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Abstract

Algorithmic skeletons abstract commonly-used patterns of parallel computa¬

tion, communication, and interaction. Parallel programs are expressed by in¬

terweaving parameterised skeletons analogously to the way in which struc¬

tured sequential programs are developed, using well-defined constructs. Skele¬
tons provide top-down design composition and control inheritance through¬
out the program structure. Based on the algorithmic skeleton concept, struc¬

tured parallelism provides a high-level parallel programming technique which
allows the conceptual description of parallel programs whilst fostering plat¬
form independence and algorithm abstraction. By decoupling the algorithm

specification from machine-dependent structural considerations, structured par¬

allelism allows programmers to code programs regardless of how the compu¬
tation and communications will be executed in the system platform.

Meanwhile, large non-dedicated multiprocessing systems have long posed
a challenge to known distributed systems programming techniques as a result
of the inherent heterogeneity and dynamism of their resources. Scant research
has been devoted to the use of structural information provided by skeletons
in adaptively improving program performance, based on resource utilisation.
This thesis presents a methodology to improve skeletal parallel programming
in heterogeneous distributed systems by introducing adaptivity through re¬

source awareness. As we hypothesise that a skeletal program should be able
to adapt to the dynamic resource conditions over time using its structural fore¬

casting information, we have developed ASPara: Adaptive Structured Par¬
allelism. ASPara is a generic methodology to incorporate structural infor¬
mation at compilation into a parallel program, which will help it to adapt at
execution.
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By means of the skeleton API, ASPara instruments a skeletal program
with a series of pragmatic rules, which depend on particular performance
thresholds based on the nature of the skeleton, the computation/communi-
cation ratio of the program, and the availability of resources in the system.

Every rule essentially determines the scheduling for the given skeleton. AS-
para is comprised of four phases: programming, compilation, calibration, and
execution. We illustrate the feasibility of this approach and its associated per¬

formance improvements using independent case studies based on two algo¬
rithmic skeletons, the task farm and the pipeline, programmed in C and MPI
and executed in a non-dedicated heterogeneous bi-cluster system.
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Chapter 1

Introduction

Parallel programming aims to capitalise on concurrency, the execution of
different sections of a given program at the same time, in order to improve
the overall performance of such program, and, eventually, that of the whole

system. Despite major breakthroughs, parallel programming is still a highly

demanding activity widely acknowledged to be more difficult than its sequen¬
tial counterpart, and one for which the use of efficient programming models
and structures has long been sought after. These programming models must
be necessarily performance-oriented, and they are expected to be defined in a

Behaviour
Outcome sought by the
Application Programmer

Structure
Resource -Functionality
Correspondence

Figure 1.1: The algorithmic skeleton constituents: the behaviour—the outcome sought
by the application programmer, and the structure—the resource to functionality correspon¬

dence.
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2 Chapter 1. Introduction

scalable structured fashion and to provide guidance on the execution of their

jobs in order to assist in the deployment of heterogeneous resources and poli¬
cies.

This thesis presents a methodology to improve skeletal parallel program¬

ming by introducing adaptiveness through resource awareness driven by the

program structure. It rests on the resource availability-performance premise,
that is to say, the assumption that certain parallel programs can perform more

efficiently based on a wise selection from the available system resources.

Algorithmic skeletons abstract commonly-used patterns of parallel com¬

putation, communication, and interaction [53]. While computation constructs

manage logic, arithmetic, and control flow operations, communication and in¬
teraction primitives coordinate inter- and intra-process data exchange, process

creation, and synchronisation. Skeletons provide top-down design, composi¬

tion, and control inheritance throughout the program structure. Parallel pro¬

grams are expressed by interweaving parameterised skeletons analogously to
the way in which sequential structured programs are constructed.

Known as structured parallelism, this design paradigm provides a high-
level parallel programming methodology which allows the abstract descrip¬
tion of programs and fosters portability by focusing on the description of the

algorithmic structure rather than on its detailed implementation. This pro¬

vides a clear and consistent behaviour across platforms, with the underlying
structure depending on the particular implementation. As illustrated in fig¬
ure 1.1, the skeleton behaviour refers to the outcome sought by the application

programmer, and the skeleton structure concerns the resource to functionality

correspondence established at the infrastructure level.

Therefore, by decoupling the behaviour from the structure of a parallel pro¬

gram, structured parallelism benefits entirely from any performance improve-
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Figure 1.2: The traditional approach to structured parallelism. It does not normally include
any provisions for handling resource awareness.

merits in the system infrastructure, while preserving the program results. Fig¬
ure 1.2 shows the traditional approach to structured parallelism, where a pro¬

grammer maps a parallel algorithm into a program by selecting a skeleton, or
a nesting of them, from a library, and then links the library and the multipro¬

cessing support to produce a skeletal parallel program.

Such behaviour-structure decoupling has allowed the structured parallelism

paradigm to be seamlessly deployed on different dedicated and non-dedicated
architectures including symmetricmultiprocessing, massively parallel process¬

ing, and clusters. However, large non-dedicated multiprocessing systems such
as metacomputers [177] and computational grids [84]—networks of heteroge¬

neous, computational resources linked by software in such a way that they
could be used as easily as a personal computer—, have long posed a chal¬

lenge to known distributed systems programming techniques, as a result of
the inherent heterogeneity and dynamic nature of their resources. Over the
last decade, their study has constituted an evolving field in computer science,
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and the associated programming frameworks have incorporated assorted par¬

adigms.

The conglomeration of dozens of cores per processor has just increased the

complexity of the challenge at hand. A recent report has highlighted the im¬

portance of not only producing realistic benchmarks for parallel programming
models based on patterns of computation and communication, but also that of

developing programming paradigms which efficiently deploy scalable, inde¬

pendent task parallelism [11].

It is widely acknowledged that one of the major challenges in program¬

ming support for large heterogeneous distributed systems is the prediction
and improvement of performance [133]. Such systems are characterised by the

dynamic nature of their heterogeneous components, due to shifting patterns

in background load which are not under the control of the individual applica¬
tion programmer. In principle, it is expected that efficient parallel applications
must be aware of the system conditions, and adapt their execution according
to variations in the available computation and communication resources. The

challenge is, therefore, to produce and support applications which can respond

automatically to this variability.

Moreover, scant research has been devoted to the adaptive exploitation of
the structure of a parallel application to improve the overall resource usage.

Since workloads in distributed systems must be divided into tasks in order to

minimise communication costs, little attention is paid to partitioning using the

application structure. We argue that the intrinsic coordination characteristics
of structured parallelism place this paradigm in a preponderant position to

explore this area. Based on the central premise of application adaptiveness
to resource availability, we would like to research their actual correlation and

provide a methodology to enable skeletons to conform to the heterogeneity of
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large distributed system.

Furthermore, we consider it relevant to explore this correlation by employ¬

ing the forecasting information of the structured parallelism model and ex¬

ploiting its intrinsic adaptiveness through generic conventions. The main dif¬
ference between this and other performance approaches is that it is intended to
be focused on algorithmic skeletons, adaptable by construct, and empirically
evaluated on an non-dedicated multi-cluster infrastructure.

Instead of developing a specific skeletal framework, this thesis presents

ASPara (Adaptive Structured Parallelism), a generic methodology to optimise

performance in heterogeneous distributed systems. ASPara can forecast and
enhance the performance of a skeletal application by exploiting the skeleton
structure while preserving the skeleton behaviour.

ASPara comprises a set of rules to be applied to skeletons, where every rule

essentially defines an application scheduling scheme which is parameterised
in terms of the existing system resources.

As opposed to compile-time optimisation, ASPara capitalises on the fact
that the behaviour of a skeletal application is known prior to its execution. In
contrast to run-time optimisation, ASPara exploits the structural characteris¬
tics of skeletons.

We support our claims concerning performance enhancement by present¬

ing positive empirical results based on two task-parallel skeletons: the task
farm and the pipeline, implemented as Application Programming Interfaces

(APIs) in C with MPI.
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1.1 Contribution

The main contribution of this investigation is the methodological exploitation
of the forecasting nature of skeletons, which can adapt to different resource
constraints in heterogeneous systems.

This methodological approach, synthesised in ASPara, is evaluated us¬

ing the task farm and the pipeline skeletons. The importance of these two

skeletons has been highlighted in the context of scalable parallel science and

engineering applications [70]: the task farm for embarrassingly parallel appli¬

cations, where parallelism occurs as a result of job scheduling of independent
tasks on multiple computers; and the pipeline for lock-step or iterative pro¬

cessing, where the deployment of, for example, linear algebra algorithms on

different processing elements, requires the interaction and synchronisation of

evolving computational segments.
For convenience, we have implemented simple skeletal APIs for the task

farm and the pipeline, but stress that they are merely syntactic vehicles to

support the investigation of application scheduling schemes, which forms our
main contribution.

The open question addressed in this thesis is:

How much can the structural forecasting information of structured
parallelism help to improve the performance of parallel applica¬
tions executing in a non-dedicated heterogeneous distributed sys¬
tem?

Our hypothesis is:

A skeletal program should be able to adapt to dynamic system con¬
ditions over time by steering its execution using structural forecast¬
ing information.

Our objective is:
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To develop performance-wise ways in which to adapt the skeletal
structure to the system resource availability.

Should this overall project lead to an increase in the performance of struc¬
tured parallelism in computational grids, clear potential benefit will be af¬
forded to a significant number of application programmers. That is to say,

application programmers will benefit through the utilisation of the skeletal

paradigm without suffering degradation of performance.

1.2 Organisation

This thesis follows the standard conventions for doctoral work as surveyed in
the literature [157], and can be chiefly classified as a complex variant of the
traditional structure. Organised in six chapters, it is divided into three distinct

parts: the background, chapters 1 and 2; the core, chapters 3, 4, and 5; and the

concluding part, chapter 6.

1: The Introduction Provides an overall description of our approach to using
structured parallelism as a way to furnish adaptiveness in computational

grids and states the hypothesis, followed by the enumeration of the ob¬

jectives and structure of the thesis.

2: The Literature Review Presents an outline of the structured parallelism par¬

adigm and its related approaches with strong emphasis on heteroge¬
neous systems in order to place the contribution of this thesis into con¬

text. This chapter ends with the identification of the specific research gap
addressed by this work, and a description of the computational environ¬
ment in which all of the experimental results were carried out.
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3: The ASPARA Methodology Introduces ASPara and delineates its four phases:

programming, compilation, calibration, and execution. While the former
two phases are static phases, as they instrument the skeletons, the lat¬
ter two are dynamic and enable the ASPara adaptivity. This chapter
is supplemented with a description of the experimental computational
environment for this thesis.

4: The Task Farm Includes a self-contained case study exploring the applica¬

bility of ASPara, using the task farm skeleton. It includes the skeleton

definitions, the description of its API implementation, an empirical anal¬

ysis, and a concluding discussion.

5: The Pipeline Renders a self-contained case study analysing ASPara with
the pipeline skeleton. It contains the skeleton concepts, its API, a series
of experiments, and a final discussion.

6: The Conclusion Furnishes an introductory restatement of the problem, fol¬
lowed by a description of the research area covered by the thesis. It con¬
cludes by discussing possible avenues for future work, as well as those
for possible applications of this investigation.

It is important to highlight the fact that the discussion sections in chap¬
ters 4 and 5 include an introductory statement of the principal findings of the

chapter, a critical comparison with other approaches, and a description of the
outcomes.

The notation employed in this work assumes familiarity with parallel com¬

puting. Unless otherwise specified, herewith:

• 'processor', 'processing element', and 'node' are employed interchangeably
to denote a computer with its own private memory capable of execut-
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ing an independent stream of instructions. Nodes are assumed to be of

heterogeneous nature with disjoint memory spaces;

• 'application' and 'program' are utilised interchangeably to denote a se¬

quence of instructions which follows the Single Program Multiple Data

(SPMD) model;

• 'skeleton' and 'algorithmic skeleton' must be understood as synonyms. Ad¬

ditionally, 'structured' and 'skeletal parallelism' should be interpreted in
their broadest context to describe the abstraction of patterns of computa¬
tion and communication; and

• 'workload' or 'divisible workload' will denote a computational job which
can be arbitrarily partitioned into distinct independent tasks which can

be arbitrarily processed in different nodes. Furthermore, in the context

of this work, the input and output of the tasks will be either totally dis¬

junct (embarrassingly-parallel computations) or have precedence rela¬
tions (pipelined computations). Both types of computation modes are

well documented in the literature [30, 195], encompassing an important

set of problems in parallel computing.

Some of the results of this investigation have been reported in peer-reviewed
international conferences and journals. Namely:

• A comparative study of intrinsic parallel programming is presented in [103]
and skeletal programming is briefly examined using the eSkel library
in [97].

• The ASPara methodology has been introduced in [101 J1.
Although the ASPara methodology was initially introduced as grasp, we have renamed

it to avoid confusion with the contemporary homonymous project GrASP, Grid Assessment
Probes, originated at the University of California-San Diego [51]
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• General performance results for a large heterogenous distributed system

encompassing servers in Stuttgart and Edinburgh have been initially re¬

ported in [98]. The ideas and notation for the task farm skeleton have
been studied in the context of the aforementioned infrastructure in [96]

and broadened as an adaptive single-round scheduling algorithm in [99],

• The deployment of a calcium currents application is described in [104]
and extended to a parameter sweep framework in [105].

• Adaptive pipelining has been initially adumbrated in [100] and, subse¬

quently, generalised to include automatic threshold determination in [102],

In terms of format, the introduction of a new concept is marked by the use

of an italicised font and its corresponding entry into the index. Literal computer

input or output is indicated by the teletype font. This manuscript has been

produced using the LTpX text processing system with Palatino fonts and the
"infthesis" class from the School of Informatics of the University of Edinburgh.

Bibliographic references are listed in alphabetical order using the ACM BlBTgX

style with ISO journal title abbreviations and DBLP conference short names.



Chapter 2

Review of Literature

This thesis presents an empirical study of the optimisation of structured par¬

allelism in heterogeneous distributed systems, based on the use of skeletal
structural foreknowledge. In this chapter, a review of the current literature
in this subject is presented. This review has been conducted using a simple

hypothesis-centred protocol to provide a top-down analysis of works relevant
to the research question.

Firstly, section 2.1 presents an overview of the fundamental concepts of

shared-memory and message-passing programming. Secondly, section 2.2 re¬

views the structured parallelism paradigm and related high-level approaches1
in order to identify the open issues in current skeletal methodologies. Thirdly,
section 2.3 examines existing attempts to develop high-level parallel program¬

ming, with strong emphasis on structured solutions. Finally, section 2.4 dis¬
cusses the specific research gaps addressed by this thesis.

The main objective of this chapter is to set the context of high-level par¬
allel programming on heterogeneous distributed systems. Therefore, parallel

languages, auto-tuners, programming toolkits, agent-based and compositional
having been conceived as self-contained case studies, chapters 4 and 5 furnish contextual

inspections of related work on the task farm and the pipeline.

11
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systems, optimisers, and other related topics are purposely omitted.

2.1 Historical Background

Programming methodologies for hardware-independent parallelism based on

general constructs has long been sought after. In a seminal work in the late

60s, Dijkstra proposed the use of semaphores—special integer variables acces¬

sible through atomic actions— as a way to safeguard operations on shared
variables and supply an explicit mechanism to synchronise parallel sequential

processes [67]. His work defined the canonical problem of mutual exclusion,
where a collection of concurrent processes each alternately executing critical re¬

gions—a structured notation to provide exclusive access to program regions—,

provided theoretical grounds for harmonious cooperation between multiple
concurrent processes.

During the early 70s, Hoare and Brinch Hansen expanded semaphores with
the introduction of monitors—a collection of local administrative data, shared

variables and procedures—to enable concurrent processes to not only share
data and resources, but also to synchronise themselves [41,120]. With the use

of critical regions, such as the bounded buffer and the resource array, Hoare
delineated the parallel interaction of the disjoint cooperating processes and
the producer-consumer pairing: precursors of the task farm and the pipeline

constructs, respectively [119].

During the next decade, Lamport formalised a solution to mutual exclu¬

sion, based on temporal constraints demonstrating the feasibility of high-level

parallel programming from both theoretical and pragmatic standpoints [134].
Later on, orchestrated efforts have led to the introduction of different shared-

memory programming models, such as OpenMP [60], and thread-only program-
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ming like POSIX threads [122], Java threads [156] and C# threads [33]. OpenMP,
a set of compiler directives and library routines, allows the programmer to in¬
sert implicit parallelism into monolithic blocks of iterative code, while thread-
based programming uses light-weight processes to achieve low-level indepen¬
dent control flow.

Monitors, critical regions, and shared-memory models, in general, supply

concurrency and synchronisation through the deployment of data structures

partaken of by all processes, and their application space is mostly confined
to specific infra-process regions. On the other hand, message-passing program¬

ming provides synchronisation through send-receive pairing between specific

processes and concurrency through explicit initialisation of participating pro¬

cesses, and therefore allows the programmer to control inter-process interac¬
tion. Standard message passing libraries, such as the Parallel Virtual Machine

(PVM) [91] and the Message Passing Interface (MPT) [152,179], allow a hetero¬

geneous collection of interconnected systems, with potentially different archi¬
tectures and operating systems, to act as a single computing unit.

Although there is not a definitive answer in the subject, experimental stud¬
ies [45,129,141] have consistently demonstrated that shared-memory is easy to

program but lacks scalability and coarse-grain scope, while message-passing
is portable, tunable, and scalable but error prone. Furthermore, the low-level
communication primitives in message passing have long been compared to the

assembly language crudeness and even equated to the usage of the infamous

'go-to' statement [106].

A parallel program ought to be conceived as two separate and comple¬

mentary entities: computation, which expresses the calculations in a procedural

manner, and coordination, which abstracts the interaction and communication.

In principle, the coordination and the computation should be orthogonal and
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generic, so that a coordination style can be applied to any parallel program,
coarse- or fine-grained.

The aforesaid developments in parallel programming foster a bottom-up
model of parallel programming, where computation and coordination are not

necessarily separated, and communications and synchronisation primitives

are typically interwoven with calculations. As a result, the MPI standard has
been augmented with collective operations which, in essence, provide an upper

layer of computation and communication [19, 72]. However, their implemen¬
tation and its associated performance is dependent on the physical topology of
the system, the number of processes involved, the message sizes, the location
of the root node, and the actual algorithm employed [49,160]. Collectives do
not necessarily perform well on grids. In an empirical study, using MPI col¬
lectives in co-located servers in Stuttgart and Edinburgh, we have previously
corroborated their decreasing performance using variable size data packets on
shared network connections [96, 98].

Coordination can be directly enforced through syntactic structures in ad-
hoc languages such as Linda [92], Opus [149], and Orca [16]. Linda uses a

generative model for process creation and communication, where processes

interact with each other using primitive data structures, known as tuples. The

tuples form a tuple space, which is designed to be independent of the host

languages such as C, C++, Fortran, or Postscript. Opus has been designed
as a task coordination language for High Performance Fortran, where pro¬

cesses communicate with each other through shared data. Instead of using
low-level instructions for reading and writing, programmers define compos¬

ite operations for data manipulations. Opus deals with the task parallelism

using shared data abstractions, which execute autonomously on their own re¬

sources. Similarly, Orca data structures have a certain number of pre-defined
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operations that can be executed by processes. This interaction can be com¬

pared to the object-oriented method principle. Both Linda and Orca have been
extended to support newer languages such as Java [86,135].

Shared-memory, message-passing, or coordination languages do not pro¬

vide, on their own, a standard and portable way of decoupling the structure

from the behaviour in a program. Hence, traditional parallel programs inter¬
leave computation and coordination for a certain algorithmic solution, greatly

reducing the possibility of using the program structure as a driving criterion
for adaptivity. Structured parallelism can, arguably, shed light on this matter.

2.2 Structured Parallelism

This section discusses the structured parallelism paradigm by providing a gen¬

eral overview of its basic concepts, followed by a review of its related ap¬

proaches.

Algorithmic skeletons abstract commonly-used patterns of parallel compu¬

tation, communication, and interaction. Skeletal parallel programs can be ex¬

pressed by interweaving parameterised skeletons using descending composi¬
tion and control inheritance throughout the program structure, analogously to
the way in which sequential structured programs are constructed [158]. This

high-level parallel programming technique, known as structured parallelism,
enables the composition of skeletons for the development of programs where
the control is inherited through the structure, and the programmer adheres to

top-down design and construction. Thus, it provides a clear and consistent

behaviour across platforms, while their structure depends on the particular

implementation.

Since skeletons enable programmers to code algorithms without specifying
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the machine-dependent computation and coordination primitives, they have
been positioned as coordination enablers in parallel programs [56, 62, 159].

Dongarra, Foster, and Kennedy [69] have highlighted the importance of this
behaviour-structure decoupling when suggesting that the encapsulation of al¬

gorithms and techniques fosters the production of reusable parallel programs,

stating that "a pattern might specify the problem-independent structure and
note where the problem-specific logic must be supplied". Thus, they advocate

raising the level of abstraction without sacrificing performance.

Despite its elegance and potential, it is important to state that structured

parallelism still lacks the necessary critical mass to become a mainstream par¬

allel programming technique. Its principal shortcomings are its application

space, since it can only address well-defined algorithmic solutions, and the
lack of a specification to define and exchange skeletons between different im¬

plementations. Some consideration has already been devoted to the matter [55],
and future research may lead to a standard.

2.2.1 Background

Cole pioneered the field with the definition of skeletons as "specialised higher-
order functions from which one must be selected as the outermost purpose in
the program", and the introduction of four initial skeletons: divide and con¬

quer, iterative combination, cluster, and task queue [52, 53]. His work de¬
scribed a software engineering approach to high-level parallel programming

using a skeletal (virtual) machine rather than the deployment of a tool or lan¬

guage on a certain architecture. He later surveyed the field, describing for¬

mally the functionality of some data- and task-parallel skeletons, using func¬
tional programming notation [54],
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Loosely coincident to Cole's initial formulation, fundamental work on high-
level parallel constructs was being developed elsewhere, including:

• the identification of nine computational models for a one-dimensional

processor array [132], including the pipeline and the task queue;

• the use of higher-level portablemonitors [142], including an ask-for mon¬
itor: a pool of work units being dynamically dispatched to a pool of pro¬

cesses, essentially, an early instantiation of a task farm;

• the initial description of a transputer processor farm [117], and the use of
hardware-based scan primitives for data-parallel algorithms [35];

• the foundations of the Bird-Meertens formalism [32], and the subsequent

development of second-order functions based on this formalism, to func¬

tionally derive parallel algorithms [175];

• a functional specification for pipeline and divide-and-conquer algorithms [124];

• the generic parallel implementations of branch-and-bound and backtrack,

precursors of resolution skeletons [81]; and,

• the automated derivation of programs from specifications [178].

Subsequently, the wide acceptance of the algorithmic skeleton concept to

govern the common control structure of parallel applications in computational
science [40, 113, 136, 176], along with the release of a programming mani¬
festo [55] and a compilation of different research projects [163], has nurtured
the field of skeletal parallel programming. It has also guided the development
of skeletal frameworks with their associated set of control and data constructs,

regulating the flow, nesting, monitoring, and portability of parallel programs.
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These frameworks can be grouped according to the programming para¬

digm:

Coordination This approach advocates the use of a high-level language to de¬
scribe the algorithmic behaviour and a host language to handle inter¬
action with the infrastructure. The Structured Coordination Language

(SCL) [64], the Skeleton Imperative Language (Skil) [39], the Pisa Parallel

Programming Language (P3L) [14], the 11c language [73], and the Sin¬

gle Assignment C language (SAC) [108] augment imperative languages,
with a coordinating language to describe skeletons at high-level. Trans¬

lating the skeletal description into the host language, they allow the pro¬

grammer to generate a program by assembling the high-level skeletal

portion with the host language structure on top of MPI.
While SCL and Skil propose a functional syntax to denote skeletons on

top of Fortran and C respectively, P3L explores composition to abstract
the skeletal behaviour. The 11c language implements an OpenMP-style

syntax to describe skeletal algorithms which use C/MPI as their host.
The main innovations in 11c are the use of pragma directives in its no¬

tation, and the support of multi-threaded environments. SAC, a dedi¬
cated array imperative language with HPF-like syntax, supplies multi¬
threaded vector operators and loop coordination statements on top of a
host language and Pthreads. Its contribution is the provision of a clear-
cut separation of the behaviour and structure of a parallel program, e.g.,
while SCL skeletons are instantiated in Fortran, a standard Fortran pro¬

gram cannot directly invoke an SCL primitive [63], and P3L requires the
use of a sequential construct to specify any non-parallel succession of in¬
structions [158].
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However, the main disadvantages of the coordination approach are the
need to learn a new language, and the necessity to prepare an optimised

system infrastructure for the host language, in the form of translators and

compilers.

Functional Structured parallelism has been incorporated into parallel func¬
tional languages as syntactic extensions, or as functors within existing

languages. On the one hand, the Higher-order Divide-and-Conquer lan¬

guage (HDC) [115], Eden [140], and Haskell# [114] widen the Haskell

scope with parallel extensions to describe skeletal behaviour. They gen¬

erate executable parallel programs by either translating the program into
a C/MPI source in the case of HDC, or by using the Glasgow Haskell

Compiler as infrastructure, in the case of Haskell# and Eden. Further¬

more, HDC and Eden provide specific statements to manipulate pro¬

cesses and input/output data streams and present complete program¬

ming frameworks.
On the other hand, skeletons have been introduced through Haskell func¬
tors into Concurrent Clean [121], into ML with the Parallel ML with

Skeletons (PMLS) notation [151], or into Hope [61]. These functors allow
the expression of skeletons without disrupting the syntax in the origi¬

nal language. Loidl et al. [138] report a comparative performance study
with three skeletal programs in Eden, the parallel version of the Glasgow
Haskell Compiler, and PMLS, using a C implementation as baseline.
While the functional implementations are consistently more elegant in
the abstraction of parallelism, the C implementation provides the best

performance.

Object-Oriented Skeletal constructs are introduced into object-oriented lan-
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guages using classes. Based on C++ classes and MPI, the Skeletons in

Tokyo (SkeTo) project [146], the Miinster Skeleton Library (Muesli) [131],
and the Malaga-La Laguna-Barcelona (Mallba) library [2], deploy data-

parallel, task-parallel, and resolution skeletons respectively SkeTo fo¬
cuses on tree structures, Muesli on coarse-grained control structures, and
Mallba on resolution constructs. Additionally, using Java classes and the

Java RemoteMethod Invocation programming interface, Lithium [5] and
A Software development System based upon Integrated Skeleton Tech¬

nology (ASSIST) [191], furnish data- and task-parallel skeletons as part

of integrated programming environments.
It is important to emphasise that the aforementioned class-centred skele¬
tal libraries rely on the abstraction capabilities of the object-oriented host

language and, since they do not impose a special syntax, they rarely in¬
troduce a significant overhead into the resulting program. This para¬

digm has remained buoyant as a result of the popularity of some object-
oriented languages, such as Java and C++, and the implementation of
skeletal libraries may help to address the performance-portability prob¬
lem. Nevertheless, the obtained performance does not necessarily match
its methodological advantages.

Imperative Skeletons are also deployed as APIs in procedural languages. By

using C procedure calls within a pre-initialised MPI environment, the
Skeleton-based Integrated Environment (SklE) [13], and the Edinburgh
Skeleton Library (eSkel) [55], deliver data- and task-parallel skeletal APIs.

SklE, the first commercial skeletal programming framework, places par¬
ticular importance on inter-operability and rapid prototyping, as applica¬
tions can be formed by encapsulating sequentialmodules in different lan-
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guages, such as C, C++, Fortran 77 & 90, and Java. eSkel concentrates on

portability, as it extends the scope ofMPI collective operations by provid¬

ing a constructive data model, and its emphasis on performance has led
to further development [23]. Furthermore, the imperative paradigm has
enabled the deployment of image-processing skeletal libraries using im¬

age application task graphs (IATG) [153], stream programming [43], and
field programmable gate arrays [21]; computer vision frameworks with
the Skipper system [170]; and resolution skeletons on loosely-coupled
network environments with the Paradigm-Oriented Distributed Com¬

puting (PODC) framework [130] and theMapReduce system [65]. In par¬

ticular, MapReduce provides scalable support to a distributed functional

mapping and its associated reduction, which is continually employed in
numerous applications with large sets of data on hundreds of nodes at

Google [66]. This framework is, arguably, the largest skeletal application
framework in operation, and has spun off different open-source devel¬

opment projects such as Hadoop [183] and Phoenix [166].

Overall, the portability and performance of this paradigm have greatly
benefited from the C/C++ language performance capabilities, and the
fact that it does not introduce syntactic extensions allows its insertion

into existing application environments.

As summarised in table 2.1, these frameworks provide assorted skeletons
that can be categorised into three types based on their functionality as: .

Data-parallel skeletons Work typically on bulk data structures. Their behav¬
iour establishes functional correspondences between data, and their struc¬
ture regulates resource layout at fine-grain parallelism, e.g. MPI collec¬
tives.
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Skeleton Scope Constructs Frameworks

Data-

Parallel

Data struc¬

tures

array operations,

broadcast, gather,

map, reduce, scan,

scatter,...

Eden/, eSkel',

Haskell#/, Lithium00,

lie0, MapReduce',

Muesli00, P3LC, SACC,

SkeTo00, SCLC, SkIE!,

Skilc

Task-

Parallel

Tasks task farm, pipeline,

loop, sequential,...

ASSIST00, Eden/,

eSkel1, Lithium00,

llcc, Muesli00, P3L°,

PODC, SCLC, SklE',

Skipper'

Resolution Families of

problems

divide-and-conquer,

branch-and-bound,

dynamic program¬

ming, heuristic op¬

timisation, genetic

programming, finite

differences, ...

Eden/, HDC/,

Mallba00, PODC,

Skilc, SCLC

Table 2.1: A taxonomy for the algorithmic skeleton constructs based on their functionality,
listing in the last column those frameworks which include skeletons of the given function¬
ality. Key to framework programming paradigm: c: Coordination; /; Functional; 00: Object-

Oriented; Imperative
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Task-parallel skeletons Operate on tasks. Their behaviour is determined by
the interaction between tasks, and their coarse-grain structure establishes

scheduling constraints among processes, e.g., task farm and pipeline.

Resolution skeletons Delineate an algorithmic method to undertake a given

family of problems. Their behaviour reflects the nature of the solution to

a family of problems, and their structure may encompass different com¬

putation, communication, 'and control primitives, e.g, the divide-and-

conquer and dynamic programming skeletons.

2.2.2 Related Work

Patterns Having been designed as abstractions of common themes in object-
oriented programming [89], patterns have been incorporated into parallel

programming. Pattern-based parallel programming allows an applica¬
tion programmer the freedom to generate parallel codes by parameteris-

ing a framework and adding the sequential parts [143,150]. The parallel

programming pattern concept has been extended into a design method
under the umbrella of parallel pattern languages. Unlike other parallel

programming languages, parallel pattern languages present rules to design

parallel codes based on: archetypes -problem-class abstractions which de¬
scribe parallel structure, dataflow, and communication- [147,193]; critical

region locks, such as test-and-set and queued for simple mutual exclusion,
or reader/writer for concurrent execution [148]; or socket-based operators

for web applications [168]. Furthermore, Triana deploys a pattern-based

programming framework for scientific workflows [94], Parallel program¬

ming patterns and their derived languages have maintained, arguably,
the best adoption rate; however, they have become conglomerates of
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generic attributes for specific purposes, oriented towards code genera¬

tion rather than the abstraction of structural attributes.

Templates Commonly denoted in object-oriented programming by templates
or generics, type parameterisation resembles higher-order functions, where
instantiation is performed through the types received. Templates provide

support for data-parallel programming through object and collective op¬

erations such as join, map, and reduce [154], domain-specific operators,

e.g., multidimensional arrays and objects to model particle physics ex¬

periments [162], or C++ matrix and vector data structures [123]. Incor¬

porated into the C++ standard through the C++ Standard Template Li¬

brary [12], templates can contain pointers to different language imple¬

mentations, computation, and tuning considerations, and information
on their usage. Generic programming expands the templates notion by

providing a method for the automated development [93,172] or the plat¬
form optimisation [194] of scientific libraries. Templates possess interest¬

ing potential as a parallel programming technique, but have been mostly
confined to the development of high-performance computing applica¬
tions. A survey on the subject is presented in [167],

Components Components are objects which associate operations with events.

A component model is a set of objects (meta-objects) with published inter¬
faces which comply with a set of rules defined by a specific concurrent
model. A component model augmented with a set of system compo¬

nents defines a component architecture, where parallel programs are as¬

sembled using independent components. Components have been partic¬

ularly effective in the deployment of infrastructure services—messaging,
access and security, information and directory, job submission, schedul-
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ing, and user support—in distributed environments [82, 90], leading to

the creation of the Common Component Architecture [10], a standard for
the development of component-based applications. Generative program¬

ming proposes the automatic selection and assembly of components on

demand, where the programmer specifies the application in a domain-

specific language [59], Despite its popularity in distributed systems pro¬

gramming, component-based programming poses a challenge to system

complexity and compatibility, due to the multiplicity of sources and for¬
mats of components [57].

There has been cross-pollination of the aforesaid programming paradigms
and the skeletal, resulting in evolved hybrid methods which include: skele¬
tal libraries implemented using C++ templates [79]; components deploying
skeletal functionalities for mobile environments [130] and grids [76]; and the

encapsulation of high-level communications and processing by implementing
common parallel blocks and low-level communication primitives, i.e., parallel

patterns with skeletal conduct [107].

Nevertheless, we consider it important to emphasise the distinction be¬
tween the 'pure' skeletal approach and the other approaches presented in this
section. In the former, skeletons are the raison d'etre for the formulation and

implementation of all algorithmic solutions; in the latter, the demonstrated ca¬

pabilities resemble skeletal constructs but do not specifically enforce the use of
skeletons as such.

2.3 Application Scheduling in Heterogeneous Systems

The advent of multi-core processors, chip multiprocessors, and multi-node
clusters and constellations has steeply increased the number of concurrent pro-
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cessors available to a single application. From a single node perspective, tens
of cores have begun to be commonplace and, as a result, the most powerful

system in the November 2007 Top500 list features 212,992 processors [186].

Having been conceived as a hardware and software infrastructure that pro¬
vides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities [83, 84], a computational grid may encompass multi¬

ple clusters and constellations, requiring a coordinated task parallel method to
execute a single application, and, consequently, increasing the infrastructure

complexity.

Consequently, the adoption of efficient programming models and struc¬

tures, which can be staged in a scalable, structured, fashion, has long been

sought after [69,133,136,176]. These programming models must be necessar¬

ily performance-oriented, and they are expected to provide guidance on the
overall application execution in order to assist in the deployment of hetero¬

geneous resources and policies. From a systems administration perspective,

the demand for strategies which minimise communication overheads makes
resource management and scheduling key to the correct functioning of the un¬

derlying platform.

Although different parallel solutions for heterogeneous distributed systems

have traditionally exhibited skeletal constructs, their associated optimisations
have not necessarily exploited the application structure. They have either
modified the scheduler [46] or kept the actual application interlaced [171],
without decoupling the structure from the behaviour.

Vadhiyar and Dongarra [188] suggest that a "self-adaptive software sys¬

tem examines the characteristics of the computing environments and chooses
the software parameters needed to achieve high efficiency on that environ¬
ment". Thus, we consider that the key challenges in adaptively improving the
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Application-level Scheduling
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Select Map Distribute>
Order.
Tasks/

Order .

Comms/
Feedback>

Berman's 5 Actions

Calibration Execution

Figure 2.1: Actions for application-level scheduling. The first five actions, represented by
the shaded rectangles, are adapted from Berman's view on application scheduling [27],
The sixth, feedback, is an integral part of our methodological approach. These six actions
can be chiefly mapped to the two main phases of the ASPara methodology, calibration and

execution, which are to be described in chapter 3.

performance of parallel programs in a heterogeneous distributed system are

therefore:

• the correct selection of resources (processors, links) from amongst those

available,

• the correct adjustment of algorithmic parameters (for example, blocking
of communications, granularity) and, most importantly,

• the ability to adjust all of these factors dynamically in the light of evolv¬

ing external pressure on the chosen resources.

Such challenges are aligned with Berman's view on intra-application schedul¬

ing [27], as illustrated in figure 2.1, which proposes five actions:

1. select resources to schedule the tasks;

2. map tasks to processors;

3. distribute data;

4. order tasks on compute resources; and,
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5. order communication tasks.

From this perspective, the ASPara can be categorised as a scheduling meth¬

odology for parallel programs executing in heterogeneous distributed systems,

which is:

dynamic since the correct selection of resources and the adjustment of algo¬
rithmic parameters, are performed at execution time;

adaptive due to the provision of intrinsic mechanisms to dynamically adjust
to system performance variations;

application-level because all the decisions are based on the particular require¬
ments of the application at hand;

task-oriented as it assumes that the application is arbitrarily divisible into in¬

dependent tasks, with or without precedence relations; and

heuristic because it comprises a set of rules intended to increase the probabil¬

ity of enhancing the overall parallel program performance.

Traditional strategies for task scheduling in distributed systems [30, 48, 78,

144] rely on system simulators, dedicated configurations, and/or performance
estimators to model the general system, particularly to characterise the back¬

ground load in terms of its job arrival rate. While much can be said about
the reproducibility of their results, one may argue that they artificially create

tractable evaluation scenarios for their scheduling policies. Accordingly, the
ASPara methodology cannot be simplistically compared to any task schedul¬

ing policy in terms of algorithmic optimality and complexity, but ought to be
evaluated in terms of the makespan for a certain workload. To this end, our
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case studies report execution times, as well as the relative performance im¬

provement in respect to the baseline for a given workload.
On the other hand, platform-oriented approaches have deployed software

extensions to existing frameworks in order to enact application-level schedul¬

ing.

1. AppLeS [29] includes a parameter sweep template which implements
four different heuristic scheduling policies based on an initial estimate
of a task computational cost [47]. Their main disadvantage is the need of

instrumenting the application with AppLeS primitives.

2. Nimrod/G [1] incorporates not only the time but also the cost of the re¬

sources as the basis for its parameter-sweep scheduling algorithm [42].
It relies on historical data to determine a task computational cost, but
receives no guidance from the application structure.

3. Condor [182] has been extended with a master-worker runtime library

primarily intended to optimise the number of workers [118]. Based on

a usage threshold, it optimises the number of workers by keeping track
of the resource consumption over time and returns idle workers to the

processor pool. Nonetheless, Condor does not posses any information
on the application itself, so all load balancing is carried out using generic

guidelines.

4. Workflow systems: Concerned with the automation of scientific processes
based on a multiplicity of different data, control, and planning depen¬
dencies [200], a scientific workflow is structured using sequential, paral¬

lel, choice, and iterative tasks [189]. It is representable through directed

acyclic graphs (DAG) and non-DAGs, which include not only communi-
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cation, computation, and interaction characteristics, but also application

planning requirements and domain knowledge. On the other hand, algo¬
rithmic skeletons, and undoubtedly the ASPara methodology, concen¬
trate on well-defined patterns of computation, communication and in¬

teraction, and, consequently, the structure can be used to guide schedul¬

ing decisions. Therefore, workflow systems address a different, more

generic problem, where the overall application presents more complex
control, data, and planning dependencies—which cannot necessarily be

representable as a skeletal construct—and, ultimately, scheduling deci¬
sions are driven by performance and structural considerations as well as

market/economical and security/trust considerations.

While the four cited approaches provide moremature software frameworks
with dozens of applications deployed, they typically require:

• the application to be previously instrumented and modified to execute

under the specific framework;

• the user to supply application performance estimations or benchmarks;

and/or,

• the framework to support complex control, data, and planning depen¬
dencies.

That is to say, they do not completely decouple the behaviour from the
structure of the application, disallowing the clear advantages of ASPara, which
are its application agnosticism through the use of structural information and
its heuristic resource model derived from the system activity.

Finally, recent work on adaptive high-level parallel systems has only re¬

inforced the importance of platform adaptation for the automatic optimisa-
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tion of parallel codes in heterogeneous distributed systems. Cunha, Rana, and
Medeiros [58] cite a series of component-based problem-solving environments
which "allow a clear separation between computation and interaction." While
the list is far from comprehensive, it provides clear guidance on the need for
enhanced high-level parallel programming tools, and several skeletal libraries
now furnish support for heterogeneous distributed systems. Namely:

ASSIST provides load balancing mechanisms through an application man¬

ager [6]. This manager uses configuration-safe points within the pro¬

gram to enable load balancing when a bottleneck is encountered. While
the reported results on reconfiguration overheads are interesting, scant

reference is made to the allocation policies employed, either at the start

of the application or at reconfiguration.

eSkel has initially employed Amoget to predict performance using process

algebra methods [24], Amoget, a pre-execution Perl scripting feature,

generates a prognostic performance model for a given skeleton which is
then fed to the eSkel library to select the resources accordingly. In light
of those initial results, where sudden variations in resource usage were

not immediately managed by Amoget, eSkel has been extended to incor¬

porate reactive process-algebra scheduling as part of its main library.

Lithium has been extended to provide future-based Java RMI optimisation
mechanisms to enhance load-balancing through a statically-defined thread
interval [4]. This interval, typically of two to six threads, preemptively
controls the node load. Although reported results provide favourable

guidance, it is unclear how the interval is defined.

Mallba deploys the Netstream middleware to instrument the skeleton struc-
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ture in the library, providing high-level network communication services [3].
Resource selection is based on the readings of network links and node

load, but according to the authors, they are "still at the stage of develop¬

ing intelligent algorithms to use this [network] information to perform a

more efficient search [of resources]."

Hence, in contrast to our approach, these skeletal approaches apply ab-
initio resource-nodematching strategies, based on theoretical performance cost

modelling (eSkel and Lithium), current resource usage only (Mallba), or reac¬
tive modification of the resource allocation regardless of the application struc¬

ture (ASSIST).

It is also important to stress the fact that ASPara uses online information,
which favourably compares to the use of offline as employed in the initial grid-
enabled versions of eSkel. It permits the calibration to automatically feed the
node status to the execution, which in turn uses the information as starting

point for its operation, allowing a more accurate feedback process.

2.4 Research Gap

As a matter of theory, the resource availability-performance premise is widely ac¬

cepted as the determining factor of application adaptiveness in heterogeneous
distributed systems [125,169,188]. According to this premise, parallel applica¬
tions must be able to transform, evolve, or extend their behaviour to conform

to the resources present at a certain time to improve their efficiency. The ma¬

jor problem in empirical research based on this premise has arisen from the
automatic deployment of generic applications.

Based on the central premise of application adaptiveness to resource avail¬

ability, we would like to research their actual correlation and provide a meth-
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odology to enable parallel patterns (algorithmic skeletons) to conform to the

heterogeneity of a given system. Besides, we consider it relevant to explore
this correlation by employing the forecasting information of a certain skeleton
and fostering adaptiveness through the exploitation of its structure.

Scant research has been devoted to exploiting the structure of the appli¬
cation to improve overall resource management. Since workloads in a large

heterogenous distributed system should preferably be divided into indepen¬
dent tasks in order to minimise communication costs, little attention is paid to

partitioning using the application structure. Therefore, we shall concentrate
on task parallelism and explore two distinct scenarios:

1. The workload is arbitrarily divisible into totally independent tasks (or

groups of tasks), and these are scheduled to any available node in a

single- or multi-round fashion. We study both scheduling instances in

chapter 4 using the task farm skeleton.

2. The workload is decomposed into a sequence of independent computa¬
tional stages, where the data is passed from one computational stage to

another, and each stage, allocated to a different processing element, exe¬
cutes concurrently. We explore this case in chapter 5 using the pipeline
skeleton.

We have decided to deploy these two task-parallel skeletons using an im¬

perative skeletal approach based on C and MPI, in order to capitalise on the

efficiency of this approach, while providing a higher-level abstraction.
It is crucial to emphasise that task parallel skeletons, and in particular the

task farm and the pipeline, have been selected for our evaluation, as they rep¬

resent a significant set of problems in computational science [70]. Moreover,
as described by Brinch Hansen [40], they cover two out of four of the main
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paradigms in parallel computing:

1. pipelining and ring-based applications;

2. divide and conquer;

3. master/slave;

4. and cellular automata applications.

Furthermore, the other two paradigms—cellular automata and divide and

conquer—are preeminently concentrated with data and resolution skeletons.
We strongly believe that ASPara can be applied to these two paradigms,

since, as documented in table 2.1, they have been previously included in skele¬
tal frameworks—ergo present regular patterns of computation, communica¬
tion and interaction—, can be divided into independent tasks, and, conse¬

quently, be deployed in heterogeneous systems.

By means of these two case studies, this thesis intends to demonstrate the

applicability of the ASPara methodology and its pragmatic approach, which

incorporates scheduling rules at compilation time and, based on resource util¬

isation, adapts at execution time.



Chapter 3

The ASPara Methodology

This chapter introduces ASPara, a generic methodology to optimise perfor¬
mance in grids, and its corresponding evaluation environment. Section 3.1 in¬
troduces the ASPara concepts and the four ASPara phases: programming,

compilation, calibration, and execution. Section 3.2 discusses the evaluation

strategy, including the case studies and the nature of the workload. Finally,
sections 3.3 and 3.4 describe the computational environment and the load con¬

ditions in which all the experiments have been carried out.

3.1 ASPara Phases

ASPara is a generic methodology to incorporate structural information at

compilation into a parallel program that helps it to adapt at execution. It in¬
struments the program with a series of pragmatic rules embedded in the algo¬
rithmic skeletons, which depend on particular performance thresholds, based
on the nature of the skeleton, the computation/communication ratio of the

program, and the availability of system resources. ASPara comprises a set

of rules and their rationale to apply such methods to a set of skeletons, where

35
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Algorithmic Workload Computation Application
Skeleton Type Type

Task Farm Disjunct Embarrassingly- Parameter sweeps, Ray

parallel tracing, Geometrical

image transforma¬

tion, Mandelbrot set,

Monte Carlo methods,

N-body simulation,
Pseudo-random number

generation,...

Pipeline Precedence Pipelined Linear algebra, Adding
relations numbers, Sorting num¬

bers, Prime number

generator, Molecular

dynamics,...

Table 3.1: An illustrative listing of parallel algorithms which use a workload-based ap¬

proach.
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" Control Flow Procedural Call
5 External Library Phase

Figure 3.1: The four phases of the ASPara methodology: programming, compilation,
calibration, and execution. Represented by a solid rectangle in the illustration, the first two
are the static phases while the latter two are the dynamic phases and the predominant

focus of this thesis.

every rule essentially constitutes a defined scheduling method.
ASPara can forecast and enhance the performance of a skeletal application

by exploiting knowledge of the skeletal structure while preserving the skele¬
tal behaviour. The main difference between ASPara and other performance

approaches is that it is intended to be oriented toward structured parallelism,

adaptable by construct, and focused on empirical, system-infrastructure meth¬

odologies.
This thesis illustrates the applicability of ASPara with two skeletons: the

task farm and the pipeline. As supported by the case studies presented in

chapters 4 and 5 respectively, the ASPara approach is designed indepen¬

dently of any particular application, and is based entirely on the structure en¬

capsulated by the skeletons.

As depicted in figure 3.1, the four ASPara phases are:

1. Programming
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2. Compilation

3. Calibration

4. Execution

The main differences between ASPara and the traditional approach to

structured parallelism, as illustrated in figure 1.2, are the application-agnostic
nature of the program instrumentation at compilation, and its subsequent dy¬
namic steering based on resource utilisations at execution.

In order to illustrate the ASPara methodology, let us consider a parallel

algorithm suitable to be partitioned into a workload, either disjunct, or with

precedence relations. Table 3.1 provides a brief account of different parallel

applications fitting this profile.
We can now compare both approaches, the traditional and the ASPara,

using task-parallel skeletons which address the same solution. Initially, the

algorithm is to be encoded by selecting the appropriate skeleton from each

particular implementation.

Then, at compilation, the traditional approach only requires the provision
of parallel support while the ASPARA program also compiles the program

with resource usage rules.
At execution, the traditional approach spawns tasks immediately, disre¬

garding the existing system conditions. On the other hand, ASPara first cal¬

ibrates the nodes by analysing the system resource utilisation and ranking all
nodes accordingly. It then schedules the tasks to the most capable nodes within
the system, and monitors resource utilisation in order to adapt, periodically or

reactively, the task-node allocation.
The previously mentioned capabilities, which constitute the essence of the

ASPara method, are further examined in the following four sections.
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Figure 3.2: The GR programming phase. The figure shows a flowchart to determine
whether or not the ASPara methodology can be applied.

3.1.1 Programming

Programming is a design phase in which the application programmer imple¬
ments a parallel algorithm by selecting a skeleton through a ASPara API.
Since structured parallelism provides a high-level approach to programming,
the programmer is only required to include the initialisation and termination

calls for the parallel environment, and the API call in its program.

The skeleton selection depends entirely on the nature of the parallel algo¬
rithm in hand, since the programmer should identify the applicable pattern to

address the computational and communication requirements of the algorithm.
As depicted in figure 3.2, if an algorithm is to be used with ASPara, it must

satisfy the following criteria:

1. The workload must be divisible

(a) If the workload is arbitrarily divisible, use the task farm
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(b) Otherwise, the workload must be decomposable into stages with

precedence, and the pipeline can be employed

2. Any other case impedes the use of the ASPara methodology1

Following this, the programmer needs to parameterise the API calls to AS¬
Para. This parameterisation is crucial because it specialises the generic mean¬

ing of the algorithmic skeleton to fit the given problem instance, and, most

importantly for our method, to decide on the appropriate scheduling strategy

to enact adaptivity at runtime.

3.1.2 Compilation

The compilation phase instruments the structured parallel program. The source

parallel program is compiled and linked with the ASPara library, the parallel

environment, and, if statistical calibration is to be employed, a resource mon¬

itoring library. The parallel environment handles the underlying metacom-

puter, including the node initialisation, resource co-allocation, inter-domain

scheduling, and other infrastructure matters [87].

The programming and calibration stages are both static, since they do not

require any online interaction or feedback from the underlying platform. More¬

over, while important in functional terms, their operation is hardly different
from that of other skeletal frameworks and, therefore, will be tangentially dis¬
cussed in the remainder of this thesis.

*At this point, ASPARA has only two skeletons implemented. However, the methodology
itself is not restricted to these two constructs only, and could be extended to embrace addi¬
tional skeletons.
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3.1.3 Calibration

The calibration is an automatic stage, which executes the skeletal program on

a sample of the input data on every allocated node, and extrapolates the node

performance in order to rank the fittest nodes and, consequently, select the
most adequate for the given application.

In this context, the fitness is defined as the quality of a node of being the
most suitable computational entity to execute a task, or a series of them, on a

non-dedicated basis. We then say that "node a is fitter than node b" if, and only
if, the measured execution time for node a is less than the measured execution

time of node b for a given task, or a series of them.

Measured on a non-dedicated basis in the nodes, the fitness is a transient

characteristic. The selection of the fittest nodes from a pool depends not only
on the hardware capabilities of each processor, but also on the system soft¬

ware, the existing resource usage, and the parameterised skeletal application
at hand. Note that the overall execution time of this phase is determined by
the execution time of the least suitable node in the pool, as the correct selection

depends on knowing the fitness of all nodes.

Nodes can be selected by extrapolating their performance based on their
fitness only. This is known hereafter as times-only calibration. This calibration
schema has been employed in the case studies presented in section 4.4.2—the
multi-round scheduling task farm—and in section 5.3—the pipeline. Option¬

ally, a univariate or multivariate linear regression—correlating the fitness, the
node capacity (e.g. node clock frequency or a system benchmark), the proces¬

sor load, or the bandwidth utilisation—can be applied to statistically adjust
the execution time. This is known hereafter as statistical calibration, and has

employed in section 4.4.1—the single-round scheduling task farm.
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Algorithm 3.1: The ASPara Calibration Algorithm
Data: /: Set of Functions;
P: Processor Pool;
Result: Chosen: Table of fittest processing elements;
Execute / over P nodes;
if root node then

Collect t from P nodes;
Set t <— execution times(f);
if Statistical Calibration then

Collect processor and bandwidth values;
Adjust t statistically;

end
Rank P based on t;
Select Chosen from P;
Send Chosen to all nodes;

else
Send time from this node to root node;
Receive Chosen;

end
Return(Chosen);

Algorithm 3.1 details the calibration procedure. This procedure applies the

computing function, /, over an input data subset in order to select the fittest

nodes, Chosen, from the processor pool, P. Given the existing resource-usage

conditions, a root node collects the execution times from all processors in the

pool and ranks them accordingly. As this ranking involves the actual execution
of the application with a reduced data set on the complete processor pool, its

temporal complexity is bound by the execution time of the slowest processor.

The calibration phase essentially drives the task-to-node allocation based
on the intrinsic properties of the algorithmic skeleton and the resource charac¬
teristics and usage. It provides the optimised conditions for execution of the
skeletal parallel program.
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3.1.3.1 Calibration Issues

Despite its positive qualities, there are two main issues associated with the
calibration phase:

Overhead As inferred from the visual inspection of figures 1.2 and 3.1, the
calibration phase introduces a delay in the normal control flow, as it stops
the traditional execution by imposing an execution barrier. Determined

by the slowest node in the pool, the performance impact of the delay has
been minimised in our case studies by employing calibration functions
with similar complexity for all workers/stages.

Transience The calibration outcome—the set of the fittest nodes—is completely
valid for as long as the resource conditions remain the same. Assuming

steady resource conditions is not only unrealistic, but also against our

initial assumptions. Therefore, we have experimented with calibration
under two execution adjustment modes, periodic and reactive, to extend
its temporal validity.

Sudden variations in resource conditions render the calibration invalid, but

increasing the frequency of calibrations leads to performance penalties. There¬

fore, a balance between transience and validity must be preserved to avoid

thrashing and keep the set of fittest nodes effectual.

3.1.4 Execution

As the set of fittest nodes is initially determined by the calibration phase, the
execution phase is responsible for keeping this set valid. By monitoring the

performance throughout the course of the program execution, this phase:

• periodically adjusts the relative nodes' fitness; or
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• reactively triggers a re-calibration to adjust the set of nodes once a thresh¬
old is reached.

The overall functionality of the execution phase is illustrated by algorithm 3.2.

Algorithm 3.2: The ASPara Execution Algorithm
Data: /: Set of Functions;
Chosen: Table of fittest nodes;

Map workload to the Chosen nodes;
SetM as the monitor node;
while -i end.of-workload do

Execute / over Chosen nodes concurrently;
if M then

Set t <— execution times (f);
Adjust Chosen according to t/* This adjustment can be

carried out either periodically or reactively */
else

| Send time from this node to monitor node;
end

end

ReturnQ;

Periodic The set of fittest nodes is dynamically adjusted by ranking the nodes

according to their relative fitness within the set. Thus, if a node increases

its availability during the latest task allotment, not only is its relative fit¬
ness affected, but also that of the other nodes. That is to say, the API
tracks the execution times of every subset of the workload, allowing the
nodes to be correctly ranked at all times. Periodic adjustment is applied
for the multi-round scheduling task farm case study presented in sec¬

tion 4.4.2.

Reactive In this execution mode, we formally define a threshold as a percent¬

age value of performance fluctuation. This threshold typically expresses

the dispersion of the calibration times in the node pool. The more dis¬

persed the times are, the lower the threshold value should be. ASPara
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then makes the application adapt to the infrastructure by allowing per¬

formance variations up to this threshold. That is to say, the threshold
determines how permissible a performance variation is. Once the thresh¬
old is surpassed, the API takes action, e.g., feeding back to the calibration

phase and modifying the task scheduling according to the properties of
the skeleton in hand. By setting the right threshold for a given platform,
one can avoid thrashing due to frequent re-scheduling. Reactive adap-
tiveness is deployed for the pipeline case study presented in section 5.3.

3.1.4.1 Execution Issues

Ideally, the parametric variations of the periodic and reactive execution modes
must be automatically determined according to the existing system load con¬

ditions at the start of the execution, rather than requesting any human inter¬

vention or feedback. Nonetheless, both execution modes imply an overhead.

• In the periodic mode, the dynamic adjustment is carried out by timing
the execution of a set of tasks in a given node and, subsequently, calculat¬

ing the relative fitness for every node. Both the timers and the arithmetic
calculations require processing cycles.

• In the reactive mode, the re-scheduling of tasks requires to stop the nor¬

mal execution to migrate processes with a consequent idle system time.
The full extent of the performance implications of this migration are dif¬
ficult to estimate since they involve four steps: stop and checkpoint the

input stream, pipeline draining, re-calibration, and pipeline filling-up.

Intended as a proof of concept rather than a industrial-grade framework,
our methodology has produced performance improvements in our evaluative
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case studies. Nevertheless, more realistic applications, possibly with process¬

ing peaks or short-lived cyclical variations, might produce idle times and/or

thrashing, which would eventually render the adjustments counterproductive.
Under those circumstances, the full extent of the the overheads in the different

execution modes deserves further examination.

It is crucial to note that both stages, calibration and execution, must be

dynamically determined, since their actual execution varies according to the

application—defined by the skeleton parametrisation and the algorithm

itself—, the size of the overall workload, and the resource conditions. It is

precisely these two stages which represent the main differentiator of the
ASPara methodology, and, therefore, the case studies will examine in detail

their instantiation in the context of the task farm and pipeline skeletons.

3.2 Evaluation Strategy

This section describes the overall evaluation strategy and is divided into three

complementary parts: the case studies, the workload characterisation, and the

application benchmarks utilised.

3.2.1 Case Studies

Chapters 4 and 5 furnish case studies for the task farm and the pipeline skele¬
tons respectively. They are intended to evaluate not only the feasibility of AS¬
Para but also the performance improvements derived from its application.

Task farm It examines the application of the ASPara method for the task
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farm skeleton to a computational biology parameter sweep, in two dis¬
tinct modes: single-round and multi-round scheduling. The program¬

ming phase requires the pfarm API call, parameterised with the worker

function, the input and output vectors, theMPI communicator and, most

importantly, the scheduling mode.

• Section 4.4.1 applies ASPara for single-round scheduling. The times-

only and statistical calibration modes have been carried out and,

therefore, it has required the linkage with a resource monitoring li¬

brary. The execution phase distributes the workload at once and
therefore does not perform any monitoring and/or adjustment.

• Section 4.4.2 applies ASPara for multi-round scheduling. This is
the generalisation of the methodology, as the number of rounds for
the scheduling is dynamically defined based on the general node

activity. It has employed times-only calibration for three different

parameter-sweep scenarios. The execution phase employs periodic

adaptation by re-ranking the fittest nodes according to their latest
execution times.

Pipeline Section 5.3 reports the application of ASPara to the pipeline skele¬

ton, employing a standard numeric benchmark. In this case, the pro¬

gramming phase uses the pipeline API call, parameterised simply with
the stage functions, the input vector, and the MPI communicator. Dur¬

ing calibration, the pipeline allocates, in a greedy fashion, stages to pro¬

cessors. The execution monitors the correct functioning based on an

intrinsically-defined performance threshold, and reactively triggers a cal¬
ibration if the threshold is surpassed.
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No. Scenario Calibration

Times- Statistical

only

Execution

Periodic Reactive

1 Single-round
Task Farm

/ /

2 Multi-round

Task Farm

/ /

3 Pipeline / /

Table 3.2: An overview of the three different scenarios addressed in the two case studies,
the task farm and the pipeline, presented in chapters 4 and 5 respectively.

Table 3.2 summarises the three different scenarios derived from the two

aforementioned case studies. Note that statistical calibration has not been in¬

cluded in the multi-round task farm or the pipeline case studies following the

superior results obtained for the times-only calibration in the single-round task
farm. Instead, we have decided to increase the number of experiments in order
to explore in-depth the skeletal behaviour under different circumstances.

It is crucial to emphasise that, although this thesis analyses two skeletons,
the methodology is not circumscribed or restricted to these particular con¬

structs. ASPara is a generic methodology, and its actual application varies

depending on the nature of the skeleton.
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3.2.2 Workload Characterisation

49

In terms of the workload, the underlying assumptions for the three evaluation
scenarios are:

1. the selected parallel algorithms have been pre-qualified to be divisible
workloads of independent nature or stage-decomposable, that is to say,

they deploy embarrassingly-parallel or pipelined computations;

2. the computational complexity of each task in the workload is identical, in
the sense that all tasks would take the same time to process one item if ex¬
ecuted on a dedicated reference processor. In effect, this is to assume that
the programmer has done a sound abstract job of balancing complexity;
and

3. the communication time is not significant. Note that this is not to assume

that communication is negligible, but rather to assume that communica¬
tion costs hinder all consumer-producer pairing similarly and, therefore,
the overall impact is spread across all nodes on an equal basis.

First Assumption: Independent Tasks

This assumption assures the applicability of the ASPara methodology, and is
therefore sine qua non.

Nevertheless, it is important to assert that there is a significant number of
real problems in computational science, which can be modelled as divisible
workloads of independent tasks, with or without precedence relations [30].
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Second Assumption: Similar Task Complexity

This assumption defines the complexity of the calibration phase. Undoubtedly
a crucial component of the methodology which provides a standardised initial
execution foundation, the calibration phase is bound in its complexity by the
slowest processing of all the nodes, and introduces an overhead in the total

processing of the workload due to its inherent control barrier.

Let us consider that this assumption is relaxed, such that there are ] dif¬
ferent task functions with distinct complexities. For a heterogeneous system

with P nodes, this will imply the calibration of the P nodes for the ; functions

which, in itself, will be a hard optimisation problem. Since there exists a se¬

quential constraint to avoid contention, and the execution of each function is

bound by that of the slowest node, one would expect, in the worst case, the
total time to be defined as the sum of the slowest times in P for each of the ;

functions. Furthermore, let us assume that the node availability changes dur¬

ing the calibration of the nodes for the £ function (£ < ;). This will render
invalid the previous £ — 1 calibrations, which rely on a ranking based on the

availability conditions present. As it stands, our constraint of a single function

complexity for each task allows us to maintain an acceptable balance between

system dynamism and usability.

Although this treatment considerably simplifies the calibration, there are

a significant number of problems in computational science, e.g. parameter

sweeps, which are modelled as similar-complexity tasks [195]. Nonetheless,
different heuristics have been suggested to circumvent this hindrance [137],

such as:

1. the definition of a generic cost function, in terms of a weight-based

computation-to-communication ratio;
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2. a random stage/worker-to-node allocation; and,

3. the initial calibration of all nodes on a dedicated basis.

All the same such approaches may still increase the overall complexity of
the calibration process, imply a loss of generality, and/or deactivate our non-
dedicated systems approach, affecting particularly the reactive adjustmentmode
of the execution.

Third Assumption: Communication is not Significant

The third assumption reduces the complexity of the task scheduling prob¬

lem, as it is widely known that several instances become computationally in¬
tractable when communication is considered [78].

In essence, this assumption implies that our performance improvement

strategies have not concentrated on node-specific communication issues for

simplicity purposes, but could eventually be added.

3.2.3 Application Benchmarks

Realistic benchmark selection for parallel computing has long posed a chal¬

lenge to academic researchers and industrial bodies. Different groups have
embraced distinct testbeds for their performance evaluative endeavours, such
as the high-performance computing suite of the Standard Performance Eval¬
uation Corporation (SPEChpc) [9], the Numerical Aerodynamic Simulation

(NAS) suite [15], and the Linpack benchmark [71].
On the other hand, structured parallelism practitioners have entertained

the idea of standardising the field [55], and such endeavours may eventually
lead to the development of a standard skeletal benchmark suite. But, at this

point, there does not exist one.
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bw240 bw530

Hardware 64 nodes 16 nodes

CPU Uni-core Intel P4 Uni-core Intel Xeon

Memory 1 GB / node 2 GB / node

Network 2xl00Mb/s lxlOOMb/s, lxlGb/s Myrinet

BogoMips 3350-3555 3326-3359

Table 3.3: The hardware configuration of our experimental multi-cluster environment

Therefore, if we had used a realistic popular benchmark in our case studies,
wewould have required to recode such benchmark to suit our needs, therefore

reducing its validity for direct comparative purposes.

We have then employed a hybrid application benchmark approach:

• adapt and solve a real application—a computational cell biology code [104]—in
the case of the task farm; and,

• extract a parameterisable processing generation function—the whetstones

procedure from the 1997 version [139] of the Whetstone benchmark—for
the pipeline.

3.3 Computational Environment

The reported results have been obtained employing two interconnected, non-
dedicated Beowulf clusters, co-located across the University of Edinburgh, and

configured as shown in Table 3.3.

Note that the last row of the table reports the BogoMips [190] benchmark
value range of the multi-cluster environment. Designed as a comparative pro-
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Software 1

Scenario

2 3

Linux Red Hat FC3 (kernel 2.6) FC5 (kernel 2.6) FC5 (kernel 2.6)

gcc Compiler 3.4.4 4.1.1 4.1.1

LAM/MPI 7.1.1 7.1.2 7.1.2

GSL 1.5 1.7 1.7

NWS 2.10.1

Table 3.4: The software versions of our cluster environment during the execution of the
three different evaluation scenarios

cessor performance measurement, this benchmark is included with the Red
Hat's Fedora Core (FC) distributions.

The complete configuration includes a non-dedicated network, a storage

sub-system, and individual cluster management software, enables the inter¬
connection and storage virtualisation while maintaining both clusters as two

separate entities.

We consider this multi-cluster environment representative as it:

• spans different administrative domains,

• comprises heterogeneous nodes and links, and

• does not have dedicated resource co-allocation or reservation.

Table 3.4 shows the different software versions for the three evaluation
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scenarios. All C programming modules were compiled with gcc using the

-pedantic -ansi -Wall -02 flags.

The co-allocation ofmultiple nodes in different systems across distinct ad¬
ministrative domains was achieved with the use of LAM/MPI [180].

3.3.1 Stuttgart-Edinburgh Infrastructure

In order to define the design characteristics of our evaluation skeletons for this

thesis, we have initially employed the first version of Cole's eSkel library and
an artificial integer application composed of basic SAXPY—scalar multiplica¬
tion and vector addition— operations. The overall system has been config¬
ured by evenly distributing the processes between a 16-node Beowulf cluster
located at the High Performance Computing Centre (HLRS) in the University
of Stuttgart, and 16 nodes from the bw240 cluster.

The farmer node has been positioned at HLRS. We have used the PACX-
MPI library for interconnection, with the allocation of two pairs of communi¬
cation nodes to interconnect both installations. This is the standard require¬
ment for soundly executing PACX-MPI. The MPI versions are MPICH and

LAM/MPI and the nodes and communication channels are in non-dedicated

mode.

Figure 3.3 shows the channel utilisation from the worker standpoint on
the eSkel Task Farm version 1.0 and PACX-MPI 5 for a simplistic applica¬
tion. It presents different input sizes, I, ranging from 160 bytes or I — 20 to

1.6 megabytes (MB) or I = 200,000. While we will defer complete discussion
on the nature of the task farm to chapter 4, it is important to mention that half
of the workers are located in Edinburgh, while the other half are in Stuttgart.

Although the communication channel at 270 kilobytes per second (KB/s) is
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Figure 3.3: Worker Channel Utilisation for five different values of 1= 20, 200, 2,000,
20,000, and 200,000, corresponding to 160 bytes, 1.6 kilobytes (KB), 16KB, 160KB, and
1.6 megabytes (MB) respectively. We have employed the eSkel Task Farm version 1.0
and PACX-MPI 5, and half of the workers are located in Edinburgh and the other half in

Stuttgart

not saturated while working with 8 processes and 1.6MB and 160KB vectors,

equivalent to an I of 200,000 and 20,000 8-byte data elements respectively (a
in Fig. 3.3), the increase to 16 processes with the same amount of data implies
a 50% reduction in the ability to transmit (/3 in Fig. 3.3). The complete set of

experiments is discussed in [98].

After the analysis of the communication patterns when increasing the num¬
ber of processes, the performance degradation in the communications was at¬

tributed to the use ofMPI collective communication operations. As previously

reported [160], the optimisation of collectives for genericmulti-cluster configu¬
rations remains an open issue and is, therefore, beyond the scope of this work.

Two important lessons have been derived from this initial experimentation:

1. we ought to base our skeletons on direct MPI send-receive pairing; and
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2. the multi-cluster located at Edinburgh should suffice as the testbed for
our evaluation, as the geographical distribution has not crucially modi¬
fied the environment.

3.4 External System Load

Our testbed significantly differs from others employed for scheduling evalua¬
tion as we have assumed that:

1. there is no exclusive or dedicated access to the multi-cluster configura¬
tion at Edinburgh;

2. nodes are not restricted to the execution of a single task at a time, i.e.,

any user in the system can interactively submit tasks in addition to the

operating system and administrative processes; and

3. the overall system is always busy, as we have arbitrarily loaded it with
instances of a CPU exercising program for system benchmarking, based
on [111] and delineated in algorithm 3.3. This injection of additional load
has not been systematic and its main purpose is to randomly create load
flurries to evaluate the responsiveness of the execution phase.

Hence, the system behaviour cannot be modelled as a closed system where

jobs arrive at a fixed or deterministic rate, and it is simply unfeasible to esti¬
mate in advance the load distribution: no a priori assumptions or foreknowl¬

edge on the system load behaviour exist, rendering it impossible to implement

any static scheduling policy or load balancing strategy.

Our evaluation programs have competed for time slices with all the other

processes present in each employed node and the relevance of our reported
results is qualified by two factors:
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Algorithm 3.3: A Load-Generating Algorithm
Data: a,m: Vectors of length £;

for k <— 0; k < i; k <— k + 1 do
a[k\ <— random-,

m[k] random;
end

for; 0;K f;; + 1 do

a[z] «— — z] * zzz[z];
if z = £ — 1 then

I i^O;

end

end

/* N.B. This procedure should be explicitly terminated */

1. all reported figures represent the average of a series of executions (five

repetitions, unless otherwise specified); and

2. the coefficient of variation in the actual figures is typically less or equal to

10%, indicating that they remain consistent in spite of the load variations.

Reproducing all experimental conditions in full is nearly impossible, due to
the presence of load produced by operating system processes, administrative

tasks, external user jobs, and our own evaluation programs. Nonetheless, we
have provided provide system load charts along with our experimental results
in chapters 4 and 5.

As per stress testing is concerned, the non-dedicated nature of this envi¬

ronment maintained dynamic system load conditions, which allow us to in¬

formally evaluate our application code for robustness, availability, and error

handling. Of course, one has to bear in mind that all codes are proofs of con-
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cepts rather than industrial-grade frameworks. An alternate approach could
have been to simulate a real load environment, e.g. using the Parallel Work¬

loads Archive [80]. However, such approach may have incurred some loss of

generality, as our heuristic could have been trained to solve a load scenario as

opposed to coping with any variation.

To the best of our knowledge, we have therefore sufficiently exerted our¬

selves to avoid common pitfalls, and have employed best practices in our ex¬

perimental evaluation [85], including:

• the provision of as much detail as possible on the experimental environ¬
ment conditions;

• the use of a realistic system, open to any interactive jobs and system ad¬
ministration tasks;

• the calibration of the nodes without assuming any previous user estimate
or application benchmark;

• the deployment of a sustainable workload for a relevant time;

• the avoidance of running the experiments concurrently to reduce con¬

tention, and

• the deployment of a representative number of nodes for scalability pur¬

poses

To avoid any confusion, it is important to clarify that the terms 'system
load' and 'load' are utilised interchangeably to denote the total amount of work
that a node is doing—including all system and user processes—, and is ex¬

pressed using the 1-minute average of the load number reading displayed in
the Linux/Unix uptime command. On the other hand, as initially defined in
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section 1.2 and later characterised in section 3.2.2, the term 'workload' must be

interpreted as referring to the skeleton-based application under study.



Chapter 4

Task Farm

The problem addressed in this chapter is as follows: given a task farm pro¬

gram, establish an ingenious way in which to enhance its performance in a

heterogeneous distributed environment by effectively determining the num¬

ber of installments, task sizes, and task-to-processor mapping, and dynami¬

cally evolving according to external load variations.

This chapter is organised as follows. Firstly, section 4.1 reviews some fun¬
damental concepts of the task farm. Secondly, section 4.2 discusses the in¬
stantiation of two phases of the ASPara methodology: the calibration and
the execution. Thirdly, section 4.3 describes the implementation of the task
farm skeleton and the parametric variations of its API. Fourthly, section 4.4

presents the experimental results, divided into two different sections based on
the scheduling of the task farm. Finally, section 4.5 concludes with a discussion
on this topic.

61



Workers

Figure 4.1: Functional representation of the task farm construct. The farmer distributes I,
the input, among the workers, which process it into O, the output.

4.1 Background

A task farm (TF) consists of a farmer process which administers N indepen¬
dent worker processes to concurrently execute a set of independent tasks, col¬

lectively comprising a divisible workload. Symbolically, TF — (1,0, f), where I
is the input, O is the output and / is the processing function.

A worker executes a task by mapping / into a subset of I (task size), com¬

puting a subset of O, and then reporting back to the farmer for the next unit of
work or termination. This is shown schematically in figure 4.1.

The TF has traditionally dealt with fine-grained data parallelism, where
the time taken for communication between the farmer and the workers can be

adjusted to be constant, and much less than the computation time [116, 117].
All workers are allocated to a dedicated processor in a parallel machine, the

computation of each element in O is independent, and / does not generate
the same amount of work for different elements in I. The TF aims at fairly

distributing the elements in I to avoid worker starvation and node contention,
whileminimising communication in order to produce the best load-balancing.

Flowever, it is unreal and/or unfeasible to adjust all communication times
in heterogeneous systems. Consequently, different TF implementations assign
distinct task sizes to workers based on their scheduling. In fact, as the schedul-
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ing deals out the workload, it ultimately determines the execution time on a

per-node basis. Scheduling variants are typically classified by the number of
rounds or installments in which the total workload is distributed.

Multi-round Scheduling In its canonical form, the TF task-to-node mapping
is based on a self-scheduled work queue [112], where the farmer sup¬

plies one task to any available worker at a given time. After process¬

ing, a worker reports back to the farmer for the next unit of work or

termination. For a given workload, each worker normally processes sev¬

eral tasks in multiple installments, constituting a multi-round scheduling
schema. The work queue strategy provides an acceptable load balancing

strategy for large workloads of undetermined size in dedicated systems

with fixed network latency. The greedy nature of self-scheduling allows
the assign-to-idle-node scheme to balance the system load over time.
The generalisation of the work queuemodel allocates more than one task

per round and takes into account variable network latency, effectively

distributing small chunks of the workload in a greedy fashion.

Single-round Scheduling In contrast to multi-round, single-round scheduling
distributes the entire workload among the workers in one installment. In
this scenario, the task size is statically estimated at once to minimise idle
time and ensure that minimal scheduling is required from the farmer's
side. This is particularly relevant to fixed-size workloads in dedicated

homogeneous systems.

Single-round and multi-round scheduling are considered open-ended prob¬
lems in computational science [20]. In particular, non-dedicated heterogeneous

systems, ergo grids, pose an increased challenge, as the farmer is required to

adapt the task size assigned to workers because:
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• The underlying architecture can maintain multiple communication links
between the farmer and workers with different bandwidths and laten¬

cies.

• The workers and the farmer can run on non-dedicated nodes with dis¬

tinct workloads in a distributed environment.

In the following sections, we discuss the application of the ASPara meth¬

odology to the TF skeleton in non-dedicated heterogeneous systems. We de¬
scribe the relevant concepts for the instantiation of the methodology from a

generalised multi-round approach, considering the single-round as a special
case.

The underlying assumptions are that the workload is embarrassingly par¬

allel, i.e., all tasks are independent; the TF input, output, and parameters are

totally disjunct; and each task has similar computational complexity. More¬

over, as the farmer and each worker process are presumed to be mapped to

different nodes of a heterogeneous distributed system.

4.1.1 RelatedWork

Strict semantic connotations aside, the task farm construct is referred to in the

literature as the "master-worker", "master-slave", or "bag-of-tasks", which ac¬

cordingly denotes the farmer as master, originator, emitter, or home, and the
workers as processors, slaves, or hosts. Its conceptualisation has been pre¬

viously formalised, and can be derived from the local computational and task

queue models by Kung [132], later refined into the processor farm by Hey [117]
and the skeletal task queue [53]. The task-oriented, embarrassingly-parallel
nature of the construct, which is the dominant underlying concept, typically
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assumes the division of a large workload into independent tasks to be pro¬

cessed.

Widely known as divisible workload scheduling or divisible load theory,
the generic problem of mapping groups of totally independent tasks with sim¬
ilar algorithmic complexity to distinct computational nodes has been previ¬

ously studied in the literature [30, 34, 31]. Proven to be NP-hard [198], it re¬
mains an open problem in computational science.

Abstract models for divisible load scheduling in heterogeneous systems

provide near-optimal theoretical solutions to particular cases. Banino et al.

develop a polynomial solution for the steady-state case, where all processing

capabilities, applications requirements, and communication links are known
in advance [18]. The Uniform Multi-Round algorithm assumes that every
node receives decreasing, fixed-size chunks in every round and provides an

approximation to the optimal number of rounds by minimising the applica¬
tion makespan in a simulated environment [199], Drozdowski and Lawenda
also tackle the problem as an optimisation of the application makespan, but
relax the assumption on fixed-size chunks, approximating the solution via
branch-and-bound and genetic algorithms on a simulated heterogeneous en¬

vironment [74],

Although the aforementioned approaches undoubtedly provide valuable guide¬

lines, they rely on deterministic arbitrary assumptions on the underlying in¬
frastructure such as the network topology, processor capacity, and the termi¬

nation time which cannot easily be generalised to accommodate the dynamics
of a realistic heterogeneous distributed system.
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4.2 Adaptive Task Farming

Adequate scheduling rests on the premise that the workload can be optimally
distributed to the nodes with the most convenient resources for a given appli¬

cation, so it is crucial to be able to automatically enable an application to cope

with resource variability. Our approach intends to optimise the application

performance from a non-invasive systems infrastructure standpoint, using real
resource measurements and application times.

The core of our adaptive task farm is the instantiation of the ASPara cal¬
ibration and execution algorithms into different scheduling methods for as¬

signing task sizes to different nodes according to their capacity, at once (single-
round scheduling), or in several installments (multi-round scheduling).

We suggest quantifying the worker resources at a given time on a certain

system topology from an application-specific perspective, by means of a fitness
index F. Defined during the calibration phase, F is to be used by the TF to

determine the task size on a per node basis and, consequently, define the TF

scheduling. Moreover, in the generic multi-round scheduling, its value is also

adjusted during execution.

Let S denote the workload assigned to the farmer, expressed as the number
of tasks in I (S = | J|), and N the number of participating workers (typically
N S). Thence, our objective is to calculate a,, the task size for each worker:

N

a, V1 € [1,N] subject to = S
i=i

If we construct F as the sum of the relative fitness F, of each node:

f)F, = 1 (4.1)
1=1

The actual values for F, are transient, as they periodically change, according
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to the latest execution time of every node. Indeed, F, ought to be formally

expressed as a function of time t, F,(t), where t is the time when the calibration

snapshot is taken. However, since all decisions are local to each snapshot,
we have simplified its notation by omitting t for readability purposes. This

temporal behaviour of F, is further discussed in section 4.2.2.2.
We can determine oct as:

Note that a, is the total number of elements assigned to node i and the

key differentiator for the scheduling lies in how this amount is distributed. If
distributed in one installment, then the scheduling will be considered single-

round, otherwise itwill bemulti-round. Therefore, we can extend equation (4.2)
to consider an installment factor k1:

Since k and F are crucial to our approach, sections 4.2.1 and 4.2.2 discuss
the calibration and execution phases respectively, with special emphasis on the
determination of both parameters.

4.2.1 Calibration

During this phase, the N nodes are automatically calibrated with the execution
of one element from the workload stored in I, the execution times are written

to t, and the processed results are stored in O. Then, F is computed using the
inverse of the t, either direct or adjusted. These steps have been abstracted in

algorithm 4.1.
1The installment factor k is formally defined and analysed in section 4.2.2.1

a, = S x F, Vz e [1,2V] (4.2)

a, = | x F, Vz e [1,2V] A k> 1 (4.3)
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Algorithm 4.1: Calibration Algorithm for the Task Farm
Data: I: The input vector containing the divisible workload;
O: The output/result vector;
/: The worker function;
N: Number of workers;
CM: Calibration mode;/* Two options: Times-only and
Statistical */
Result: (Fi,F2,...,Fjv); /* Each node individual fitness F */
Calibrate N nodes using/; /* Assumes N<S */
Store execution times in t and results in O;
/* Must wait for all nodes to complete before proceeding

further */
if CM = Statistical then

/* Adjust t via a curve-fitting method */
Collect alr £lr bmj V i e [1,N];
Determine a[ V i € [1,N] ;
if univariate regression then

| Calculate t = f(a');
else

| Calculate t = f(a',£);
end

end
forall i e [1/N] do

/* Both statistical and times-only use this formula to
calculate F */

I

Compute F, <- ;
L/=i p

end
Return (F1/F2/.. .,FN);
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It is important to highlight that the calculation of F varies according to the
calibration method, which can be:

• Times-only: The basic way to calculate F, times-only calibration defines F
as a normalised decreasing function based on the inverse of tt for each i

node as shown in equation (4.4).

- -J~t (4-4)
1-7=1 Tj

• Statistical: F is determined by first employing a curve-fitting method for

t, and then using the fitted t in equation 4.4.

- Univariate Linear Regression: t is considered dependent on the pro¬

cessor availability.

- Multivariate Regression: Processor availability and network latency
are considered independent and are employed to fit the t values.

While the overhead in the calibration is somehow reduced as this initial

processing counts towards the overall processing, its complexity is still bound

by the slowest node.

4.2.1.1 Statistical Calibration

Statistical calibration has been widely used in the physical sciences [145] to de¬
scribe the use of measured physical variables in order to extrapolate a certain
unknown via a series of mathematical transformations.

In our case, the idea is to calculate the fitness of a certain node via the sta¬

tistical extrapolation of its execution time, using the processor availability and
the communication latency. This extrapolated fitness will ultimately determine
the task size assigned to a node.
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Given a certain node, its processor availability measures the processing frac¬
tion allocatable to a new process to be executed, while its communication latency
is the time taken to receive a message from the farmer. Let a, and £x be the pro¬

cessor availability and the communication latency for the /-node respectively.

Consequently, ex., t,a,£ are vectors of size N which store the values for task size,
execution time, availability, and latency. The a and £ vectors contain measured

physical values typically supplied by a resource monitoring tool.
F is directly determined using t and, transitively, so is ex. As t is application-

dependent, its value can be correlated with the resources available at a given
time.

Such correlation can therefore be explored using:

• a only, uni-variate linear regression, or

• a and £, multi-variate linear regression.

Univariate Linear Regression

Let us define ap, the scaled availability for worker i, as:

ap = at x rpp where rpt is the relative performance of worker i

Using linear least-squares regression, we set at, the vector of ap for the
N workers as a predictor (independent variable) and allow t to be the

dependent variable. Then, we attempt to fit a curve along the observed
values in t using the regression function in equation (4.5), which can be

bmt
where bmt is any known benchmark value for worker i

and max(bm) the maximum bmt among N workers
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Figure 4.2: Analysis of a 48-worker problem instance using univariate linear regression.
The scaled availability (af) is used as the independent variable and is plotted in the x-axis,
while the execution time t, measured in seconds, is the dependent variable and is plotted

in the y-axis.
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determined by minimising the sum of squared residuals applying equa¬

tion (4.6).

An example of this linear least-squares fitting method, using the at as

predictor and t as dependent variable, is presented in figure 4.2.

Our objective is to assign fewer tasks to the workers which executed tasks
more slowly and, in consequence, minimise the overall execution time.

Hence, we calculate the F in equation (4.4), using the estimated (fitted)
values t shown in expression (4.5).

Multivariate Linear Regression

Since processor availability is not necessarily the only determining factor,
further exploration needs to take into account additional system param¬

eters. In order to provide ground for discussion, figure 4.3 introduces
the schematic representation of the relation between processor availabil¬

ity, communication latency, and execution times for the case study to be
discussed in section 4.4.1.

It is clear from figure 4.3 that the shortest execution times, represented

by the darkest segments, tend to gravitate towards the right following
the higher values of a, while the longest times are located in the upper

left segment (lowest a). In this particular case, the strong implication of
the trend is that execution time on a given node is determined by the

processor availability and is influenced, to a lesser extent, by the latency.

Using multi-variate linear least-squares regression, we set at and i as the

predictor vector within a matrix (X) and allow t to be the dependent

t = Co + C\at
N

(4.5)

X2 = £>-(co+cifl,/))2 (4.6)
j=i
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Figure 4.3: The correlation between scaled availability (a/), network latency (I), and exe¬
cution times (t), where at and I are used as predictors and t as the dependent variable.

vector. Analogously to figure 4.3, we fit a surface along the observed
values in t using the regression function in equation (4.7), which can be
determined byminimising the sum of squared residuals in equation (4.8).

t = Xc (4.7)

X2 = (t ~ Xc)T(t — Xc) (4.8)

Then, similar to the univariate case, we use t as expressed in equation (4.9)
to calculate F in equation (4.4).

t = cq + ciE + C2a'2 (4.9)
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4.2.2 Execution

Single isometric installments are well suited to a dedicated homogeneous sys¬

tem, as its node processing capabilities are even. However, in a dynamic sys¬

tem with heterogeneous nodes, single installments should be determined us¬

ing the node fitness and, in the case of multiple rounds, their actual number
and size ought to be dynamically adjusted according to the system load and
the prevalent fitness of the system nodes.

The ASPara execution phase instantiation for our TF can therefore be de¬
scribed as follows:

• if single-round scheduling, substitute k — 1 in equation (4.3) and, conse¬

quently, distribute the workload in one round, using F to calculate the
task size for each node;

• otherwise, assume multi-round scheduling and calculate k based on the
node dispersion. As the quotient f in equation (4.3) implies multiple
installments (if and only if k > 1), adapt the task size accordingly during
the execution by refreshing F according to the most recent execution time
for each node and the remaining amount of work to be completed.

4.2.2.1 Installment Factor

One of the key issues when determining the task size is the initial number
of tasks to be distributed. While single-round scheduling directly distributes
the entire workload in the first round, generic multi-round scheduling is more

complex. In the work queue case, it uses one task per node utilising as many

tasks as nodes in the pool in the initial round, and continues in this fashion

throughout the entire execution. Nonetheless, there is a potentially large num¬
ber of possible combinations, which can potentially use a larger number of



4.2. Adaptive Task Farming 75

tasks in each round and minimise the farmer-worker communication.

To this end, we have proposed to define a new concept: the installment

factor. Denoted by k, this constant is intended to adaptively regulate the work¬
load distribution in order to determine the installment size for a given worker
in multi-round scheduling.

We suggest to determine k in terms of S, the workload, and the dispersion
in the calibration times of the N nodes in the pool. This dispersion can be esti¬
mated by their coefficient of variation (CV), as represented in equation (4.10),

and, as S can be easily conceived as a continually growing function for differ¬
ent problem instances, we can express k using equation (4.11).

2 N j N
Given that t = —Vti and <r = \ T7 ~ 02iV

1=1 \ 1=1

CV = j (4.10)
k = In (S)cv (4.11)

Assuming that the differences in calibration times reflect not only the sys¬

tem heterogeneity but also its dynamism, a highly-dynamic system will have
a series of calibration times with a significantly large standard deviation, a,
and k will grow accordingly, while a steady system will have a negligible stan¬

dard deviation and therefore k will approach 1, regardless of the input size.

Nonetheless, for a given CV, the k will increase logarithmically on S 2. The
behaviour of k for different values of S and CV is plotted in figure 4.4.

We would like to emphasise that calculating k in this generic way relieves
the programmer from statically defining the best scheduling, as the skeletal

2We have tacitly assumed that S > e, i.e., the workload is composed of at least three ele¬
ments.
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Figure 4.4: The installment factor, k is a function of the workload, S, and the coefficient
of variability, CV, defined as k = ln(S)cl/. The six different lines of k are defined by the

variation of CV from 0 to 1 in intervals of size 0.2.

32768

Workload

134217728

API automatically provides the most suitable number of rounds according
to the dispersion in the system and the application at hand. Single-round

scheduling simply becomes a special case of the adaptive multi-round schedul¬

ing for systems with complete node homogeneity.

4.2.2.2 Adapting the Task Size

The initial calculation of F, the fitness index, abstracts ab-initio the resource

availability in a given system, but its temporal validity is not necessarily as¬

sured as the load conditions frequently vary over time.

In our adaptive approach to multi-round scheduling, we propose to adapt
F periodically according to the latest performance reading for a node.

Let us examine an illustrative case involving four workers, wu>2, and

W4, with calibration times of 1, 2, 3, and 4 time units respectively. Suppose
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Installment a l a2 a3 a4

1 15 8 5 4

2 8 3 2 1

3 3 2 1 1

4 2 1 1 1

5 1 1 1

6 1

7

8

1

1

Figure 4.5: The left-side Gantt chart graphically represents the installment timing sequence
for each of the four participating workers zvl, w2, w3, and w4, taking into account their as¬
sociated calibration times of 1, 2, 3, and 4 time units respectively. The right-side table
provides the actual installment sizes for each worker. As an example, the fourth worker,
w4, has a sequence of installments of size 4, 1, 1, 1 (or a task size of = 7) with corre¬

sponding durations of 16, 4, 4, 4.
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that initially S — 68 and bear in mind that the first four elements are processed

during calibration. Thus,

F\ = 0.48, F2 = 0.24, F3 = 0.16, and F4 = 0.12 by equation (4.4)

t = 2.5, a = 1.3, and CV = 0.5 (k ~ 2) by equations (4.10) and (4.11)

As per equation (4.3), half of the remaining workload (S = 64/2) will be ini¬

tially distributed to the workers w\, u>2, W3, and zy4 in chunks of size 15, 8, 5, 43.
Let us suppose that the initial calibration times are preserved as a result

of an unchanging node availability, hence the expected execution times for the

assigned task sizes will be 15,16,15,16. Given that w\ reports first for the next

installment, the farmer will then assign 8 elements as now S = 32. Then, if W3

follows, the installment will be 2 as now S = 24 after the assignation to the first
worker. Figure 4.5 shows the full installment sequence for each worker and
the timing chart for the example.

Note that the resulting installment sequence chiefly follows a geometrical

progression with ratio 1/k and reflects the load balancing spirit of the algo¬
rithm. Furthermore, as the task sizes <x.\ = 32,1x2 = 15, aq = 10, aq = 7 ponder the
fitness of every worker, so does the number of installments per node 8, 5, 5, 4.
The combination of these characteristics intrinsically reduces the possibility of
load imbalances, as larger chunks are initially assigned to reduce scheduling

overhead, then smaller chunks are distributed and, at the end, their size is al¬

ways one, reducing the load imbalance while maintaining resource awareness.

The aforementioned conditions hold true if and only if the fitness of ev¬

ery node remains constant over the execution of the workload. Flowever, one
of the main premises for grids is their dynamism. Let us assume that the W4

performance/availability doubles during the execution of its first chunk com-
3The actual arithmetic expression employed to calculate the task size is a, = [f x F, + 0.5J.
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posed of 4 elements, resulting in an execution time of 8 instead of the expected
16. As per equation (4.4), this modifies its own and the other nodes' fitness as

(Fi = 0.43, F2 = 0.215, F3 = 0.14, F4 = 0.215) and, consequently, the installment

sizes, e.g., the next installment for w4 is 3.

As a result of this feedback through the latest execution time for each node,
the fitness index value is constantly refreshed for each processor. Nonetheless,
it is also important to emphasise that the summation of the fitness indices (F;)
is always equal to one, as initially defined in equation 4.1, regardless of the
number of processor and the value of the installment factor.

It should be clear that, by recalculating the fitness of every node according
to its latest execution time, the execution phase assimilates immediate feed¬
back not only to the node but also to the system as a whole. As the perfor¬
mance of a node is mainly defined by its system load, this technique arguably

adapts the TF execution according to the prevailing load conditions.

Figure 4.6 illustrates a realistic 8-worker example in a non-dedicated het¬

erogeneous cluster using S = 9600 and k = 2.735. Each chart depicts the in¬

stallment sequence as a continual line, where the size of every installment is
indexed to the left y-axis and correlated with the prevailing load conditions
indicated with dashed bars indexed to the right y-axis. The load value is the

system load average for the previous minute as displayed by the Linux uptime
command.

Thus, chart (b) represents the 7-installment sequence for <x>2 with sizes 454,

263,161,159, 2, 1, and 1 under loading conditions of 0.94, 2.3,1.14, 0.96, 7.47,
and 7.23. Note the dramatic reduction between the fourth and the fifth in¬

stallments as a result of the 7-fold load increase, or the nearly-constant size
between the third and the fourth installments as a result of the load reduction.

Chart (f) has a more linear behaviour, as the W(, load follows a more steady
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pattern.

Although it is difficult to accurately characterise the entire system and the

algorithm behaviour, the eight charts provide a succinct illustration of the
overall functionality.

Although k is dependent on the calibration times of the nodes and can ar¬

guably be modified every time the fitness is affected, we have decided not to
recalculate it every time to avoid overhead, as it only serves as a geometric

ratio in the progression, rather than a determining factor for feedback.

4.3 Implementation

In order to use our implementation, a programmer only needs to define the

tuple (1,0,f)—where I and O are the input and output vectors and / is the
worker function—and the scheduling mode. It requires no further input from
the user. Based on the prevalent load conditions of the defined platform, the
calibration phase then automatically calculates the F and the corresponding
number of tasks per node a, and proceeds according to the selected TF schedul¬

ing.

Figure 4.7 presents the algorithmic skeleton API implementing the TF. It

provides sufficient flexibility to accommodate different options in terms of the
worker function (worker); the type and size of the input (in_data, in_length,
and in.type) and output (out_data, out_length, and out_type); the MPI com¬
municator (comm); and the scheduling mode (sched). In particular, the valid

scheduling modes are presented in table 4.1

That is to say, this skeleton can be used unaltered with single-round schedul¬

ing either simple SCHJDEAL or SCH-DEALDYN in its three variants, and with multi-
round scheduling either non-adaptive SCH_TRAD or adaptive SCHJ4ULTI. Note
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Figure 4.6: An empirical example of the functionality of the task farm adaptiveness on an
actual 8-worker system. For each worker, wl to zv8, the chart depicts with a solid line the
installment size sequence with its value indexed to the left y-axis, and, with dashed bars,
the load present when that given installment is distributed with its value indexed to the right

y-axis.

(b) w2

(g) w7 (h) w8

(a) wl

(f) w6(e) w5

(c) w3 (d) w4
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No Name Values Description

1 SCH.TRAD a, = 1 Traditional multi-round schedul¬

ing based on a work queue (1 by

1)

2 SCH-DEAL Equation (4.3)
holds. (k =

iaf,4)

Single-round scheduling assum¬

ing equal task sizes for the N

nodes

3 SCH_DEALDYN_LR Equations (4.3)
and (4.4) hold.

(k = 1)

Single-round scheduling with sta¬

tistical univariate calibration (t

adjusted via curve-fitting)

4 SCH-DEALDYN_MV Equations (4.3)
and (4.4) hold.

(k = 1)

Single-round scheduling with sta¬

tistical multivariate calibration (t

adjusted via curve-fitting)

5 SCH_DEALDYN_SM Equations (4.3)
and (4.4) hold.

(fc = 1)

Single-round scheduling with

times-only calibration

6 SCH_MULTI Equations (4.3)
and (4.4) hold.

(k= ln(S)cv)

Generic variable chunk-size

multi-round scheduling with

times-only calibration, and single-
round as special case (CV ~ 0)

Table 4.1: The six different scheduling modes for our task farm skeleton.
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that SCH_MULTI generalises the scheduling mode, as single-round scheduling

effectively becomes a special case of the multi-round scheduling for systems
with low dispersion.

It is required to be linked with the following libraries:

• The GNU Scientific Library (GSL) [88] for the deployment of the statisti¬
cal routines. In particular we use:

- gsl.f it-linear and gsl_multif it-linear for the statistical univari¬

ate and multivariate calibrations respectively; and

- gsl_stats_mean and gsl_stats_sd to calculate the arithmetic mean,

standard distribution and, accordingly, the coefficient of variability
for the adaptivemulti-round scheduling.

• The Network Weather Service [196] for the forecasts of processor avail¬

ability (a) and latency (£), for the statistical calibration to be enabled. It
also requires a NWS sensor per node and a NWS system clique mirroring
the MPI_C0MM_W0RLD encompassing the whole configuration

As described in section 3.3.1, our previous experiences with skeletons on

geographically dispersed grids have empirically demonstrated the costly im¬

plications of the inherent synchronisation ofMPI collectives, resulting in a sig¬
nificant degradation in inter-network communication. Thus, this TF imple¬
mentation uses MPI_Send and MPI-Irecv for message exchange and MPI_Wait

and MP I-Test for synchronisation.
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void pfarm(void (*worker) (), void *in_data, int inlength, MPI_Datatype in type, void *out_data,
int out_length, MPI_Datatype out type, MPI Comm comm, enum scheduling sched)

Figure 4.7: The application program interface (API) to our adaptive task farm algorithmic
skeleton

4.4 Experimental Evaluation

Our experiments have been designed to take advantage of the TF intrinsic task

parallelism—which presents virtually no inter-process communication—and
the ability to access different data sources—inherent to any heterogeneous dis¬
tributed system. As a result, they deploy a parameter-sweep for a series of

independent executions of a stochastic simulation algorithm of voltage-gated
calcium channels on the membrane of a spherical cell. Parameterised in terms

of number of channels and time resolution, the algorithm calculates the cal¬
cium current and generates a calcium concentration graph per run.

A spherical cell possesses thousands of voltage-gated channels, and simu¬

lating their stochastic behaviour implies the processing of a large number of
random elements with different parametric conditions. Such parameters de¬
scribe the associated currents, the calcium concentrations, the base and peak

depolarising voltages, and the time resolution of the experiment. This process
can be modelled stochastically, defining a threshold based on voltage and time

constraints, and aggregating individual calcium currents for a given channel

population [104].

Furthermore, as the voltages and the peak duration can be varied without

affecting the complexity, the parameter space can be explored while preserv¬

ing the complexity constant at each rim. The model has been abstracted as the
function / where the number of channels (channels) and time resolution, de-
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Stochastic Simulation of 10000 L-type Ca2t Channels

BASE: -SOtnV 0.6*pA; PULSE: 0.002S12I V -2 H59H4e-05pA; dt le-OS
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Figure 4.8: An example of a calcium concentration graph generated by each run of the
parameter sweep, employing 104 channels and simulation time 10ms in intervals of lOps.

fined as the number of steps (steps), determine its temporal complexity on a

per-experiment basis as shown in equation (4.12).

Time(model) = Order (channels x steps) (4.12)

Thus, a typical experiment involving the simulation of 104 channels for a

second in 10^s intervals (105 steps) will have Order( 109) temporal complexity.
Each experiment generates two result files: a data file which records the cal¬
cium currents values over time and a gnuplot script to automatically produce

graphs for these values.

Figure 4.8 presents a typical processed calcium concentration graph for 104
channels and a 10ms simulation time with a time interval of lOps, i.e., a time

resolution of 103 steps and a complexity Order(107).
The physiological interpretation of the algorithm is beyond the scope of this

thesis, nonetheless it is interesting to underscore its relevance to the biomedi¬
cal community. A complete description of the simulation algorithm, a compre-
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Parameter Value

Number of Channels 104

Experiment Time Resolution 104

Peak Duration 0.06s

Sweep
Peak Voltage Steps
Total Number of Experiments

0.125mV

960

Table 4.2: Parameter space for the single-round scheduling task farm (experimental sce¬
nario no. 1 in table 3.2).

hensive parameter sweep, and the physiological interpretation of the results
are reported in [105].

In the following sections we present a series of experiments which explore
the parameter space in breadth and width: the single-round TF ones cover

statistical and times-only calibration for a single problem size (breadth), while
the multi-round focus on times-only for different problem sizes (width).

4.4.1 Single-round Scheduling

For this case study, we have instantiated the parameter space with 960 exper¬

iments of similar complexity, S = 960, by varying the peak voltage, and have
defined O to store the individual times for each experiment. The full instanti¬
ation is shown in Table 4.2, using a simulation time of 0.1s with an interval of

10^s, and the peak voltage varied in 0.125mV steps.

Initially and as a sanity check, we have implemented the sequential ver¬
sion of the workload, executed it in a dedicated reference node, and observed

its performance under increasing load conditions. Figure 4.9 plots the execu¬

tion times in seconds under increasing load conditions. The values in the x-
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Uniprocessor Program Execution
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Figure 4.9: Uni-processor execution of the workload under variable load conditions. It em¬
ploys a sequential version of the worker function in a single processor, and load-generating
function. In the x-axis, the values represent the number of instances of the load-generating

program, and the y-axis indicates the execution time in seconds.



88 Chapter 4. Task Farm

No. Version Execution time

1 MPI single-round 5890s

2 MPI work queue 7330s

3 Baseline (uni-processor) 5976s

Table 4.3: Execution times, in seconds, of the task farm skeleton for the 960-experiment
parameter-sweep. Cases no. 1 and 2 are the MPI version using one farmer and one worker,
with single-round and work queue scheduling respectively. Case no. 3 is a sequential
version employed as the baseline. The three cases represent the average of five executions

on a dedicated system.

axis represent the number of instances of the load-generating program, which
is equivalent to 1 in the 1-minute reading from the Linux/Unix uptime com¬

mand. As expected, it degrades linearly when the system load is increased.

Table 4.3 presents the execution times of a simple TF version on a 1-farmer
1-worker dedicated configuration, and compare them to the uni-processor ver¬
sion. TheMPI version with single-round scheduling, where the farmer assigns
the 960 elements at once to the worker, performs roughly on a par with its

uni-processor counterpart (5890s versus 5976 or < 2% difference). The MPI
version with work queue scheduling, where the farmer assigns a single task at

once, is 23% slower than the uni-processor version (7330s versus 5976s), and
this is mainly due to the overhead incurred by the frequent communication.
All entries represent the arithmetic mean, with a small variance, of a series of
executions.

For our main evaluation, we have deployed three variants of the single-
round scheduling: times-only and linear regression in univariate and multi¬
variate modes. For the uni-variate case we have used the scaled availabil¬

ity, a/, as predictor variable, and for the multi-variate, we have additionally

employed the network latency, L Both fit the execution times t using linear
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Task Farm : Single-Round Scheduling

Number ofWorkers

Figure 4.10: Summary of the execution times, in seconds, of the task farm with single-
round scheduling using 6, 12, 24 and 48 workers. Key: [Baseline] Isometric-installment
single-round scheduling; [Times-Only] Single-round scheduling with times-only calibra-
tion;[Multivariate] Single-round scheduling with statistical calibration using a/ and I as pre¬
dictors; [Univariate] Single-round scheduling with statistical calibration using a/ as predic¬

tor.
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regression. The baseline is an isometric-installment single-round scheduling,

i.e., equal task sizes to all participating workers.
We have run a series of experiments with 6, 12, 24, 48 worker processes

mapped to an equal number of nodes with the farmer located at process 0.
The results are presented in Fig. 4.10 and are based on the aforementioned

960-experiment parameter sweep.

We have chosen the BogoMips [190] as the known benchmark value in order
to scale the availability values. This decision has been based on the following
two factors:

1. Bogomips value claims to reflectmore accurately the processing power of
a node than the standard CPU frequency and, therefore, provide a better

scaling factor; and,

2. Bogomips is widely available in Linux systems, providing a clear advan¬

tage in terms of ease of implementation for our evaluation programs.

Nonetheless, the API is not tied to this benchmark and, alternatively, our
evaluation can potentially use the 1-processor figures from any other widely-
used benchmark such SPEC [77], NAS [15], or Linpack [71].

Each value in the chart represents the average of the executions run under
different conditions on three different days. All times are measured at sys¬

tem level and include not only the TF processing but also the calibration and

startup-termination periods. The experiments did not run concurrently, in or¬

der to avoid any contention.

During the three different days, the evaluation series coped with different

system loads and network conditions. Figure 4.11 provides a summary of the

system load on a per-node basis for the three days. Each bar represents the

average load for the farmer (node 0) and the workers (node 1-48) on a given
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day, and includes the load generated by each of the experiments. The flat line

depicts the average load for the whole environment.

Our single-round scheduling evaluation consistently outperforms the single-
round version using isometric installments by 70% for the times-only calibra¬
tion and 56% and 48% respectively for the univariate and multivariate linear

regression cases. Furthermore, if we compare the different modalities of our

single-installment scheduling, the times-only calibration performs 43% and
33% better than the statistical calibration modes. Such performance superi¬

ority can be possibly associated with the arithmetic operations generated by
the linear regression. Thence, we intend to use times-only calibration for the
remainder of our experiments.

4.4.2 Multi-round Scheduling

Here we have run a more comprehensive series of experiments incorporating
three different settings: light, medium, and heavy.

At the single experiment level, while maintaining the number of channels,
the time interval, and the base voltage constant at 10000,10ps, and —80mV re¬

spectively, we have varied the simulation time for each experiment using 0.01s,

0.1s, and Is, i.e., a time resolution of 103, 104, and 105 steps respectively. Note
that the complexity of the experiments in the medium case is similar to that of
those employed in the preceding section for the single-round scheduling.

At the parameter space level, the parameter sweep looks upon peak volt¬

ages in [—60, 60mV]. Employing steps of 0.0125mV, 0.03125mV, and 0.125mV,
this range is evenly divided, producing an associated number of experiments
of S = 9600, 3840, and 960 respectively. Note that the variation in the value of
S has no bearing on the complexity of the experiments as described in equa-
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Figure 4.11: Overview of the system load for the three days of experimentation for the
single-round scheduling. Each chart plots with a dashed line the average load (y-axis) for a
worker (x-axis) for the given day. The solid line represents the average of all workers during

the day.
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Parameter Light Medium Heavy

Number of Channels 104 104 104

Experiment Time Resolution 103 104 105

Peak Duration 0.006s 0.06s 0.6s

Peak Voltage Steps 0.0125mV 0.03125mV 0.125mV

Number of Experi- 9600 3840 960

Sweep ments

8-worker Time 868.4s 3199.6s 7720.8s

16-worker Time 470.4s 1730.2s 4205.1s

32-worker Time 235.3s 869.2s 2125.1s

Table 4.4: Parameter space for the multi-round scheduling task farm (experimental sce¬
nario no. 2 in table 3.2). The final time rows show the average execution time, in seconds,
for whole parameter sweep on 8,16, and 32 workers using adaptive multi-round scheduling.

tion (4.12). Table 4.4 shows the three instances of the parameter space.

We have assembled nine different scenarios by varying the number of work¬
ers 8, 16, 32 executing the light, medium, and heavy problem instances, and

compared our adaptive scheduling with the work queue which is the de-facto

scheduling for heterogeneous, dynamic systems. While the results have demon¬
strated a modest performance improvement of 3% for the light case and a

slightly negative decrement for the medium —.1% and heavy —.3% cases, the
automatic calculation of the installment factor and the periodic refinement of
the task size should be considered important contributions for self-scheduling

parallelism. A summary of the results is presented in figure 4.12.
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Performance Comparison

Heavy Medium Light

Workload Complexity
PI 80 18a □ 16o | 16a [I] 32o ■32a
Q Gain (%) X Overhead(%)

Figure 4.12: Execution time summary for the task farm using adaptive multi-round schedul¬
ing on 8,16, and 32 workers with light, medium, and heavy experimental workload settings,
as described in table 4.4. The shaded bars represent the execution times for each com¬
bination of worker-scheduling-setting. The top thick line represents the overhead incurred
by the initial calibration while the thick-line rectangles plot the average gain from using the
adaptive scheduling for all executions in a setting. Key: [processors no.][scheduling], e.g.,
8a means 8 workers and adaptive scheduling model and, analogously, 80 represents 8

workers and one-by-one scheduling.
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4.5 Discussion
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Embracing the ASPara phases introduced in chapter 3, this chapter has pre¬

sented a self-scheduling task farm. Initially, the calibration phase ranks pro¬

cessors according to their fitness and determines an installment factor based
on how different their execution times are. Subsequently, the execution phase

iteratively distributes the workload according to the processor fitness, which
is continuously refreshed throughout the program. Programmed as an algo¬
rithmic skeleton to be parameterised with the worker function, variable-size

input and output data vectors, and the scheduling mode, this task farm has
been evaluated for the special case of single-round scheduling and the generic
multi-round one using a computational biology parameter-sweep in our non-

dedicated multi-cluster.

4.5.1 Outcomes

As proven by the uni-processor figures, the load in the system directly impacts
the execution times. Hence, it is crucial to note that the adaptive method shows

advantages regardless of the system load. In other words, the adaptive farm is

able to adjust itself to the dynamism of the environment.
Section 4.4.1 has provided evidence that the ASPara calibration phase of

the worker function on the nodes can considerably enhance the performance
of a task farm, and F can help in predicting variations in system conditions.

The corrective properties of linear regression to relieve exogenic factors in

larger runs, such as the arrival of administrative jobs or indiscriminate inter¬

active usage, have been reported to be useful in different scheduling scenar¬

ios [192]. However, times-only calibration has proven to be the most effective
for our purposes.
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From an efficiency perspective, it is arguable that the single-round perfor¬
mance ought to be enhanced by conveying dynamic re-calibration into the dis¬
tribution when any performance bottlenecks arise. Therefore, we have pre¬

sented the evaluation of the generic multi-round case which automatically cal¬
culates the installment factor based on the dispersion of the calibration times

of the nodes, and pervades the impact of changes in the nodes' fitness through
a periodic adjustment. Despite their modest performance results, the pro¬

posed algorithms have substantial implications for self-scheduling and load-

balancing. In particular, their resource awareness, combined with their de¬

creasing task size, reduces the trade-off between scheduling overhead and
load imbalance, and has important applications in parallel processing (e.g self-

guided parallel loop scheduling [161]).
With respect to the analysis of divisible workloads, the findings of the case

study provide an alternate approach to the single-round scheduling problem

using forecasts of resource utilisation. This tacitly reinforces the notion that

although computational grids are highly dynamical, forecasts based on histor¬
ical resource utilisation can accurately provide some guidance for distributing
workloads.



Chapter 5

Pipeline

The problem addressed in this chapter is: given a parallel pipeline program,

find an effectiveway to improve its performance in a heterogeneous distributed
environment by effectively mapping the pipeline stages to the best available

processors and adapting dynamically to external load variations.

This chapter is structured in the following way. Firstly, section 5.1 provides
the background for this case study. Secondly, section 5.2 describes an adaptive

pipeline parallelism approach as an instantiation of the ASPARA methodology.

Thirdly, section 5.3 describes the API implementation, followed by the exper¬

imental evaluation in section 5.4. Finally, section 5.5 presents a discussion on

the topic.

5.1 Background

A pipeline enables the decomposition of a repetitive sequential process into a

succession of distinguishable sub-processes called stages, each of which can be

efficiently executed on a distinct processing element or elements which operate

concurrently.

97
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0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time

Figure 5.1: Graphical representation of the pipeline construct. A sequence of stage func¬
tions are applied to a given data element.

Ranked, behind Amdahl's law and the Internet, as the third most influen¬

tial parallel and distributed concept of the past millennium [184], the pipeline

paradigm has been widely studied in the literature.

Pipelines are exploited at fine-grain level in loops through compiler direc¬
tives and in operating system file streams, and at coarse-grain level in par¬

allel applications employing multiple processors. With application in grand-

challenge computational problem solving, numerical linear algebra, signal/im¬

age processing, and scientific workflows, coarse-grained pipelines refine com¬

plex algorithms into a sequence of independent computational stages where
the data is "piped" from one computational stage to another. Each stage, com¬

posed by a simple consumer, a computational function, and a simple producer,
is then allocated to a processing element in order to compose a parallel pipe¬
line. Our pipeline follows this model.

The performance of a pipeline can be characterised in terms of latency—the
time taken for one input to be processed by all stages—and throughput—the
rate at which inputs can be processed when the pipeline reaches a steady
state. Throughput is primarily influenced by the processing time of the slow-
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est stage, or bottleneck. Figure 5.1 shows an illustrative pipeline composed of
four stages allocated to an equal number of processors, pi to p4, with differ¬
ent processing speeds: processors pi and p2 take 1 unit of time to process an

element, p3 takes 2 units, and p4 3. Consequently, the pipeline latency is equal
to 7 units, its throughput is ^ as it completes an element transformation every
three units of time, and the bottleneck is the stage executed in p4.

When handling a large number of inputs, it is throughput rather than la¬

tency which determines overall efficiency, since the latency is only relevant to
measure the time to fill up the pipeline initially. Once full, the pipeline steadily
delivers results at the throughput ratio. Hence, in order to improve the over¬

all efficiency of a parallel pipeline, one is required to minimise the bottleneck

processing time.

Unlike the task farm where an input element can be independently pro¬

cessed by any given node, an input element in a pipeline must be transformed

consecutively by every stage. That is to say, the processing of every element
in the data stream depends on the successful completion of the preceding

stage—except for the first one. This stage interdependence is called a prece¬

dence relation, hence the overall workload is not arbitrarily divisible, but stage-

decomposable with precedence relations.

5.1.1 Performance Considerations

We must review some generic performance issues in pipelined processing.

Suppose that the original sequential process requires time ts to process a single

input. Consider an n-stage pipeline, in which f, is the execution time for the Ith
stage.

In an idealised model, without significant communication costs, the se-
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quential (Tsecj) and parallel (Tpar) times to process S inputs are expressed by

equations (5.1) and (5.2) respectively, where max(f,) is the bottleneck stage

time.

Tseq — Sxts (5.1)

Tpar = + (s - 1) x max(f,) (5.2)
1=1

It is well known that perfect pipelined performance is obtained when the

stage times t, are all equal to and Tseq and Tpar can therefore be expressed as

noted in equations (5.3) and (5.4), so that as S grows large, speed-up asymp¬

totically approaches n.

Tseq = 5 X tg (5-3)

Tpar = fs + (S-l)x£ (5.4)
Outside this perfect situation, it is more important to reduce the bottleneck

time than the latency, since the former affects the multiplicative term in Tpar,
whereas the latter affects only the asymptotically insignificant additive term.

As previously discussed in section 3.2.2, we assume that:

1. the computational complexity of each stage function, designated as /, is
identical and

2. that the communication time is not significant.

Both assumptions intend to keep the number of experimental variables

manageable. In particular, the former allows the calibration process time to

be determined by the execution time of the slowest processor in the pool. Had
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this assumption been relaxed, the calibration phase would require a different

design: every node would require to be calibrated with every different stage,

making it a longer process with the possibility of losing validity—as the system
resources could change during the calibration—and flexibility.

This allows us to focus on addressing issues which arise when the available

processors vary dynamically in performance with respect to such a reference

processor, as the stage function / can be used to determine the fitness of any

processor. Furthermore, by continually monitoring the performance of every
node at execution—using its initial fitness as baseline—, one can detect perfor¬
mance variations.

The ASPara methodology can be applied thence. In the programming

phase, the application programmer is required to write sequential code for the

body of each pipeline stage. In the compilation phase, the programmer makes
a call to the pipeline skeleton to apply these stages to a set of inputs. Then,

during the calibration phase, the system maps the stages to (a subset of) the
nodes in the system and calculates a performance threshold. It may choose to

map several stages to the same processor when this processor ismore powerful
than the others. During the execution phase, our system periodically checks
the progress of the computation and decides whether to remap some or all
of the stages based on the performance threshold. The performance improve¬

ments are illustrated using a pipeline with 8,16, and 32 stages.

5.1.2 Related Work

A core topic in textbooks on parallelism and concurrency, the pipeline has been
covered by several surveys which deal with its different aspects including:

performancemodels for the general case and hardware implementations [165];
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hardware-oriented performance modelling [75]; its exploitation via instruction

scheduling in processors [7]; and different aspects in the conceptualisation and

design of algorithms [126,127],

While the general pipeline mapping problem is known to be intractable
for a representative number of processors [155] and its full solution therefore
remains indeterminate, different approaches have been conceived to address

less-complex cases. Following the seminal work of Bokhari [36], where he
first suggested its intractability and developed a heuristic algorithm based on

a probabilistic pairwise method, Berman and Snyder [28] identified two or¬

thogonal problem dimensions—the number of stages and the topology of the
machine—and developed a solution for a variable number of stages in two

separate parallel architectures.

Following Bokhari's lead for the instantiation of the problem in distributed

systems [37], where he stated its NP-Complete complexity, a few algorithmic
solutions for special cases have been independently formulated by several au¬
thors over the years [38,174,181]. Based on direct-acyclic graphs, the macro-

pipelining method [17] gives a theoretical framework for scheduling parallel

pipelines. While macro-pipelining provides guidance on the coarse distribu¬
tion of work to different stages, its approach is limited to dedicated digital-

signal processing systems. Another approach presents a multi-layer frame¬
work for the stage scheduling in dedicated real-time systems [50]. This work
describes a series of steps to calculate end-to-end latencies based on a time-

series model for a video-conferencing application.

Due to the importance of this construct, several of the skeletal and pattern
frameworks listed in section 2.2 include a pipeline construct. In particular, we
would like to draw our attention to the following recent advances:
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• La Laguna Pipeline (lip) [95] furnishes a conceptual tool for static multi¬

stage allocation using algorithmic skeletons. By approaching the prob¬
lem with a 0/1 knapsack problem method, lip is employed to develop
a theoretical solution to stage scheduling. Interesting empirical results
have been reported for heterogeneous systems using this analytical mod¬
eller in multi-cluster configurations with short-span tasks [8].

• Using process algebra to enable performance modelling, the eSkel and
the ASSIST libraries have been augmented with performance-based map¬

pings for distributed systems [22,191]. In particular, eSkel has been suc¬

cessfully applied to the reformulation of the parallel solution of a prob¬
lem in queueing theory [197],

• A series of heuristics have been developed for a simple pipeline skeleton

executing on homogeneous and heterogeneous systems [26, 25].

• The Resource Optimisation Under Throughput rEquirements (ROUTE)
method proposes a DAG-based mapping approach for a generic pipe¬
line construct on heterogeneous systems [110], which has been applied
in image processing [109],

Nonetheless, the main difference between our ASPARA-based pipeline and
the aforementioned approaches is that it is intended to be adaptable by con¬

struct, and focused on empirical, system-infrastructure methodologies. Our

pipeline can forecast and enhance the performance of a skeletal application by

exploiting the knowledge of the skeletal structure while efficiently preserving
the skeletal behaviour.

Our methodology is fundamentally different to the aforementioned results
since it provides a generic systems-oriented methodology to:
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• pragmatically tune up the pipeline parallelism skeleton regardless of the

complexity of the stage functions, the system load, and the capacity of
the nodes; and

• dynamically adapt to non-dedicated heterogeneous environments once

the pipeline processing is established.

5.2 Adaptive Pipeline

The core of our adaptive pipeline is the instantiation of the ASPara calibra¬
tion and execution phases into the mapping of stages to processors and the
feedback respectively.

5.2.1 Calibration

The purpose of this phase is twofold: calculate the stage-to-node mapping and
determine the performance threshold which governs the feedback.

The assignment of stages to processors is widely known as stage mapping,
or mapping, and finding the optimalmapping for a pipeline of any given length
on a certain number of processors is the mapping problem [36]. This problem
is also referred to in the literature as pipeline scheduling as, in general, the

scheduling of parallel tasks deals with the order in which tasks are executed
and their assignment to nodes.

The mapping problem can be enunciated as follows. Let n be the number
of stages in a pipeline and P the total number of processors of a distributed

system. A mapping M is a pair (Chosen, x), where Chosen is the set of pro¬
cessors which are the fittest to execute the pipeline stages and x is the number
of stages allocated to each of the processors in Chosen. Such mapping must
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comply with properties (5.5) and (5.6).

Chosen is a finite set of processors and Chosen C P (5.5)
\Chosen\

x is a vector of size | Chosen | such that x, = n (5.6)
i=l

In our case, the first step in determining M consists of finding the fitness of
each available processor. This is achieved by a times-only calibration, which
runs an instance of / on each processor and measures its execution time. In

practical terms, any stage will do, since we have assumed that all stages are

equally representative in computational terms, making the execution time of
this overall phase determined by the execution time of the slowest node. Note
that if this were not the case, the overall complexity of the calibration would be

greatly increased, derived from the number of combinations of stage functions
and node fitness, with the augmented complexity of the changing conditions
of the underlying infrastructure.

The calibration allows us to rank processors by descending fitness, i.e., by

increasing calibration time. We can immediately discard all but the n fittest

processors from this initial mapping M.

Formally, assume that M and f, are the initial mapping and its calibration
time for node i respectively. Properties (5.5) and (5.6) hold for M and, by con¬

struction, \Chosen\ — n, x = 1, and p^,, the last node in Chosen, is the bottleneck
since t,^i <tt< t,+\ V i G Chosen.

Then, a greedy strategy uses this initial (naive) mapping M, in which one

stage is assigned to each of the n fittest nodes, and iteratively tries to improve
its stage allocation. It compares the impact of moving one stage from the pro¬

cessor pi, to the processor p\, the first one in the active mapping one and there¬
fore the one with lowest processing time. If the new processing time at p\—the
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t =

product of the number of its allocated stages plus one and its original calibra¬
tion time—is smaller than the original processing time at pb then it makes the
switch. The strategy then re-ranks p\ according to its new processing time.
Iteration proceeds until no further improvement is possible. We call the result¬

ing mapping Ml. Let us illustrate this with a simple example.

Example 1: Assume that P = 32, n = 16, and t stores the following 32 values,

corresponding to the calibration times of an equal number of nodes p\,..., p?,2'-
22, 13, 29, 16, 5, 11, 1, 19,

17, 29, 14, 31, 36, 15, 10, 25,

19, 18, 30, 18, 20, 24, 31, 25,

22, 23, 32, 33, 29, 38, 19, 17
^

Initially,

Chosen = {p7, p5l px5, p6, pi, pn,Pu, Pa, p9, P32, Pw, P20,p8, Pi7, p3\,P2i}
£= {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

After the application of the greedy algorithm,

Chosen = {ps,p\5,Ps,P7}
x = {2,1,1,12}

Table 5.1 shows the steps performed by the execution of the greedy

algorithm. •

In addition to the mapping, the calibration phase performs the calculation
of the performance threshold, key to the adaptivity mechanism of the pipeline.

In the idealistic case of a totally-dedicated fully-homogeneous system, the
threshold ought to be large, as the overall system will not benefit from a re-

calibration since all nodes are equally fit. In a highly-dynamic system with

highly heterogeneous nodes, the threshold must be small to allow rapid re¬

action to load changes while maintaining a balance to avoid unnecessary re-

M =

M/ =
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Chosen P7 Ps Pis Ps P2 Pll Pl4 P4 P9 P32 P18 P20 P8 Pl7 P31 P21
t 01 05 10 11 13 14 15 16 17 17 18 18 19 19 19 20
X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Chosen V7 Ps Pis Ps P2 Pll Pl4 P4 P9 P32 Pis P20 P8 Pl7 P31
t 01 05 10 11 13 14 15 16 17 17 18 18 19 19 19
X 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pll Pl4 P4 P9 P32 Pl8 P20 P8 Pl7
t 01 05 10 11 13 14 15 16 17 17 18 18 19 19
X 3 1 1 1 1 1 1 1 1 1 1 1 1 1

Chosen V7 Ps Pis Ps P2 Pll Pl4 Pi P9 P32 Pl8 P20 P8
t 01 05 10 11 13 14 15 16 17 17 18 18 19
X 4 1 1 1 1 1 1 1 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pn P14 Pi P9 P32 Pl8 P20
t 01 05 10 11 13 14 15 16 17 17 18 18
X 5 1 1 1 1 1 1 1 1 1 1 1

Chosen P5 P7 Pis Ps P2 Pn Pl4 Pi P9 P32 Pl8
t 05 01 10 11 13 14 15 16 17 17 18
X 1 6 1 1 1 1 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pu P14 Pi P9 P32
t 01 05 10 11 13 14 15 16 17 17
X 6 2 1 1 1 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pu Pl4 Pi P9
t 01 05 10 11 13 14 15 16 17
X 7 2 1 1 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pll Pl4 Pi
t 01 05 10 11 13 14 15 16
X 8 2 1 1 1 1 1 1

Chosen P7 Ps Pl5 Ps P2 Pll Pl4
t 01 05 10 11 13 14 15
X 9 2 1 1 1 1 1

Chosen P7 Ps Pis Ps P2 Pll
t 01 05 10 11 13 14
X 10 2 1 1 1 1

Chosen P5 Pl5 P7 Ps P2
t 05 10 01 11 13
X 2 1 11 1 1

Chosen Ps P\5 Ps P7
t 05 10 11 01
X 2 1 1 12

Table 5.1: Step-by-step illustrative execution of the greedy algorithm to refine a pipeline
mapping.
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calibrations. A small threshold can cause too many re-mappings (thrashing),
while a very large one effectively deactivates the adaptiveness. Hence, we

argue that the threshold ought to be automatically determined, based on the
fitness of all nodes in the system.

We propose a performance threshold for our adaptive pipeline as the in¬

verse standard deviation of the calibration times of all nodes in the processor

pool. If we consider the differences between the times as a measure of the dis¬

persion of the overall system, highly-dispersed—typically heterogeneous—systems
have calibration times with a small threshold, which will trigger a node cali¬
brationwith subtle variation in node performance. Conversely, more steady—typically

homogeneous—systems present a large threshold which will not react as promptly
to variations in node performance.

Assuming a normal distribution of the calibration times, their standard de¬

viation, cr, can be calculated using equation (5.7), where |P| and t are the num¬
ber of nodes in the processor pool and the average calibration time respec¬

tively. As cr quantifies the dispersion of the calibration times, its inverse, pre¬

sented in equation (5.8), can arguably be used as a measure of adaptivity, e.g.,

using the execution times shown for the 16 nodes in Chosen from the initialM
in example 1, cr — 5.404 and threshold = 0.185.

a =

\
-I |P|

w\U"~1)2
threshold = —

(5.7)

(5.8)

While the aforementioned procedure to automatically determine the thresh¬
old does not explicitly correlate the times with the actual node load, it provides
an accurate steering criteria for adaptivity, as it is arguable that unchanging, ei-
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Algorithm 5.1: Calibration Algorithm for the Pipeline
Data: /: Stage Functions;
n: Number of Stages;
P: Nodes;
Result: Chosen: Lookup table of fittest processing elements;
x: Number of processes per Chosen node;
threshold: Performance threshold to drive adaptivity;
forall nodes in P do

Execute / concurrently;
Set tt <— execution_time(/);

end
if root node then

collect tj into t;
set Chosen <— fittest(n,P); /* n fittest nodes from P based on t
*/
setx<— 1;/* The n entries in x are set to 1 (one stage per
node) */
setM <— (Chosen, x);
set threshold <— inverse_standard_deviation(f);
set i <— 0 ;

set t <— n ;
while i <i — 1;/* Start of greedy strategy */
do

set flag <— false ;
set k <— i + 1;
while k < I A ->flag do

set a ^

if ol 7^ 0 then
set ti <— ti + tilXj;
set Xi <— X{ + 1;
set <— £ — 1;
insert_in_order
set flag <— frwc ;

end
if -iflag then

I z <— J + 1;
end

end

end

setM/ (Chosen, (x));
send M/ and threshold to other nodes

else

/* All other nodes
send t, to root node;
receive Mt and threshold;

end
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ther heavily- or lightly-loaded, systems will not benefit from a re-calibration.
In summary, the calibration stage performs the following steps:

1. records the execution time of the stage function in every node using 7;

2. initialises M with the first n fittest nodes, sorted using 7 as key and allo¬
cated one stage each;

3. calculates the threshold as the inverse standard deviation of 7;

4. employs a greedy strategy to determine the final mapping Ml; and, fi¬

nally,

5. broadcasts Ml and the threshold to all nodes

This is outlined in algorithm 5.1, which is effectively an instantiation of

algorithm 3.1. This algorithm requires /, the stage function to be used in the

calibration, n, the number of stages, and P, the processor pool. It generates

Mi, the finalmapping, and threshold, the performance parameter to determine
a performance bottleneck.

5.2.2 Execution

The purpose of the feedback phase is the detection of performance fluctuations
in the pipeline and reactively triggering re-mappings.

Once the pipeline is in operation, this phase detects performance fluctua¬
tions by checking whether all processors are functioning according to the ini¬
tial calibration. Each stage times itself and propagates its current f,- through
the pipeline, piggy-backed with the real data. The final stage verifies that the

Tpar is acceptable by comparing with the original calibration times, using the

performance threshold to determine acceptability. The threshold regulates the
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Figure 5.2: The operation of the feedback mechanism of our pipeline. Once a performance
fluctuation is detected, it entails four steps: stop and checkpoint the input, drain the pipeline,

trigger a re-calibration and, finally, resume the execution.
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margin before a re-calibration takes place and is expressed as a fraction of the

original value.

The principle is simple: assume that the threshold has been set at X during
calibration and let f, and fj, be the execution times for a certain stage i during
normal operation and for the bottleneck at calibration respectively. By con¬

struction, t}, corresponds to the last node in the pipeline and is the worst time
in the mapping. Thus, if (1 + X) x tt > t},, a performance fluctuation beyond
the threshold has been detected and a re-calibration is scheduled. Once this

decision has been taken:

1. the input stream is stopped and check-pointed,

2. the pipeline is allowed to drain,

3. the re-calibration takes place, and

4. execution is resumed under the new mapping.

Figure 5.2 schematically illustrates this procedure. Note that the checkpoint
is required to allow a complete re-calibration, otherwise the execution of the

pipeline itself can produce additional load in the nodes, impairing the proper
selection of the fittest processors.

While a re-calibration implies an overhead, we have empirically corrobo¬
rated that the performance gain is superior as the pipeline throughput is deter¬
mined by the bottleneck. It is important to highlight the the our empirical eval¬
uation has indicated that the performance improvement becomes more repre¬

sentative as the input size increases—typically beyond 64 elements—, since the
cost of a slow processor has a greater impact on the total execution time than a

timely checkpoint and re-calibration.
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5.3 Implementation

Based on our C/MPI platform, figure 5.3 presents the pipeline API. Following
the notation defined in section 5.1:

• stages is an array of pointers to functions, which contains the / stages;

• no_stages stores n, the number of stages;

• in_data is a vector representing the input data stream S; and

• comm is an MPI communicator encompassing P, the complete processor

pool

It is important to emphasise that the API provides only the pipeline struc¬

ture, and its four externally-instantiated parameters regulate the pipeline be¬

haviour, maintaining the philosophy of the skeletal paradigm.
We have based this design on explicit send-receive pairing. Internally, each

stage is composed of an MPI_Recv call, the invocation to the / function, and an

MPl_Send call. Pre-determined processors are not required for the execution of
the pipeline. That is to say, after calibration, not even the comm root process

must belong to the set of fittest processes.
Our pipeline is stateless and does not furnish a dedicated output data stream

in order to allow the programmer to distribute the output according to the

application requirements, taking advantage of the parallel capabilities of the

underlying platform. Furthermore, this characteristic allows us not only to

choose any processor in the pool for the initial mapping, but also to migrate to

any other mapping at a re-calibration.
The processor pool is represented as a lookup table of active processors.

Referred to as Chosen in algorithm 5.1, this table is built during the calibration
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void pipeline(stage_t *stages, int nostages, MPI_Datatype in_data[], MPI Comm comra)

Figure 5.3: Application program interface to the algorithmic skeleton of our adaptive pipe¬
line

process. It is also of particular importance during process migration, since the

migration is, in essence, an exchange of its entries.
Since a key criterion is the provision of simple process migration with low

overhead, we have opted for this simplistic swapping mechanism, in spite

of the existence of generic libraries which provide MPI process migration.

Mainly devoted to preserving index and context variables in loops, they ad¬
dress generic MPI programs, but their use requires:

• specialised underlying distributed filesystems (SRS) [187]; or

• daemon-based services (MPLswap) [173].

In essence, our approach does not provide a built-in preservation mech¬
anism for program variables, which in our case is not required due to the
statelessness of our pipeline. We have provided an initial assessment of the
overhead incurred by the re-calibration for a simple stateless pipeline appli¬
cation in figure 5.5. However, as our migration is performed on a stateless¬
ness basis, we are unable to objectively compare our approach with other SRS
or MPLswap, as those systems require dedicated software infrastructures but

provide a more generic solution for the state-preserving case. It will require a

different approach with a different software infrastructure to be able to provide
a definite answer to this.

As part of the implementation, we have included two basic Tpar estimators,
which are based on equation 5.2. One, denoted as naive, forecasts Tpar using
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the initial 1-to-l stage-to-processor mapping. The other, denoted as calibrated,

approximates Tpar using the final refined mapping.
As the threshold and estimators require to be dynamically determined,

we employ the GSL [88] on the calibration times. In particular, we use the

gsl_stats_sd routine to calculate their standard deviation, gsl_stats_mean to

compute their arithmetic mean, and gsl_stats_max and gsl_stats_min to find
their maximum and minimum values. This statistical functionality can be
overridden to allow fixed-value thresholds.

5.4 Experimental Evaluation

For reproducibility purposes, we have employed as stage function thewhetstones

procedure from the 1997 version [139] of the Whetstone benchmark with pa¬

rameters (256,100,0). It accounts for some 5 seconds of double-precision floating¬

point processing in an unloaded node of our experimental computational en¬
vironment presented in section 3.3.

All variability in the system is due to external load and, to a lesser extent,
to the difference in performance among processors.

Figure 5.4 shows an initial exploration of the parameter space, running

pipelines with 2,4,8 and 16 identical stages, one per processor (note that a

pipeline with more stages is doing more work in absolute terms) on increas¬

ingly large inputs. The execution times are primarily determined by S, the

input size of the data stream, and are marginally influenced by the number of

stages n in the pipeline as previously assumed in equation (5.2).

In order to initially estimate the overhead caused by the re-calibration itself,
we have tested the correlation between the re-calibration time and the size of

the pipeline. Figure 5.5 shows that the overhead is minimal and increases at
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Parallel Pipelining

Figure 5.4: A sanity check on the pipeline correlating the data input size and the number
of stages with the execution times (in seconds). The plotted surface corroborates the fact
that the execution times are determined by the input data size and, to a much lesser extent,

by the number of stages in the pipeline.
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Figure 5.5: Estimate of the re-calibration overhead as a function of the pipeline size. The
x-axis shows the number of nodes (stages) in the pipeline and the y-axis the actual re-
calibration time. The time increases in less than one percent for every power-of-two incre¬

ment in the pipeline size.

a slow rate (< 1% for every power-of-two increment in the number of stages).

Although the actual calibration time is determined by the slowest processor in
the entire pool, the total overhead increases with the number of stages, due to

the pipeline drainage which occurs previous to the re-calibration and indepen¬
dent of the input data size.

These first two scenarios are simply sanity checks which have further veri¬
fied that our pipeline works as expected. The reported execution times repre¬

sent the average of three measurements and all the nodes employed in these
two test series have no external processes or users.

We have then measured the performance impact of our system under con¬
trolled load conditions and fixed-value thresholds, 0.5 and oo, for a given pipe¬
line (n = 8 and S = 128).

Taking into account the fair CPU allocation algorithm used in Linux and
to ensure the existence of changing load conditions, we have incrementally
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Pipeline Behaviour under Load Conditions
8-stage Pipeline processing 128 elements

Processing Mode

Figure 5.6: Comparison of the execution times, in seconds, for our adaptive pipeline under
increasing, controlled load conditions using two thresholds. The upper dashed line plots
the non-adaptive times (threshold = oo) and the bottom fine-point curve represents the

fixed-threshold times (threshold = 0.5).

injected load dynamically into the system using a simple load generation pro¬

gram based on algorithm 3.3. Each instance of this program added 1 to the
load displayed by the Linux uptime command in a certain node until this node
became the bottleneck, while the rest of the processors did not experience any

significant load variation. Thus a Load = 0 implies that no instances of the load

generator were being executed, Load = 1 that an instance of the load generator
was running on the bottleneck and so on. The instances were triggered after
60 seconds from the start of the program. The threshold was artificially fixed
at oo, which implies a non-adaptive pipeline, and at 0.5.

Figure 5.6 shows a comparison of the measured execution times. The x-axis
indicates the injected load, i.e., the number of instances of the load generator

running on one processor, which were triggered during the pipeline operation.



5.4. Experimental Evaluation 119

The adaptive approach has responded well under varying load conditions,
since the execution times in the non-adaptive parametrisation have increased
at a considerably higher rate than the adaptive ones.

However, in this initial analysis, we have controlled the load injection and

arbitrarily fixed the threshold at 0.5 in a given pipeline. In order to assemble
a more complete set of results, let us examine a typical execution log from our

adaptive pipeline as shown in listing 5.1.

Firstly, our pipeline provides a disclaimer message which includes the ver¬

sion employed (lines 1-3), the time of day (line 4), and the values of n and S +1

respectively (line 5). In this case, S = 512 as the final character is a dummy, to

signal the end of stream.

Secondly, during the calibration phase, it logs the calibration times for all
nodes in P (lines 7-15) and their associated statistical values: arithmetic mean,

standard deviation, inverse standard deviation, largest value, smallest value,
and the threshold (lines 16-18). This particular threshold allows a 35.4714%

performance variation.

It then prints the Chosen pool of processors (lines 19-28). Figure 5.7 illus¬
trates the sequence of steps performed by the greedy strategy of algorithm 5.1
in order to refine the mapping M into Mr.

Chosen = {bw240n04, bw240n02, bw240n03, bw240n21,

bw530n05, bw530nl0, bw530n07, bw240n23}
x = {\, 1, 1, 1, 1, 1, 1, 1}

M

Ml —

Chosen = {bw240n21, bzv530n05, bzv240n04, bw240n02,

bw240n03}
x = {l, 1, 2, 2, 2}

Notice that the process-to-node values illustrated in lines 8-15 and 21-28
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Listing 5.1: Execution Log of the Adaptive Skeletal Pipeline
Adaptive Skeletal Pipeline -- version 3.3
Copyright (C) 2006-7 Horacio Gonzalez-Velez, U.Edinburgh
This program comes with ABSOLUTELY NO WARRANTY
Wed Aug 1 18:30:08 2007
Initializing: Stages= 8, Input Size= 513...

[Process] Hostname Time Stages/CPU
[14] bw240n04. inf.ed.ac.uk 4 .24372 1

[00] bw240n02.inf.ed.ac.uk 4 .25524 1

[07] bw240n03.inf.ed.ac.uk 4.36799 1

[21] bw240n21.inf.ed.ac.uk 4 .73571 1

[35] bw530n05.inf.ed.ac.uk 8 .21054 1

[49] bw5 3 OnlO.inf.ed.ac.uk 9. 10425 1

[42] bw530n07.inf.ed.ac.uk 9.25595 1

[28] bw240n23.inf.ed.ac.uk 11.18540 1

## mean sd inverse_sd largest
6 . 919850 2 .819169 0.354714 11.185399

THRESHOLD = 0.354714

CHOSEN PROCESSORS

[Process] Hostname Time Stages/CPU
[21] bw240n21.inf.ed.ac.uk 4 . 73571 1

[35] bw530n05.inf.ed.ac.uk 8 .21054 1

[14] bw240n04.inf.ed.ac.uk 8 .48744 2

[00] bw24 0n02.inf.ed.ac.uk 8.51047 2

[07] bw240n03.inf.ed.ac.uk 8.73599 2

[49] bw530nl0.inf.ed.ac.uk 9. 10425 0

[42] bw53 0n07.inf.ed . ac . uk 9.25595 0

[28] bw240n23.inf.ed.ac.uk 11 . 18540 0

smallest
4.243722

Calibration time: 11.14 seconds
Wed Aug 1 18:30:19 2007
Estimated execution times: (N)aive 5771.10 (C)alibrated
Worst stage time N=ll.18540 C= 8.51047

[08] : .

Reschedule programmed
SLOW: Proc. [15] Time 12.1959 sees
Wed Aug 1 18:47:13 2007
[08] : .

RE-CALIBRATING...

Total Processing time: 5037.65 seconds
Wed Aug 1 19:54:06 2007

1412.77
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M
p hostname t X P hostname t X

[14] bw240n04 4.24372 1 s , [°°] bw240n02 4.25524 1

[00] bw240n02 4.25524 1 \ /[07] bw240n03 4.36799 1

[07] bw240n03 4.36799 1 \/ t21J bw240n21 4.73571 1

[21] bw240n21 4.73571 1 XtSS] bw530n05 8.21054 1

[35] bw530n05 8.21054 1 / [14] bw240n04 8.48744 2

[49] bw530nl0 9.10425 1 / [49] bw530nl0 9.10425 1

[42] bw530n07 9.25595 1 / [42] bw530n07 9.25595 1

[28] bw240n23 11.1854 1 / [28] bw240n23 11.1854 0

M'
* 5 'p ' ' ■ V*,""

P hostname t x / p hostname t X

[07] bw240n03 4.36799 1 X [21] bw240n21 4.73571 1
[21] bw240n21 4.73571 1 / \ [35] bw530n05 8.21054 1

[35] bw530n05 8.21054 1 / \ [14] bw240n04 8.48744 2
[14] bw240n04 8.48744 *[00] bw240n02 8.51047 2
[00] bw240n02 8.51047 T07] bw240n03 8.73599 2

[49] bw530nl0 9.10425 1 [49] bw530nl0 9.10425 0

[42] bw530n07 9.25595 0 [42] bw530n07 9.25595 0

[28] bw240n23 11.1854 0 [28] bw240n23 11.1854 0

Figure 5.7: Pipeline mapping refinement through the greedy strategy derived from algo¬
rithm 5.1

are multiples of 7. This is the maximum number of processes per node deter¬
mined in the LAM/MPI hostfile used to initialise the MPI environment and is

totally independent of the pipeline implementation.

During the last step of the calibration, our pipeline records the total execu¬
tion time of the calibration phase (line 30) and the time of daywhen the calibra¬
tion was completed (line 31). Note that, as expected, the total calibration time,

11.14s, is determined by the calibration time of the slowest stage, 11.18540s.

Then, our pipeline estimates Tpar (line 32) for the naive and calibrated cases,

using the corresponding bottleneck times (line 33). Equations (5.9) and (5.10)
detail these calculations based on equation (5.2). We will employ T^aive as a

baseline to evaluate the performance of our pipeline.
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(a) Full (b) 18:30-19:00

Figure 5.8: Illustrative example of the responsiveness of the pipeline execution. Sec¬
tion (a) of the figure shows the full load pattern for the bw240n04 node for the given day
(10:00-23:59hrs). Section (b) presents an amplified view (18:30-19:00hrs), which shows
the start of the program execution and that of the re-calibration once the threshold has

been reached.

TNaive — (5-9)

4.24372 + 4.25524 + 4.36799 + 4.73571 + 8.21054 + 9.10425 +

9.25595 + 11.18540 + 11.18540 x 511 = 5771.1

TCalibrated — (5.10)

4.73571 + 8.21054 + 8.48744 x 2 + 8.51047 x 2 +

8.51047 x 2 + 8.51047 x 511 = 4412.8

Thirdly, our pipeline prints the date to signal the start of the execution

phase (line 35). In this case, the [08] value is the process number where the
last stage is executed, i.e., the second process allocated to node bw240n03. This
is printed repetitively per each entry in input data stream. This line has been
truncated for readability.
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Figure 5.9: An amplified view of the system load (18:30-20:00), which corresponds to the
execution of the example shown in listing 5.1.

Then, there is a performance variation beyond the defined threshold during
execution which has triggered a re-calibration (line 36). In this case, processes

15, the second process allocated to node bw240n04, has executed its stage on

12.1959s or a 43.7% performance variation (line 37). This has been detected
at 18:47 on 1/Aug/07 (line 38). The execution continues to drain the pipeline

(line 39), until the actual re-calibration starts (line 40). Once this is done, the

standard calibration information, similar to lines 7-33, is printed, and the ex¬

ecution continues. The remaining part of the execution has been omitted here
for manageability.

We shall now examine the responsiveness of the pipeline to the load varia¬
tion. As per lines 37-38 of listing 5.1, we know that there was a re-calibration

triggered by node bw240n04 at 18:47. Figure 5.8 presents the load pattern for
this node. Part (a) presents its pattern for the entire day, highlighting the re-
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gion where the re-calibration was triggered, and part (b) shows an amplified
view of that region (18:30-19:00).

Finally, at the end of the execution, the total processing/clock time, 5037.65s,
is printed (line 43), along with the time of day (line 44). Note that the final time
is different from the estimators shown in line 32, as, in this case, the overall

system load has increased during the execution of the program, as depicted
in figure 5.9. Except for node 4, all nodes steadily increased their load during
the life of this execution, with an average load of 2.3 at the start and 5.8 at the
end. In fact, there were two additional re-calibrations, activated by major load

fluctuations, with resulting thresholds of 0.307956 and 0.391052.

5.4.1 Bulk Experiments

In this vein, we have assembled an empirical evaluation using three node

pools, n = {8,16,32}, handling five input data sizes S = {32,64,128,256,512}.
The fifteen scenarios were staged on three different days, based on the num¬

ber of nodes, with each scenario yielding to the execution of five experiments.

To make the execution of each of the twenty-five experiments independent in
a day, we have interleaved their executions according to the input data size,

ensuring that just one pipeline experiment was executed at a time.

Each entry in table 5.2 presents the average of three experiments along with
its coefficient of variation (cv), the average threshold for the series, and the
naive time estimate.

The obtained figures attest to the performance improvements attributed to

the use of our pipeline.

Figure 5.10 presents a summary of the overall performance gain due to its

use. Our empirical evaluation demonstrates a correlation between the size of



5.4. Experimental Evaluation 125

s

n

32 64 128 256 512

Adaptive

8
Threshold

Naive

347.69s

cv = 4.82%

0.47

344.43s

672.69s

cv = 5.51%

0.38

778.58s

1289.56s

cv = 4.62%

0.33

1665.33s

2501.27s

cv = 3.18%

0.36

2994.19s

5193.20s

cv = 2.75%

0.36

5891.82s

Time

16
Threshold

Naive

399.09s

cv = 5.03%

0.45

436.10

714.18s

cv = 5.89%

0.50

711.38s

1384.75s

cv = 0.56%

0.44

1532.29s

2617.53s

cv = 0.87%

0.42

2734.57s

5311.50s

cv = 1.33%

0.40

6304.72s

Time

32
Threshold

Naive

495.84s

cv = 2.34%

0.53

493.02s

821.76s

cv = 0.57%

0.55

774.13s

1467.12s

cv = 0.60%

0.56

1381.95s

2774.43s

cv = 7.57%

0.47

3323.52s

5560.20s

cv = 2.79%

0.51

6533.42s

Table 5.2: Listing of the execution times of the adaptive pipeline using different pipeline
(n = {8,16,32} and input |S| = {32,64,128,256,512}) sizes.
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Performance Comparison
Adaptive vs. Naive Pipeline on a Computational Grid

Input Size
□ 8a H8n □ 16a ■ 16n □ 32a ■ 32n m Gain (%)

Figure 5.10: Execution time summary and overall improvement due to the use of our adap¬
tive pipeline. The x-axis indicates the number of elements processed by the pipeline (input
size). Each shaded bar plots the execution time for a given pipeline size and scheduling
method (adaptive or naive). The top thick line represents the aggregated gain as a per¬

centage. Key: [processors no.][scheduling], e.g., 8a means 8-stage pipeline and adaptive
scheduling model and, analogously, 8n represents 8-stage naive scheduling.
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the data input, S, and performance gains, as load variations impactmore as the

processing increases. While the estimate presumes an execution of the pipeline
under steady conditions and neglects any load variation, it is a guideline for

quantifying the performance improvements.
In the course of the 3-day empirical evaluation, ourmulti-cluster configura¬

tion entertained different workloads from a multiplicity of users. Such work¬
loads provided a realistic environment in which to assert the adaptivity of our

pipeline. To monitor the overall system load, we recorded the the Linux uptime
command output (1-minute reading) during the entire duration of the 75 ex¬

periments. Figure 5.11 shows the results. Each row presents two views from
an evaluation day.

Left A 3-D graph with each node load during the entire day. The x-axis spec¬

ifies the time of the day and the y-axis the nodes. The different load

readings are plotted in the z-axis using different line styles

Right A summary chart with the average load of each node and of the whole

system. The x-axis designates the node and the dashed steps in the y-axis
indicate the average load per node. The solid line in the middle indicates
the average of the overall system load

The load average, p, and the load standard deviation, a, are written in the

bottom-right corner of charts (b), (d), and(f) of figure 5.11. It is self-evident
that the highest load variation was detected with 32 nodes (a = 0.78) and the
lowest with 16 (<r = 0.19). Needless to say, it has been encouraging that our

pipeline adapted well under these dynamic conditions.
Consistent with our initial reality check, these experiments have systemati¬

cally demonstrated that the execution time increases with the number of stages
for a fixed input size. This is due to the pipeline filling-up and draining times
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Figure 5.11: Load patterns for the 8, 16, and 32 node configurations.
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during normal execution and re-calibration. This can also be exacerbated by
the allocation of the different stages across multiple administrative domains,

particularly for the case of a re-calibration, which implies an execution barrier.
It is crucial to emphasise that these comparative figures have been based on

total execution time, as opposed to throughput, because our evaluation is con¬

cerned with a complete pipeline application with a fixed-size input on a given
number of stages. As mentioned in section 5.1, throughput provides a com¬

pletion rate, which is relevant for stream processing, i.e., continual pipeline

processing of an infinite-size input, where the pipeline filling-up and draining
times are irrelevant.

5.5 Discussion

In this chapter we have proposed an adaptive parallel pipeline which follows
the ASPara methodology presented in chapter 3. Initially, the calibration

phase maps stages to the best processors available in the system, and calcu¬
lates a performance threshold based on their processing times. Subsequently,
a feedback mechanism monitors the behaviour at run-time and re-maps the

stages to other processors if the threshold is surpassed. This pipeline is im¬

plemented as an algorithmic skeleton using a variable-size input data vector

and a stage function array. We have evaluated its efficiency using a numerical
benchmark stage function in a non-dedicated computational environment.

5.5.1 Outcomes

The adaptive approach has responded well under varying load conditions,
since the execution times in the non-adaptive parametrisation have increased
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at a considerably higher rate than the adaptive ones.

With respect to the analysis of the mapping problem, the findings of this

chapter provide an alternate approach, using an application-oriented calibra¬
tion in order to forecast resource utilisation. This tacitly reinforces the notion
that although computational grids are highly dynamic, forecasts based on his¬
torical resource utilisation can accurately provide guidance to distribute work¬
loads.

From a performance standpoint, it is arguable that the overall performance
of our pipeline pattern improves as long as variations in the bottleneck stage

are controlled through periodic performance monitoring and process migra¬
tion. Note that our pipeline reacted promptly to the load variations, including

flurries, preventing the development of a bottleneck for the pipeline process¬

ing. This is particularly useful, as workload flurries—repetitive activity surges,
caused by a single user, which dominate the workload for a relatively short

period—have been traced as a cause of performance disruption, and many

performance models filter them out [185].
It is important to emphasise that our evaluation has covered load variations

attributable to different processing capabilities, while preserving the complex¬

ity of the stage function constant. Although this scenario does not comprehen¬

sively address all possible pipeline applications, it certainly provides guidance
on the behaviour of the general case on distributed systems.

A meticulous examination of the methodology reveals that there is room

for a more instrumented approach to the determination of the re-calibration
threshold. Nonetheless, our work provides evidence that the proposed adap¬
tive method enhances pipeline parallelism performance: execution times are

almost an order ofmagnitude greater when the adaptive pipeline is not used.



Chapter 6

Conclusion

6.1 Introductory restatement

While simulation and theoretical formulations have traditionally provided a

preponderant foundation for generic approaches in the study of structured

parallelism, there is a clear need for empirical work to inquire into the perfor¬
mance of skeletons.

Although the performance modelling of algorithmic skeletons has been ex¬

tensively studied in the past, the use of the skeletal structure for performance
models has remained relatively unexplored. In particular, scant research has
been devoted to investigate the correlation between the skeleton structure, and
the application performance from a pragmatic standpoint. It is arguable that
such correlation requires some further study, in light of the possibility of de¬

vising generic strategies to enhance the performance of skeletal parallel pro¬

grams, executing in non-dedicated heterogeneous systems.

131
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6.2 Consolidation of Research Space

In this work, we have investigated the feasibility of using the information pro¬

vided by the structure of an algorithmic skeleton to enhance the performance
of the corresponding parallel program during execution. Being agnostic to the
skeleton behaviour, our 4-step methodology, ASPara, has deployed a prag¬

matic approach in order to instrument the parallel application at compilation
and allow the resulting parallel program to adapt at execution.

Having been conceived to function under the dynamic conditions of a non-
dedicated heterogeneous distributed system, we have evaluated ASPara un¬

der non-controlled circumstances in an open computational environment. This
thesis has employed two crucial task-parallel skeletons, the task farm and the

pipeline, to illustrate the feasibility of ASPara.

Task Farm Implementing a parameter sweep application, this skeleton has
evaluated ASPara using two different scenarios: a single-round schedul¬

ing, which employed times-only and statistical calibrations with no feed¬

back, and a multi-round scheduling with times-only calibration and pe¬

riodic adaptation throughout the execution. In addition to this continual

adaptivity, this case has illustrated the ability to automatically discrimi¬
nate between the multi- and single-round scheduling by introducing an

installment factor based on the dispersion of the calibration times of the

participating nodes.

Pipeline Using a known benchmark code, this skeleton assessed ASPara us¬

ing times-only calibration with a reactive strategy to adapt at execution.

By defining a threshold based on the dispersion of the calibration times
of the nodes, the skeleton has been able to expeditiously trigger a re-
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calibration to correct performance deviations and favourably conform to

resources variations in the system.

Our main findings can be summarised as:

1. the introduction of resource-awareness to a skeleton, using its structural
information andwithout altering its behaviour, has consistently improved
the performance of the resulting parallel program; and

2. the generation of automatic scheduling strategies without the need of

application foreknowledge, e.g. benchmarks or execution traces, is not

only feasible, but also efficient.

The former confirms our initial hypothesis as expressed in section 1.1, and
the latter derives from the course of action of this research as the calibration-

execution phase pairing has become in essence a scheduling scheme which
is both application-agnostic and automatic. While the application indepen¬
dence is inherent to the skeletal paradigm, the self-direction has been achieved

through sampling and statistical functions which reflect the state of the nodes
and the actual requirements of the application at hand.

6.3 Retrospective Analysis

This section furnishes a self-critical review of the doctoral project. It is pre¬

sented in an informal manner, as it relates the occurrences which determined

our specific choices and, ultimately, defined the course of the project.
After the initial inspection of the state of the field, initially adumbrated

in [103] and subsequently updated for the literature review in chapter 2, we
came up with the initial thesis proposal during the first year of the project.
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At that point, the proposal entailed the introduction of resource awareness

into parallel programs based on task-parallel skeletons, but did not explicitly
contained any specifics.

Following the attendance to the international summer school on grid com¬

puting and a research visit to the HLRS Stuttgart, we started to work on the
introduction of a heuristic definition of the task size for a single-round task
farm [98]. This became in turn the first significant result of the investigation,

as reported in [96]. It proposed to characterise the workload resource require¬

ments as a parametric function using NWS readings in order to determine
the task size at once. The relevance of this work is indicated by a couple of

organic citations from two different research groups in the States, the Neuron-
Grid group from Georgia Tech [44] and the Foster's group at Argonne National

Labs/University of Chicago [164], and a related citation from the eSkel group
at Edinburgh [197],

However, the actual characterisation was a parametric expression, defined
before the task farm execution, and subsequently fed into the task farm skele¬
ton. Such 'off-line' characterisation while useful, could easily become super¬

annuated due to resource variability. As a result, the dynamic calculation of

parametric expression using a calibration phase was introduced. It executed
a sample of the workload on the processor pool and defined the task sizes ac¬

cordingly. Since then, a more complete empirical study was later carried out,

using the calcium current parameter-sweep, and published as a journal arti¬
cle [99].

The pipeline skeleton was later developed using the same conceptualisa¬
tion of a calibration phase as the execution of a sample of the workload in
order to select the fittest nodes from the pool, as described in [100].

At this point, ASPara was fully conceptualised as a generic four phase
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methodology—which included programming, compilation, calibration, and
execution—and reported in [101]. From then on, most of the effort was con¬

centrated on obtaining empirical results and introducing the feedback, either

periodic or reactive, to the execution phase. The latest paper [102] described
the empirical results for the pipeline skeleton.

6.3.1 Lessons Learnt

Working with real application is very time-consuming We were able to eval¬
uate the resource awareness capabilities using a real-world application,
and demonstrate the applicability of this investigation and yielded to two

publications in computational cell biology [104, 105]. Nonetheless, it is
also important to say that it was a lengthy endeavour, which could not
be replicated for the pipeline case, as it could have delayed the investiga¬
tion.

Working with non-dedicated environments is challenging As documented along
with the case studies, the system load patterns greatly varied during the

empirical evaluation. While this provided an interesting testbed, itmade
our runs virtually irreproducible. Demonstrated via the coefficient of

variation, the statistical relevance of our results proved to be acceptable
for the external reviewers in our contributions to specialised conferences.

Publishing partial results is beneficial Continual publication of partial results
of this investigation greatly helped to compile, in a structured fashion,
the final thesis, as well as provided feedback from independent review¬
ers.

Administrative issues are complex Our initial experiments were executed on
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a geographically-distributed heterogenous multi-cluster system. While
the results obtained were interesting, the administrative matters were

daunting: it took several days to have both sides, Edinburgh and Stuttgart,
to first agree on the network set-up—even though there has been a bilat¬
eral cooperation agreement in place for a number of years—, and then
such configuration was available for a very limited period of time. The
UK's National Grid Service did not have, nor plan to have, node co-

allocation and resource monitoring tools configured with its Globus in¬

frastructure, at least during the initial years of the project. In a nutshell, it
could have been interesting to execute all experiments using a multi-site

configuration, potentially located across several countries in the world,

but, as it stands, the administrative side is lagging far behind the tech¬

nology.

6.4 Practical Application

In addition to the immediate possibility of parallelising applications with the

developed skeletons, we believe this thesis can be applied in computational

biological patterns and scheduler evaluation.

6.4.1 Computational Biological Patterns

As illustrated by our computational biology application, the use of resource-
aware skeletons has yielded to the effective implementation of real-world ap¬

plications in different fields of study. Their efficient use of computational re¬
sources poses them in a preeminent position to effectively enable parallel ap¬

plications in heterogeneous distributed environments.
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Hence, the development of resource-aware resolution skeletons for systems

biology can be further explored. This may create computational biological pat¬

terns, which systematically name, explain, and evaluate a recurring design in

systems biology, analogous to a software pattern. The identification of these

biological patterns, from a computational standpoint, is key to characterise the
behaviour of a biological system. As an example, when the structure and prop¬
erties of a set of regulatory circuits have been realised, it is crucial to be able to
characterise their pattern to "reveal a possible evolutionary family of circuits
as well as a periodic table for functional regulatory circuits." [128]

The ultimate objective is to produce a "pattern-based" framework to al¬
low biological models—expressed as biological patterns—to be implemented
as parallel applications using computational biological patterns—in the form
of adaptive algorithmic skeletons. This patterns will help bench scientists to

execute multiple parametric simulations of a biological system. Based on their

biological patterns, different models will be able to be evaluated against a

given hypothesis. These different models, comprised into the representative
set of algorithms, can be deployed using adaptive skeletons in a heterogeneous
distributed system. In particular, we strongly believe this has immediate ap¬

plication to the modelling of cellular processes.

6.4.2 Scheduler Evaluation

From its conception, ASPara has been designed to include application-agnostic

APIs, which are automatically parameterised at execution time, according to

the application and node dispersion. To this end, ASPara comprises a series

of statistical methods of processor scheduling heuristics.

ASPara lays only the foundations for the skeleton scheduling, and it can
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be easily conceived as an evaluation framework where different scheduling
schemes can be plugged into, evaluated, and incorporated into an algorithmic
skeleton.

6.5 Final Remarks

The ASPara methodology certainly merits further investigation, especially in
the development of a generic calibration phase which can incorporate func¬
tions with different complexities. While the complexity of such functions sug¬

gests heuristical approaches, they may shed additional light on the different
calibration options.

As discussed, an open possibility is the use of ASPara combined with res¬

olution skeletons in order to encapsulate domain-specific knowledge for the

development of resource-aware applications and, eventually, of frameworks
for a given field of study. Furthermore, as a resource-aware resolution skele¬
ton would reflect the properties of the application at hand, one could speculate
on the possibility of developing ad-hoc resource-aware constructs for a deter¬
mined field of study, e.g., resource-aware computational biology patterns.

As a byproduct, this research has provided a useful input to the application
of MPI collectives in geographically-distributed computational grids, as their

performance has dwindled as the number of nodes increased in our initial ex¬

perimentation using the Stuttgart-Edinburgh configuration. As the study of
collective constructs remains an active area of research in parallel comput¬

ing [49, 160], this reinforces the need for the development of topology and
resource-awareMPI collectives.

In summary, whatever issues remain in the management of system resources,

there exists little reason to doubt the resource availability-performance premise.
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Within a framework in which resource availability is treated as an unobserved

variable, the data seems fully compatible with the hypothesis first introduced
in section 1.1, provided the right load patterns are acknowledged.

Certainly, acceptance of the hypothesis does not yield a generic resource

characterisation function for parallel programming, since no general equation
for system performance using resource variables has been developed. Hence,

empirical studies, such as this one, will continue to shed light on the system

performance research area.
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