1,847 research outputs found

    PSM-DMO: power save mode and discontinuous BLE mesh operation

    Get PDF
    The Bluetooth Low Energy (BLE) mesh profile, standardized by the Bluetooth Special Interest Group (SIG), has an increasing interest in IoT solutions. However, the standard assumes that relay and friend nodes should be continuously scanning the channel awaiting any incoming transmissions. This could be very inefficient in terms of energy consumption, particularly in application scenarios where the backbone of the mesh network cannot be powered and traffic is infrequent. Hence, we present a novel strategy, named PSM-DMO, that minimizes the scan periods and thus, significantly reduces the overall energy consumption of the mesh network. PSM-DMO is defined as a new and optional feature for the currently published BLE mesh specifications, coexists with the standard operation, and is implemented without modifying the core of the specification. The proposal, that ensures the reliability of the mesh operation, can be used in BLE sensor networks that can tolerate a certain transmission delay. PSM-DMO replaces the continuous scan by a periodic but asynchronous polling process whereby the relay and sink nodes interrogate their neighbors about the existence of data to receive or to retransmit through the network. Nodes only go into scan mode during the period of time the mesh network will be involved in the transmission and dissemination. This period is estimated by the node which is the source of data, it is announced to its neighbors and it is propagated consecutively by all the relay nodes until the destination. PSM-DMO allows a theoretical reduction in the energy consumption of relay nodes up to 99.24 %.This work has been supported in part by the Spanish Ministry of Science through the projects RTI2018-099880-B-C32. RTI2018-095684-B-I00 and RTI2018-099063-B-I00 with ERFD funds, and by the Government of Aragon (Reference Group T31_20R).Peer ReviewedPostprint (published version

    PSM-DMO: power save mode and discontinuous BLE mesh operation

    Get PDF
    The Bluetooth Low Energy (BLE) mesh profile, standardized by the Bluetooth Special Interest Group (SIG), has an increasing interest in IoT solutions. However, the standard assumes that relay and friend nodes should be continuously scanning the channel awaiting any incoming transmissions. This could be very inefficient in terms of energy consumption, particularly in application scenarios where the backbone of the mesh network cannot be powered and traffic is infrequent. Hence, we present a novel strategy, named PSM-DMO, that minimizes the scan periods and thus, significantly reduces the overall energy consumption of the mesh network. PSM-DMO is defined as a new and optional feature for the currently published BLE mesh specifications, coexists with the standard operation, and is implemented without modifying the core of the specification. The proposal, that ensures the reliability of the mesh operation, can be used in BLE sensor networks that can tolerate a certain transmission delay. PSM-DMO replaces the continuous scan by a periodic but asynchronous polling process whereby the relay and sink nodes interrogate their neighbors about the existence of data to receive or to retransmit through the network. Nodes only go into scan mode during the period of time the mesh network will be involved in the transmission and dissemination. This period is estimated by the node which is the source of data, it is announced to its neighbors and it is propagated consecutively by all the relay nodes until the destination. PSM-DMO allows a theoretical reduction in the energy consumption of relay nodes up to 99.24 %

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    QoS enabled heterogeneous BLE mesh networks

    Get PDF
    Bluetooth Low Energy (BLE) is a widely known short-range wireless technology used for various Internet of Things (IoT) applications. Recently, with the introduction of BLE mesh networks, this short-range barrier of BLE has been overcome. However, the added advantage of an extended range can come at the cost of a lower performance of these networks in terms of latency, throughput and reliability, as the core operation of BLE mesh is based on advertising and packet flooding. Hence, efficient management of the system is required to achieve a good performance of these networks and a smoother functioning in dense scenarios. As the number of configuration points in a standard mesh network is limited, this paper describes a novel set of standard compliant Quality of Service (QoS) extensions for BLE mesh networks. The resulting QoS features enable better traffic management in the mesh network, providing sufficient redundancy to achieve reliability whilst avoiding unnecessary packet flooding to reduce collisions, as well as the prioritization of certain traffic flows and the ability to control end-to-end latencies. The QoS-based system has been implemented and validated in a small-scale BLE mesh network and compared against a setup without any QoS support. The assessment in a small-scale test setup confirms that applying our QoS features can enhance these types of non-scheduled and random access networks in a significant way

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    A two-stage game theoretical approach for interference mitigation in Body-to-Body Networks

    Get PDF
    International audienceIn this paper, we identify and exploit opportunities for cooperation between a group of mobile Wireless Body Area Networks (WBANs), forming a Body-to-Body Network (BBN), through inter-body interference detection and subsequent mitigation. Thus, we consider a dynamic system composed of several BBNs and we analyze the joint mutual and cross-technology interference problem due to the utilization of a limited number of channels by different transmission technologies (i.e., ZigBee and WiFi) sharing the same radio spectrum. To this end, we propose a game theoretical approach to address the problem of Socially-aware Interference Mitigation (SIM) in BBNs, where WBANs are " social " and interact with each other. Our approach considers a two-stage channel allocation scheme: a BBN-stage for inter-WBANs' communications and a WBAN-stage for intra-WBAN communications. We demonstrate that the proposed BBN-stage and WBAN-stage games admit exact potential functions, and we develop a Best-Response (BR-SIM) algorithm that converges to Nash equilibrium points. A second algorithm, named Sub-Optimal Randomized Trials (SORT-SIM), is then proposed and compared to BR-SIM in terms of efficiency and computation time. We further compare the BR-SIM and SORT-SIM algorithms to two power control algorithms in terms of signal-to-interference ratio and aggregate interference, and show that they outperform the power control schemes in several cases. Numerical results, obtained in several realistic mobile scenarios, show that the proposed schemes are indeed efficient in optimizing the channel allocation in medium-to-large-scale BBNs
    • 

    corecore