866 research outputs found

    Scalable dimensioning of resilient Lambda Grids

    Get PDF
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit

    Efficient Parallel Video Encoding on Heterogeneous Systems

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.In this study we propose an efficient method for collaborative H.264/AVC inter-loop encoding in heterogeneous CPU+GPU systems. This method relies on specifically developed extensive library of highly optimized parallel algorithms for both CPU and GPU architectures, and all inter-loop modules. In order to minimize the overall encoding time, this method integrates adaptive load balancing for the most computationally intensive, inter-prediction modules, which is based on dynamically built functional performance models of heterogenous devices and inter-loop modules. The proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video encoding for very demanding video coding parameters, i.e., full HD video format, 64×64 pixels search area and the exhaustive motion estimation.This work was supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EEI-ELC/3152/2012 and PTDC/EEA-ELC/117329/2010

    Enhanced Cluster Computing Performance Through Proportional Fairness

    Full text link
    The performance of cluster computing depends on how concurrent jobs share multiple data center resource types like CPU, RAM and disk storage. Recent research has discussed efficiency and fairness requirements and identified a number of desirable scheduling objectives including so-called dominant resource fairness (DRF). We argue here that proportional fairness (PF), long recognized as a desirable objective in sharing network bandwidth between ongoing flows, is preferable to DRF. The superiority of PF is manifest under the realistic modelling assumption that the population of jobs in progress is a stochastic process. In random traffic the strategy-proof property of DRF proves unimportant while PF is shown by analysis and simulation to offer a significantly better efficiency-fairness tradeoff.Comment: Submitted to Performance 201

    Adaptive structured parallelism

    Get PDF
    Algorithmic skeletons abstract commonly-used patterns of parallel computation, communication, and interaction. Parallel programs are expressed by interweaving parameterised skeletons analogously to the way in which structured sequential programs are developed, using well-defined constructs. Skeletons provide top-down design composition and control inheritance throughout the program structure. Based on the algorithmic skeleton concept, structured parallelism provides a high-level parallel programming technique which allows the conceptual description of parallel programs whilst fostering platform independence and algorithm abstraction. By decoupling the algorithm specification from machine-dependent structural considerations, structured parallelism allows programmers to code programs regardless of how the computation and communications will be executed in the system platform.Meanwhile, large non-dedicated multiprocessing systems have long posed a challenge to known distributed systems programming techniques as a result of the inherent heterogeneity and dynamism of their resources. Scant research has been devoted to the use of structural information provided by skeletons in adaptively improving program performance, based on resource utilisation. This thesis presents a methodology to improve skeletal parallel programming in heterogeneous distributed systems by introducing adaptivity through resource awareness. As we hypothesise that a skeletal program should be able to adapt to the dynamic resource conditions over time using its structural forecasting information, we have developed ASPara: Adaptive Structured Parallelism. ASPara is a generic methodology to incorporate structural information at compilation into a parallel program, which will help it to adapt at execution

    Revisiting Matrix Product on Master-Worker Platforms

    Get PDF
    This paper is aimed at designing efficient parallel matrix-product algorithms for heterogeneous master-worker platforms. While matrix-product is well-understood for homogeneous 2D-arrays of processors (e.g., Cannon algorithm and ScaLAPACK outer product algorithm), there are three key hypotheses that render our work original and innovative: - Centralized data. We assume that all matrix files originate from, and must be returned to, the master. - Heterogeneous star-shaped platforms. We target fully heterogeneous platforms, where computational resources have different computing powers. - Limited memory. Because we investigate the parallelization of large problems, we cannot assume that full matrix panels can be stored in the worker memories and re-used for subsequent updates (as in ScaLAPACK). We have devised efficient algorithms for resource selection (deciding which workers to enroll) and communication ordering (both for input and result messages), and we report a set of numerical experiments on various platforms at Ecole Normale Superieure de Lyon and the University of Tennessee. However, we point out that in this first version of the report, experiments are limited to homogeneous platforms

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    Multi-resource fairness: Objectives, algorithms and performance

    Get PDF
    Designing efficient and fair algorithms for sharing multiple resources between heterogeneous demands is becoming increasingly important. Applications include compute clusters shared by multi-task jobs and routers equipped with middleboxes shared by flows of different types. We show that the currently preferred objective of Dominant Resource Fairness has a significantly less favorable efficiency-fairness tradeoff than alternatives like Proportional Fairness and our proposal, Bottleneck Max Fairness. In addition to other desirable properties, these objectives are equally strategyproof in any realistic scenario with dynamic demand

    Ishu bunsan shisutemu ni okeru kabun tasuku no sukejulingu

    Get PDF
    制度:新 ; 報告番号:甲2691号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/7/30 ; 早大学位記番号:新486
    corecore