23 research outputs found

    Workshop WAIN: Welcome message

    Get PDF

    Robust Learning Architectures for Perceiving Object Semantics and Geometry

    Get PDF
    Parsing object semantics and geometry in a scene is one core task in visual understanding. This includes classification of object identity and category, localizing and segmenting an object from cluttered background, estimating object orientation and parsing 3D shape structures. With the emergence of deep convolutional architectures in recent years, substantial progress has been made towards learning scalable image representation for large-scale vision problems such as image classification. However, there still remains some fundamental challenges in learning robust object representation. First, creating object representations that are robust to changes in viewpoint while capturing local visual details continues to be a problem. In particular, recent convolutional architectures employ spatial pooling to achieve scale and shift invariances, but they are still sensitive to out-of-plane rotations. Second, deep Convolutional Neural Networks (CNNs) are purely driven by data and predominantly pose the scene interpretation problem as an end-to-end black-box mapping. However, decades of work on perceptual organization in both human and machine vision suggests that there are often intermediate representations that are intrinsic to an inference task, and which provide essential structure to improve generalization. In this dissertation, we present two methodologies to surmount the aforementioned two issues. We first introduce a multi-domain pooling framework which group local visual signals within generic feature spaces that are invariant to 3D object transformation, thereby reducing the sensitivity of output feature to spatial deformations. We formulate a probabilistic analysis of pooling which further suggests the multi-domain pooling principle. In addition, this principle guides us in designing convolutional architectures which achieve state-of-the-art performance on instance classification and semantic segmentation. We also present a multi-view fusion algorithm which efficiently computes multi-domain pooling feature on incrementally reconstructed scenes and aggregates semantic confidence to boost long-term performance for semantic segmentation. Next, we explore an approach for injecting prior domain structure into neural network training, which leads a CNN to recover a sequence of intermediate milestones towards the final goal. Our approach supervises hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision method.One advantage of this approach is that we are able to generalize the model trained from synthetic CAD renderings of cluttered scenes, where concept values can be extracted, to real image domain. We implement this deep supervision framework with a novel CNN architecture which is trained on synthetic image only and achieves the state-of-the-art performance of 2D/3D keypoint localization on real image benchmarks. Finally, the proposed deep supervision scheme also motivates an approach for accurately inferring six Degree-of-Freedom (6-DoF) pose for a large number of object classes from single or multiple views. To learn discriminative pose features, we integrate three new capabilities into a deep CNN: an inference scheme that combines both classification and pose regression based on an uniform tessellation of SE(3), fusion of a class prior into the training process via a tiled class map, and an additional regularization using deep supervision with an object mask. Further, an efficient multi-view framework is formulated to address single-view ambiguity. We show the proposed multi-view scheme consistently improves the performance of the single-view network. Our approach achieves the competitive or superior performance over the current state-of-the-art methods on three large-scale benchmarks

    Predictive Techniques for Scene Understanding by using Deep Learning in Autonomous Driving

    Get PDF
    La conducción autónoma es considerada uno de los más grandes retos tecnológicos de la actualidad. Cuando los coches autónomos conquisten nuestras carreteras, los accidentes se reducirán notablemente, hasta casi desaparecer, ya que la tecnología estará testada y no incumplirá las normas de conducción, entre otros beneficios sociales y económicos. Uno de los aspectos más críticos a la hora de desarrollar un vehículo autónomo es percibir y entender la escena que le rodea. Esta tarea debe ser tan precisa y eficiente como sea posible para posteriormente predecir el futuro de esta misma y ayudar a la toma de decisiones. De esta forma, las acciones tomadas por el vehículo garantizarán tanto la seguridad del vehículo en sí mismo y sus ocupantes, como la de los obstáculos circundantes, tales como viandantes, otros vehículos o infraestructura de la carretera. En ese sentido, esta tesis doctoral se centra en el estudio y desarrollo de distintas técnicas predictivas para el entendimiento de la escena en el contexto de la conducción autónoma. Durante la tesis, se observa una incorporación progresiva de técnicas de aprendizaje profundo en los distintos algoritmos propuestos para mejorar el razonamiento sobre qué está ocurriendo en el escenario de tráfico, así como para modelar las complejas interacciones entre la información social (distintos participantes o agentes del escenario, tales como vehículos, ciclistas o peatones) y física (es decir, la información geométrica, semántica y topológica del mapa de alta definición) presente en la escena. La capa de percepción de un vehículo autónomo se divide modularmente en tres etapas: Detección, Seguimiento (Tracking), y Predicción. Para iniciar el estudio de las etapas de seguimiento y predicción, se propone un algoritmo de Multi-Object Tracking basado en técnicas clásicas de estimación de movimiento y asociación validado en el dataset KITTI, el cual obtiene métricas del estado del arte. Por otra parte, se propone el uso de un filtro inteligente basado en información contextual de mapa, cuyo objetivo es monitorizar los agentes más relevantes de la escena en el tiempo, representando estos agentes filtrados la entrada preliminar para realizar predicciones unimodales basadas en un modelo cinemático. Para validar esta propuesta de filtro inteligente se usa CARLA (CAR Learning to Act), uno de los simuladores hiperrealistas para conducción autónoma más prometedores en la actualidad, comprobando cómo al usar información contextual de mapa se puede reducir notablemente el tiempo de inferencia de un algoritmo de tracking y predicción basados en métodos físicos, prestando atención a los agentes realmente relevantes del escenario de tráfico. Tras observar las limitaciones de un modelo de predicción basado en cinemática para la predicción a largo plazo de un agente, los distintos algoritmos de la tesis se centran en el módulo de predicción, usando los datasets Argoverse 1 y Argoverse 2, donde se asume que los agentes proporcionados en cada escenario de tráfico ya están monitorizados durante un cierto número de observaciones. En primer lugar, se introduce un modelo basado en redes neuronales recurrentes (particularmente redes LSTM, Long-Short Term Memory) y mecanismo de atención para codificar las trayectorias pasadas de los agentes, y una representación simplificada del mapa en forma de posiciones finales potenciales en la carretera para calcular las trayectorias futuras unimodales, todo envuelto en un marco GAN (Generative Adversarial Network), obteniendo métricas similares al estado del arte en el caso unimodal. Una vez validado el modelo anterior en Argoverse 1, se proponen distintos modelos base (sólo social, incorporando mapa, y una mejora final basada en Transformer encoder, redes convolucionales 1D y mecanismo de atención cruzada para la fusión de características) precisos y eficientes basados en el modelo de predicción anterior, introduciendo dos nuevos conceptos. Por un lado, el uso de redes neuronales gráficas (particularmente GCN, Graph Convolutional Network) para codificar de una forma potente las interacciones de los agentes. Por otro lado, se propone el preprocesamiento de trayectorias preliminares a partir de un mapa con un método heurístico. Gracias a estas entradas y una arquitectura más potente de codificación, los modelos base serán capaces de predecir distintas trayectorias futuras multimodales, es decir, cubriendo distintos posibles futuros para el agente de interés. Los modelos base propuestos obtienen métricas de regresión del estado del arte tanto en el caso multimodal como unimodal manteniendo un claro compromiso de eficiencia con respecto a otras propuestas. El modelo final de la tesis, inspirado en los modelos anteriores y validado en el más reciente dataset para algoritmos de predicción en conducción autónoma (Argoverse 2), introduce varias mejoras para entender mejor el escenario de tráfico y decodificar la información de una forma precisa y eficiente. Se propone incorporar información topológica y semántica de los carriles futuros preliminares con el método heurístico antes mencionado, codificación de mapa basada en aprendizaje profundo con redes GCN, ciclo de fusión de características físicas y sociales, estimación de posiciones finales en la carretera y agregación de su entorno circundante con aprendizaje profundo y finalmente módulo de refinado para mejorar la calidad de las predicciones multimodales finales de un modo elegante y eficiente. Comparado con el estado del arte, nuestro método logra métricas de predicción a la par con los métodos mejor posicionados en el Leaderboard de Argoverse 2, reduciendo de forma notable el número de parámetros y operaciones de coma flotante por segundo. Por último, el modelo final de la tesis ha sido validado en simulación en distintas aplicaciones de conducción autónoma. En primer lugar, se integra el modelo para proporcionar predicciones a un algoritmo de toma de decisiones basado en aprendizaje por refuerzo en el simulador SMARTS (Scalable Multi-Agent Reinforcement Learning Training School), observando en los estudios como el vehículo es capaz de tomar mejores decisiones si conoce el comportamiento futuro de la escena y no solo el estado actual o pasado de esta misma. En segundo lugar, se ha realizado un estudio de adaptación de dominio exitoso en el simulador hiperrealista CARLA en distintos escenarios desafiantes donde el entendimiento de la escena y predicción del entorno son muy necesarios, como una autopista o rotonda con gran densidad de tráfico o la aparición de un usuario vulnerable de la carretera de forma repentina. En ese sentido, el modelo de predicción ha sido integrado junto con el resto de capas de la arquitectura de navegación autónoma del grupo de investigación donde se desarrolla la tesis como paso previo a su implementación en un vehículo autónomo real

    Desarrollo y versatilidad del algoritmo de discretización Ameva.

    Get PDF
    Esta tesis presentada como un compendio de artículos, analiza el problema de reconocimiento de actividades y detección de caídas en dispositivos móviles donde el consumo de batería y la precisión del sistema son las principales áreas de investigación. Estos problemas se abordan mediante el establecimiento de un nuevo algoritmo de selección, discretización y clasificación basado en el núcleo del algoritmo Ameva. Gracias al proceso de discretización, se obtiene un sistema eficiente en términos de energía y precisión. El nuevo algoritmo de reconocimiento de actividad ha sido diseñado para ejecutarse en dispositivos móviles y smartphones, donde el consumo de energía es la característica más importante a tener en cuenta. Además, el algoritmo es eficiente en términos de precisión dando un resultado en tiempo real. Estas características se probaron tanto en una amplia gama de dispositivos móviles utilizando diferentes datasets del estado del arte en reconocimiento de actividades así como en escenarios reales como la competición EvAAL donde personas no relacionadas con el equipo de investigación llevaron un smartphone con el sistema desarrollado. En general, ha sido posible lograr un equilibrio entre la precisión y el consumo de energía. El algoritmo desarrollado se presentó en el track de reconocimiento de actividades de la competición EvAAL (Evaluation of Ambient Assisted Living Systems through Competitive Benchmarking), que tiene como objetivo principal la medición del rendimiento de hardware y software. El sistema fue capaz de detectar las actividades a través del conjunto establecido de puntos de referencia y métricas de evaluación. Se desarrolló para varias clases de actividades y obtiene una gran precisión cuando hay aproximadamente el dataset está balanceado en cuanto al número de ejemplos para cada clase durante la fase de entrenamiento. La solución logró el primer premio en la edición de 2012 y el tercer premio en la edición de 2013.This thesis, presented as a set of research papers, studies the problem of activity recognition and fall detection in mobile systems where the battery draining and the accuracy are the main areas of researching. These problems are tackled through the establishment of a new selection, discretization and classification algorithm based on the core of the algorithm Ameva. Thanks to the discretization process, it allows to get an efficient system in terms of energy and accuracy. The new activity recognition algorithm has been designed to be run in mobile systems, smartphones, where the energy consumption is the most important feature to take into account. Also, the algorithm had to be efficient in terms of accuracy giving an output in real time. These features were tested both in a wide range of mobile devices by applying usage data from recognized databases and in some real scenarios like the EvAAL competition where non-related people carried a smartphone with the developed system. In general, it had therefore been possible to achieve a trade-off between accuracy and energy consumption. The developed algorithm was presented in the Activity Recognition track of the competition EvAAL (Evaluation of Ambient Assisted Living Systems through Competitive Benchmarking), which has as main objective the measurement of hardware and software performance. The system was capable of detecting some activities through the established set of benchmarks and evaluation metrics. It has been developed for multi-class datasets and obtains a good accuracy when there is approximately the same number of examples for each class during the training phase. The solution achieved the first award in 2012 competition and the third award in 2013 edition

    Innovative Applications of Constraint Programming

    Get PDF
    Constraint programming (CP) is a declarative paradigm that enables us to model a problem in the form of constraints to be satisfied. It offers powerful constraint solvers which, by implementing general-purpose search techniques, are fast and robust to address complex constraint models automatically. Constraint programming has attracted the attention of people from various domains. By separating the definition of a problem from its solution, it is more natural for people to implement the program directly from the problem specification, reducing the cost of development and future maintenance significantly. Furthermore, CP provides the flexibility of choosing a suitable solver for a problem of a given nature, which overcomes the limitations of a unique solver. Thanks to this, CP has allowed many non-domain experts to solve emerging problems efficiently. This thesis studies the innovative applications of CP by examining two topics: constraint modeling for several novel problems, and automatic solver selection. For the modeling, we explored two case studies, namely the (sub)group activity optimization problem, and the service function chaining deployment problem that comes from the Software Defined Network (SDN) domain. Concerning the solver selection, we improved an algorithm selection technique called “SUNNY”, which generates a schedule of solvers for a given problem instance. In this work, we demonstrate with empirical experiments that the procedure we have designed to configure SUNNY parameters is effective, and it makes SUNNY scalable to an even broader range of algorithm selection problems not restricted to CP

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Detection of outliers and outliers clustering on large datasets with distributed computing

    Get PDF
    Tese de mestrado em Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012Outlier detection is a data analysis related problem, of great importance in diverse science fields and with many applications. Without a definitive formal definition and holding several other designations – deviations, anomalies, exceptions, noise, atypical data, – outliers are, succinctly, the samples in a dataset that, for some reason, are different from the rest of the set. It can be of interest to either remove them, as a filtering process to smoothing data, or collect them as new dataset holding additional information potentially relevant. Its importance can be seen from the broad range of applications, like fraud or intrusion detection, specialized pattern recognition, data filtering, scientific data mining, medical diagnosis, etc. Although an old problem, with roots in Statistics, the outlier detection problem has become more pertinent then ever and yet further difficult to deal with. Better and more ubiquitous ways of data acquisition and storage capacities increasing constantly, made the size of datasets grow considerably in recent years, along with its number and its availability. Larger volumes of data becomes harder to explore and filter, while simultaneously data treatment and analysis emerges as more demanded and fundamental in today’s life. Distributed computing is a computer science paradigm to distribute hard, complex problems across several independent machines, connected on a network. A problem is break down in more simple sub-problems, that are solved simultaneous by the autonomous machines, and all resultant sub-solutions collected and put together into a final solution. Distributed computing provides a solution for the limitations in the hardware scaling, both economical and physical, by building up computational capacity, as needed, with the addition of new machines, not necessarily new or advanced models, but any commodity hardware. This work presents several distributed computing algorithms to outlier detection, starting from a distributed version of an existent algorithm, CURIO[9], and introducing a series of optimizations and variants that leads to a new method, Curio3XD, that allows to resolve both the common issues typical of this problem, the constraints imposed by the size and the dimensionality of the datasets. The final version, and its variant, is applicable for any volume of data, by scaling the hardware in the distributed computing, and to high dimensionality datasets, by moving the original exponential dependency on the dimension to a dependency, quadratic, on the local density of data, easily tunable with an algorithm parameter, the precision. Intermediate versions are presented for the sake of clarification of the process that took to the final method, and as an alternative approach, possibly useful with very sparse datasets. For a distributed computing environment with full support for the distributed system and the underlying hardware infrastructure, it was chosen Apache Hadoop[23] as a platform for developing, implementation and testing, due to its power and flexibility, and yet relatively easy usability. This constitutes an open-source solution, well studied and documented, employed by several major companies, with an excellent applicability to both clouds and local clusters. The different algorithms and variants were developed within the MapReduce programing model, and implemented in the Hadoop framework, which supports that model. MapReduce was conceived to permit the deployment of distributed computing applications in a simple, developer-oriented way, with main focus on the programmatic solutions of the problems, and leaving the underneath distributed network control and maintenance absolutely transparent. The developed implementations are included in appendix. Results of tests, with an adapted real world dataset, showed very good performances of the referred algorithms’ final versions, with excellent scalability on both size and dimensionality of data, as previewed theoretically. Performance tests with the precision parameter and comparative tests between all variants developed are also presented and discussed.Detecção de outliers é um problema relativo à análise de dados, de grande importância em diversos campos científicos. Sem um definição formal definitiva e possuindo diversas outras designações – desvios, anomalias, exceções, ruído, dados atípicos, – outliers são, sucintamente, as amostras num conjunto de dados que, por alguma razão, são diferentes do resto do dados. Pode ser de interesse quer a sua remoção, como um processo de filtragem para uma suavização dos dados, quer para a recolecção num novo conjunto de dados constituindo informação adicional potencialmente relevante. A sua importância pode ser notada no diversificado espectro de aplicações, como sejam a detecção de fraudes ou intrusos, reconhecimento especializado de padrões, filtragem de dados, prospecção de dados científicos, diagnósticos médicos, etc. Apesar de se tratar de um problema antigo, com origem na Estatística, a detecção de outliers tem-se tornado mais pertinente que nunca e contudo mais difícil de lidar. Melhor e mais ubíquas formas de aquisição de dados e capacidades de armazenamento em constante crescimento, fizeram as bases de dados crescer consideravelmente nos últimos anos, em conjunto com o aumento do seu número e disponibilidade. Um maior volume de dados torna-se mais difícil de explorar e filtrar, e simultaneamente o tratamento e análise de dados emerge como um processo mais necessário e fundamental nos dias de hoje. A computação distribuída é um paradigma das ciências da computação para distribuir problemas complexos e difíceis por diferentes máquinas independentes, ligadas em rede. Os problemas são divididos em problemas menores, mais simples, que são resolvidos simultaneamente pelas várias máquinas autónomas, e todas as sub-soluções resultantes coligidas e combinadas para obter uma solução final. A computação distribuída fornece uma solução para as limitações, físicas e económicas, no escalamento de equipamento, pela incremento de capacidade computacional, conforme a necessidade, com a adição de novas máquinas , não necessariamente modelos novos ou avançados, mas quaisquer equipamento à disposição. Este trabalho apresenta diversos algoritmos em computação distribuída para detecção de outliers, tendo como ponto de partida uma versão distribuída de um algoritmo existente, CURIO[9], e introduzindo uma série de optimizações e variantes que levam a um novo método, Curio3XD, que permite resolver ambos os problemas típicos comuns a este tipo de problemas, relacionados com o tamanho e com a dimensionalidade dos conjuntos de dados. Essa versão final, ou a sua variante, é aplicável a qualquer volume de dados, por escalamento de equipamento na computação distribuída, e a conjuntos de qualquer dimensão, pela remoção da dependência exponencial original na dimensão, substituindo-a por uma dependência, quadrática, na densidade local dos dados, facilmente controlável por um parâmetro do algoritmo, a precisão. As versões intermédias são apresentadas pela clarificação do processo que levou ao método final, e como uma abordagem alternativa, potencialmente útil com conjuntos de dados muito esparsos. Para um ambiente de computação distribuída com suporte completo a um sistema distribuído e uma infraestrutura de hardware adjacente, foi escolhido o Apache Hadoop[23] como plataforma para desenvolvimento, implementação e teste, devido às suas potencialidades e flexibilidade, e sendo contudo de relativo uso fácil. Este constitui um solução open-source, bem estudada e documentada, empregue por diversas grandes empresas, com uma excelente aplicabilidade quer em cloud como em clusters locais. Os diferentes algoritmos e variantes foram desenvolvidos no modelo programático MapReduce, e implementados no quadro do Apache Hadoop, que suporta esse modelo e oferece a capacidade de um fácil desenvolvimento em cloud e grandes clusters. Resultados dos testes, com um conjunto de dados real adaptado, mostrou um muito bom desempenho das versões finais dos referidos algoritmos, com uma excelente escalabilidade em ambas as variáveis tamanho e dimensionalidade dos dados, conforme previsto teoricamente. Testes de desempenho com a precisão e testes comparativos entre todas as variantes desenvolvidas são também apresentados e discutidos

    Photometric stereo and appearance capture

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung
    corecore