39 research outputs found

    Quality of Experience and Adaptation Techniques for Multimedia Communications

    Get PDF
    The widespread use of multimedia services on the World Wide Web and the advances in end-user portable devices have recently increased the user demands for better quality. Moreover, providing these services seamlessly and ubiquitously on wireless networks and with user mobility poses hard challenges. To meet these challenges and fulfill the end-user requirements, suitable strategies need to be adopted at both application level and network level. At the application level rate and quality have to be adapted to time-varying bandwidth limitations, whereas on the network side a mechanism for efficient use of the network resources has to be implemented, to provide a better end-user Quality of Experience (QoE) through better Quality of Service (QoS). The work in this thesis addresses these issues by first investigating multi-stream rate adaptation techniques for Scalable Video Coding (SVC) applications aimed at a fair provision of QoE to end-users. Rate Distortion (R-D) models for real-time and non real-time video streaming have been proposed and a rate adaptation technique is also developed to minimize with fairness the distortion of multiple videos with difference complexities. To provide resiliency against errors, the effect of Unequal Error protection (UXP) based on Reed Solomon (RS) encoding with erasure correction has been also included in the proposed R-D modelling. Moreover, to improve the support of QoE at the network level for multimedia applications sensitive to delays, jitters and packet drops, a technique to prioritise different traffic flows using specific QoS classes within an intermediate DiffServ network integrated with a WiMAX access system is investigated. Simulations were performed to test the network under different congestion scenarios

    New rate adaptation method for JPEG2000-based SNR Scalable Video Coding with Integer Linear Programming models

    Get PDF
    Abstract—In the last few years scalable video coding emerged as a promising technology for efficient distribution of videos through heterogeneous networks. In a heterogeneous environment, the video content needs to be adapted in order to meet different end terminal capability requirements (user adaptation) or fluctuations of the available bandwidth (network adaptation). Consequently, the adaptation problem is a critical issue in scalable video coding design. In this paper we introduce a new adaptation method for a proposed JPEG2000-based SNR scalable codec, that formulates and solves the adaptation problem as an Integer Linear Programming problem

    Recent Advances in Region-of-interest Video Coding

    Get PDF

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    Video Encoder Optimization for Real - Time Communication

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced heterogeneous video transcoding

    Get PDF
    PhDVideo transcoding is an essential tool to promote inter-operability between different video communication systems. This thesis presents two novel video transcoders, both operating on bitstreams of the cur- rent H.264/AVC standard. The first transcoder converts H.264/AVC bitstreams to a Wavelet Scalable Video Codec (W-SVC), while the second targets the emerging High Efficiency Video Coding (HEVC). Scalable Video Coding (SVC) enables low complexity adaptation of compressed video, providing an efficient solution for content delivery through heterogeneous networks. The transcoder proposed here aims at exploiting the advantages offered by SVC technology when dealing with conventional coders and legacy video, efficiently reusing information found in the H.264/AVC bitstream to achieve a high rate-distortion performance at a low complexity cost. Its main features include new mode mapping algorithms that exploit the W-SVC larger macroblock sizes, and a new state-of-the-art motion vector composition algorithm that is able to tackle different coding configurations in the H.264/AVC bitstream, including IPP or IBBP with multiple reference frames. The emerging video coding standard, HEVC, is currently approaching the final stage of development prior to standardization. This thesis proposes and evaluates several transcoding algorithms for the HEVC codec. In particular, a transcoder based on a new method that is capable of complexity scalability, trading off rate-distortion performance for complexity reduction, is proposed. Furthermore, other transcoding solutions are explored, based on a novel content-based modeling approach, in which the transcoder adapts its parameters based on the contents of the sequence being encoded. Finally, the application of this research is not constrained to these transcoders, as many of the techniques developed aim to contribute to advance the research on this field, and have the potential to be incorporated in different video transcoding architectures

    A scalable approach to video summarization and adaptation

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, octubre de 201
    corecore