 

are chosen such that the values of f are in {0, 1, 2} . 

�
The decomposition of a number-conserving local rule into a split function h and a perturbation g (the remaining part of

the right-hand side of Eq. (6) ) is unique. Hence, when dealing with a number-conserving local rule f , we will denote its

split function and its perturbation by h f and g f , respectively. 

Remark 2.5. According to the definition of the basic perturbations, if N is a binary neighborhood configuration, then 

f (N) = h (N) + 

∑ 

{ u , v }∈ �
a 1 , 1 u , v · g 1 , 1 u , v (N) , 

since the remaining terms are zero. 



B. Wolnik and B. De Baets / Information Sciences 513 (2020) 180–189 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned in the introduction, we consider finite grids only for our convenience, as in this case there is no problem

with the definition of the sum of all states in a configuration. However, according to Durand et al. [13] , Theorem 2.4 is also

valid for infinite grids. 

Next, we define the second property of CAs we are interested in: reversibility. 

Definition 2.6. Let f be the local rule of some d -dimensional CA. We say that this CA is reversible if the function A f is an

injection. 

Note that we use a weaker version of reversibility than is commonly done, since we require that A f is injective only

on one grid with a given size n 1 × n 2 × . . . × n d , while usually injectivity is required for all possible finite grids (a stronger

version) or for all infinite configurations (the strongest version). It turns out that even if we weaken the definition of re-

versibility so much, the main theorem of our paper ( Theorem 3.7 ) remains valid. 

In the remainder of this paper, we will use the abbreviation d -RNCCA to denote a d -dimensional CA with the von Neu-

mann neighborhood that is both reversible and number-conserving. 

For d = 1 , all number-conserving ternary CAs were found by Boccara and Fuk ́s [4] , and among them there are only

three 1-RNCCAs: the identity rule, the shift-left rule and the shift-right rule (if we assume that the considered grid has

at least four cells). Furthermore, it was shown by Dzedzej et al. [15] that there are only five 2-RNCCAs: the identity rule

and four shift rules in each of the possible directions (right, left, up and down). That result, admittedly, was shown for the

stronger version of reversibility, but its proof can be easily obtained also for the weaker version with the assumption that

the considered grid is at least 4 × 4. 

We summarize these results in the following theorem. 

Theorem 2.7. If d ≤ 2, then any d-RNCCA is a shift rule i.e., its local rule equals f v for some v ∈ V. 

So, any 2-RNCCA acts as a 1-dimensional CA and increasing the dimension from 1 to 2 does not result in the emergence

of a new kind of RNCCA. In the next section, we prove that the same holds true for any d . 

3. The main theorem 

In this section, we prove that all d -RNCCAs are trivial, as they act as 1-dimensional ones. Since this fact has already been

proved for d ≤ 2, we assume that d ≥ 3. We start with a few auxiliary facts. 

Lemma 3.1. If a split function h acts inside a subgrid [ u, w ], then for any x ∈ X [ u , w ] and for any i �∈ [ u , w ] , it holds that

h (N x , i ) = 0 . 

Proof. Let a split function h be given and assume that the state 2 is disintegrating. There exists exactly one vector v 0 ∈ V

such that h 
(
M v 0 :1 

)
� = 0 and exactly two different vectors u 0 , w 0 ∈ V such that h 

(
M u 0 :2 

)
� = 0 and h 

(
M w 0 :2 

)
� = 0 . Let u, w ∈ V

be such that h acts inside [ u, w ]. Note that if i �∈ [ u , w ] , then P ( i ) ∩ [ u, w ] is either empty or contains exactly one cell. In

the first case, N x , i = M 0 , so h (N x , i ) = 0 according to (S1). In the second case, N x , i = M v : p , for some p ∈ {0, 1, 2} and v ∈ V + ,
which is orthogonal to both u and w . In particular, v has to be orthogonal to v 0 , u 0 and w 0 , which means that v is not

equal to any of them. As a consequence, we get that h (N x , i ) = h (M v : p ) = 0 . The proof in the case when the state 2 is not

disintegrating is analogous. �

Lemma 3.2. Let f be the local rule of a ternary NCCA. If h f acts inside a subgrid [ u, w ], then A f 

(
X [ u , w ] 

)
⊆ X [ u , w ] . 

Proof. Let { u, w } ∈ �, x ∈ X [ u , w ] and i �∈ [ u , w ] . We just need to show that f (N x , i ) = 0 . From Lemma 3.1 we know that

h f (N x , i ) = 0 . Moreover, N x,i is a monomer, so g f (N x , i ) = 0 , according to the definition of a perturbation. Thus, f (N x , i ) =
h f (N x , i ) + g f (N x , i ) = 0 , which concludes the proof. �

If a global rule A f satisfies A f 

(
X [ u , w ] 

)
⊆ X [ u , w ] for some subgrid [ u, w ], then we can define a new cellular automaton

A [ u , w ] (2-dimensional or 1-dimensional) acting on the subgrid [ u, w ]. Indeed, let � be the natural isomorphism between

the set X [ u , w ] and the set of all configurations on [ u, w ] (the set { 0 , 1 , 2 } [ u , w ] ). We define A [ u , w ] as the CA for which the

following diagram commutes. 

X[u,w] X[u,w]

{0, 1, 2}[u,w] {0, 1, 2}[u,w]

Af

Φ Φ

A[u,w]
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Fig. 2. Two configurations x and x ′ having the same successor in the case a 1 , 1 
0 , v 1 

= −1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will denote the local rule of A [ u , w ] by f [ u , w ] . The isomorphism � induces an isomorphism ϕ between N and the

domain N [ u , w ] of f [ u , w ] , for which we have: 

N R

N[u,w] R

f

ϕ identity

f[u,w]

This means, in particular, that f [ u , w ] 

(
ϕ(N x , i ) 

)
= f (N x , i ) , for any x ∈ X [ u , w ] and i ∈ C. Note that if f is number-conserving,

then f [ u , w ] is also number-conserving and its split function and perturbation will be denoted by h [ u , w ] and g [ u , w ] , respec-

tively. 

Corollary 3.3. Let f be the local rule of a ternary number-conserving CA. If h f acts inside a subgrid [ u, w ], then A [ u , w ] is a shift

on [ u, w ] . 

Proof. From Lemma 3.2 we know that A f 

(
X [ u , w ] 

)
⊆ X [ u , w ] , so the CA A [ u , w ] is well-defined, number-conserving and re-

versible, i.e. , A [ u , w ] is a 2- or 1-RNCCA. From Theorem 2.7 we get that A [ u , w ] is a shift. �

Lemma 3.4. Let f be the local rule of a ternary d-RNCCA. If h f 
(
M 0 :1 

)
= 1 , then h f 

(
M 0 :2 

)
= 2 . 

Proof. According to (S1) and (S2), either there are two different vectors u 0 , w 0 ∈ V such that h f 
(
M u 0 :2 

)
= h f 

(
M w 0 :2 

)
= 1 or

there is one vector u 0 ∈ V such that h f 
(
M u 0 :2 

)
= 2 . In the first case, h f acts inside [ u 0 , w 0 ], which implies that A [ u 0 , w 0 ] 

is a

shift on [ u 0 , w 0 ] (see Corollary 3.3 ). Since h f 
(
M 0 :1 

)
= 1 , it has to be the shift by the zero vector, but then h f 

(
M 0 :2 

)
= 2 . The

second case can be treated similarly. �

The next lemma states that if h f 
(
M v 1 :1 

)
= 1 , then the global rule A f considered on binary configurations only acts as a

shift. 

Lemma 3.5. Let f be the local rule of a ternary d-RNCCA. If h f 
(
M v 1 :1 

)
= 1 , then A f | X bin 

is the shift by the vector - v 1 . 

Proof. To simplify our reasoning, let us choose � as in Eq. (3) . According to Remark 2.5 , all we need to do is argue that

for any { u, w } ∈ � it holds that a 1 , 1 u , w 

= 0 . 

First, let { u, v } ∈ � be such that none of u , - u, v , - v is equal to v 1 . Since 

f 

(
D u :1 

v :1 

)
= h f 

(
D u :1 

v :1 

)
+ g f 

(
D u :1 

v :1 

)
= a 1 , 1 u , v , 

while from Lemma 2.3 it follows that 

f 

(
D - u :1 

- v :1 

)
= h f 

(
D - u :1 

- v :1 

)
+ g f 

(
D - u :1 

- v :1 

)
= −a 1 , 1 u , v , 

we get that a 1 , 1 u , v = 0 , as both f 

(
D u :1 

v :1 

)
and f 

(
D - u :1 

- v :1 

)
are non-negative. 

Next, we consider the pair { 0, v 1 }. As 

f 

(
D 0 :1 

v 1 :1 

)
= 1 + a 1 , 1 

0 , v 1 
and f 

(
D 0 :1 

- v 1 :1 

)
= −a 1 , 1 

0 , v 1 
, (7) 

we conclude that a 1 , 1 
0 , v 1 

= 0 or a 1 , 1 
0 , v 1 

= −1 . To reject the latter possibility, let us consider the following initial configuration

x ∈ X bin ∩ X [ 0 , v 1 ] : the string 0110 in an arbitrary place of the subgrid [ 0, v 1 ] and zeros in all other cells. If a 1 , 1 
0 , v 1 

were equal

to −1 , then the string 0110 would be updated to 1010, while the other cells do not change their state (see Eq. (7) ). Thus,

we would get the same successor as for x ′ being the modification of the configuration x having 0101 instead of 0110 (see

Fig. 2 ). This would contradict the reversibility of the global rule A f . 
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Fig. 3. Two configurations x and x ′ having the same successor in the case a 1 , 1 v 1 , v k 
= −1 . 

Fig. 4. Two configurations x and x ′ having the same successor in the case a 1 , 1 - v 1 , v k = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, let us consider any v k ∈ { v 2 , v 3 , . . . , v d } . As { v 1 , v k } ∈ �, it holds that 

f 

(
D v 1 :1 

v k :1 

)
= 1 + a 1 , 1 v 1 , v k 

and f 

(
D - v 1 :1 

- v k :1 

)
= −a 1 , 1 v 1 , v k 

. (8)

Thus a 1 , 1 v 1 , v k 
= 0 or a 1 , 1 v 1 , v k 

= −1 . To see that the latter possibility is impossible, it is sufficient to consider the following initial

configurations x , x ′ ∈ X bin ∩ X [ v 1 , v k ] : the states of cells laying in the subgrid v 1 , v k are shown in Fig. 3 , while the other cells

have state 0. If a 1 , 1 v 1 , v k 
were equal to −1 , then these configurations would have the same successor. 

Similarly, for {- v 1 , v k } ∈ � we have 

f 

(
D - v 1 :1 

v k :1 

)
= a 1 , 1 - v 1 , v k and f 

(
D v 1 :1 

- v k :1 

)
= 1 − a 1 , 1 - v 1 , v k , (9)

which gives a 1 , 1 - v 1 , v k = 0 or a 1 , 1 - v 1 , v k = 1 , but Fig. 4 shows that if a 1 , 1 - v 1 , v k were 1, then we would loose reversibility. �

Corollary 3.6. Let f be the local rule of a ternary d-RNCCA. If h f 
(
M v 1 :1 

)
= 1 , then the state 2 is not disintegrating, moreover,

h f 
(
M v 1 :2 

)
= 2 . 

Proof. Let us consider the subset X 

′ of X consisting of all configurations x satisfying σ (x ) = 2 . Thus X ′ = X 1 ∪ X 2 , where X 1

contains all configurations having two states 1, while the other states are 0, and X 2 is the set of all configurations with one

state 2, while the others are 0. Since f is number-conserving and reversible, it holds that A f : X 

′ → X 

′ is an injection. According

to Lemma 3.5 , A f (X 1 ) = X 1 , thus, in view of injectivity, it has to hold that A f (X 2 ) = X 2 , which means that the state 2 is not

disintegrating. Thus there is a vector u 0 ∈ V such that h f 
(
M u 0 :2 

)
= 2 . If so, h f acts inside [ v 1 , u 0 ] and from Corollary 3.3 it

follows that A [ v 1 , u 0 ] 
is a shift. In particular, u 0 = v 1 . �

Now we formulate and prove the main result of this paper. 

Theorem 3.7. Let d ≥ 1 . Any d-RNCCA is a shift, i.e., its local rule equals f v for some v ∈ V. 

Proof. Let us choose � as in Eq. (3) . First, we focus on the case that the split function h f satisfies h f (M 0 :1 ) = 1 and we

show that then f has to be the identity rule. From Lemma 3.4 it follows that h f = f 0 . Thus, all we need to do is prove that

g f = 0 , or, equivalently, that all coefficients a 
p,q 
u , w 

in Eq. (6) equal 0. 

Then, let { u, w } ∈ � and p, q ∈ {1, 2}. Since h f 
(
M 0 :1 

)
= 1 , Lemma 3.4 implies that h f 

(
M 0 :2 

)
= 2 , which guarantees that

h f acts inside [ u, w ]. From Lemma 3.2 we know that A [ u , w ] is a ternary 2- or 1-RNCCA on the subgrid [ u, w ]. According to

Theorem 2.7 , A [ u , w ] is a shift, so, its perturbation g [ u , w ] is a zero function. This yields, in particular, that a 
p,q 
u , w 

= g f 

(
D u : p 

w : q 

)
=

g [ u , w ] 

(
ϕ 

(
D u : p 

w : q 

))
= 0 . 

Now, we consider the case that h f (M 0 :1 ) = 0 , so there exists w ∈ V + such that h f (M w :1 ) = 1 . As the proof is the same

for any direction w ∈ V + , we will deal with v 1 only. 

From Corollary 3.6 we know that h f 
(
M v 1 :2 

)
= 2 , so h f = f v 1 and again it is sufficient to prove that for any { u, w } ∈ � and

p, q ∈ {1, 2} the coefficient a 
p,q 
u , w 

in Eq. (2.4) is equal to zero. 
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First, let us consider the case when one of the vectors u, w equals v 1 or - v 1 . Then h f acts inside [ u, w ] and, similarly as

above, we argue that a 
p,q 
u , w 

= 0 . 

It remains to consider the case when u, w ∈ V �{ v 1 , - v 1 }. Then h f 

(
D u : p 

w : q 

)
= h f 

(
D - u : q 

- w : p 

)
= 0 , so f 

(
D u : p 

w : q 

)
= a 

p,q 
u , w 

, while

f 

(
D - u : q 

- w : p 

)
= −a 

p,q 
u , w 

, which gives a 
p,q 
u , w 

= 0 . �

Although Theorem 3.7 concerns a weaker version of reversibility of CAs, where we require only the injectivity of the

global rule on one fixed grid, it is still valid if we consider the stronger version (the global rule is injective on each finite

grid) or if we consider the strongest version (the global rule is injective on infinite configurations). Indeed, the structure of

the proof of Theorem 3.7 is the following: using some configurations that are non-zero only on a very small neighborhood

(contained in a 4 × 4 × . . . × 4 cube), we show that every non-shift NCCA cannot be reversible. Thus we end up only with

shifts that are, of course, reversible irrespective of the version of the definition, we use. 

4. Conclusions and open problems 

The previous approaches to study CA reversibility concerned either 1-dimensional CAs or linear CAs with Z m 

as state set.

In this paper, we presented a novel method that is suitable for multi-state number-conserving CAs. The method is based on

the split-and-perturb decomposition of a number-conserving local rule introduced in [36] . In contrast to other studies on

the reversibility problem, where the authors use the fact that the local rule is linear or the state set is a ring, our approach

does not assume any nice structure of the state set of the considered CAs and replaces the linearity of the local rule by a

much weaker assumption: number conservation. 

Here, we made a step forward in the study of reversibility of multi-state number-conserving CAs and enumerated all

ternary d -dimensional RNCCAs to show that three states are too few to enable the existence of nontrivial reversible number-

conserving CAs with the von Neumann neighborhood in any dimension. Although this result concerns ternary CAs only, it

opens a future research direction to be explored. Actually, we think that, using techniques like the ones in the paper, other

related questions in the field could also be analyzed. 

First of all, future work may focus on determining whether or not the following conjecture presented in [14] is true. 

Conjecture 4.1. There are exactly (2 d + 1)(6 d + 1) four-state d-dimensional RNCCAs with the von Neumann neighborhood. 

The existing results confirm this conjecture only for d = 1 and d = 2 (see [14] ), but a detailed analysis of their proofs

makes us hopeful of proving it for any dimension. 

The second conjecture connected with the results of [14] concerns a lack of possibility of the appearance of a new kind

of four-state RNCCAs when the dimension of a grid increases. 

Conjecture 4.2. Let d > 2 . All four-state d-dimensional RNCCAs with the von Neumann neighborhood are intrinsically 2-

dimensional. 

It can be suspected that the problem discussed in the conjecture below can be generalized to larger number of states,

i.e. , to larger q ∗ . It seems that there exists a function dim : N → N such that all d -dimensional RNCCAs with the state set

{ 0 , 1 , . . . , q ∗} (and with the von Neumann neighborhood) are intrinsically at most dim ( q ∗ )-dimensional. This hypothesis is

formulated in the following open problem. 

Question 4.3. Let q ∗ ∈ N . Does there exist a dimension dim ( q ∗ ) such that increasing the dimension of a grid beyond dim ( q ∗ )

does not result in the appearance of a new kind of RNCCA with the state set { 0 , 1 , . . . , q ∗} ? If so, what can be said about

the dependence between q ∗ and dim ( q ∗ )? 

The last open problem we would like to present is connected with the negative result of Kari [22] . In general, there is

no bound on the size of the grid that is needed to verify non-injectivity of 2- or higher-dimensional CAs. However, for what

concerns ternary number-conserving CAs, we only needed to consider grids of sizes 4 × 4 × . . . × 4 . The same is observed in

the case of 2-dimensional four-state number-conserving CAs (see [14] ). Hence, it is natural to ask whether the reason for

this is the small state set or the assumed property of number conservation. Generally, the question is whether such bounds

exist for any q ∗ ∈ N . 

Question 4.4. Let q ∗ ∈ N . Does there exist a bound on the size of d -dimensional grids that are sufficient to verify the injec-

tivity of a number-conserving CA with the von Neumann neighborhood and the state set { 0 , 1 , . . . , q ∗} ? 
Because the results on d -dimensional multi-state RNCCAs are limited, any answer to the above problems will be appre-

ciated by the scientific community. 
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