40,836 research outputs found

    On Refutation Rules

    Get PDF

    On Refutation Rules

    Get PDF

    Rejection in Łukasiewicz's and Słupecki's Sense

    Get PDF
    The idea of rejection originated by Aristotle. The notion of rejection was introduced into formal logic by Łukasiewicz [20]. He applied it to complete syntactic characterization of deductive systems using an axiomatic method of rejection of propositions [22, 23]. The paper gives not only genesis, but also development and generalization of the notion of rejection. It also emphasizes the methodological approach to biaspectual axiomatic method of characterization of deductive systems as acceptance (asserted) systems and rejection (refutation) systems, introduced by Łukasiewicz and developed by his student Słupecki, the pioneers of the method, which becomes relevant in modern approaches to logic

    A Meta-Logic of Inference Rules: Syntax

    Get PDF
    This work was intended to be an attempt to introduce the meta-language for working with multiple-conclusion inference rules that admit asserted propositions along with the rejected propositions. The presence of rejected propositions, and especially the presence of the rule of reverse substitution, requires certain change the definition of structurality

    SpecSatisfiabilityTool: A tool for testing the satisfiability of specifications on XML documents

    Full text link
    We present a prototype that implements a set of logical rules to prove the satisfiability for a class of specifications on XML documents. Specifications are given by means of constrains built on Boolean XPath patterns. The main goal of this tool is to test whether a given specification is satisfiable or not, and justify the decision showing the execution history. It can also be used to test whether a given document is a model of a given specification and, as a by-product, it permits to look for all the relations (monomorphisms) between two patterns and to combine patterns in different ways. The results of these operations are visually shown and therefore the tool makes these operations more understandable. The implementation of the algorithm has been written in Prolog but the prototype has a Java interface for an easy and friendly use. In this paper we show how to use this interface in order to test all the desired properties.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Some subsystems of constant-depth Frege with parity

    Get PDF
    We consider three relatively strong families of subsystems of AC0[2]-Frege proof systems, i.e., propositional proof systems using constant-depth formulas with an additional parity connective, for which exponential lower bounds on proof size are known. In order of increasing strength, the subsystems are (i) constant-depth proof systems with parity axioms and the (ii) treelike and (iii) daglike versions of systems introduced by Krajíček which we call PKcd(⊕). In a PKcd(⊕)-proof, lines are disjunctions (cedents) in which all disjuncts have depth at most d, parities can only appear as the outermost connectives of disjuncts, and all but c disjuncts contain no parity connective at all. We prove that treelike PKO(1)O(1)(⊕) is quasipolynomially but not polynomially equivalent to constant-depth systems with parity axioms. We also verify that the technique for separating parity axioms from parity connectives due to Impagliazzo and Segerlind can be adapted to give a superpolynomial separation between daglike PKO(1)O(1)(⊕) and AC0[2]-Frege; the technique is inherently unable to prove superquasipolynomial separations. We also study proof systems related to the system Res-Lin introduced by Itsykson and Sokolov. We prove that an extension of treelike Res-Lin is polynomially simulated by a system related to daglike PKO(1)O(1)(⊕), and obtain an exponential lower bound for this system.Peer ReviewedPostprint (author's final draft

    Generating Schemata of Resolution Proofs

    Full text link
    Two distinct algorithms are presented to extract (schemata of) resolution proofs from closed tableaux for propositional schemata. The first one handles the most efficient version of the tableau calculus but generates very complex derivations (denoted by rather elaborate rewrite systems). The second one has the advantage that much simpler systems can be obtained, however the considered proof procedure is less efficient

    Kripke Models for Classical Logic

    Get PDF
    We introduce a notion of Kripke model for classical logic for which we constructively prove soundness and cut-free completeness. We discuss the novelty of the notion and its potential applications
    corecore