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Abstract—In the last few years scalable video coding emerged
as a promising technology for efficient distribution of videos
through heterogeneous networks. In a heterogeneous environ-
ment, the video content needs to be adapted in order to meet
different end terminal capability requirements (user adaptation)
or fluctuations of the available bandwidth (network adaptation).
Consequently, the adaptation problem is a critical issue in
scalable video coding design. In this paper we introduce a new
adaptation method for a proposed JPEG2000-based SNR scalable
codec, that formulates and solves the adaptation problem as an
Integer Linear Programming problem.

Index Terms—Scalable video coding, rate adaptation,
JPEG2000, Integer Linear Programming.

I. INTRODUCTION

In the last years, scalable video coding emerged as a promis-
ing technology for efficient distribution of videos through
heterogeneous networks, and it has been recently standardized
as scalable extension of the H.264/AVC standard [1], hereafter
indicated as SVC. An useful overview of the SVC extension
can be found in [2]. The main advantage of SVC is that it
offers coding flexibility to decode different “working points”
in terms of spatial, temporal and quality resolution from a
unique coded representation. In a heterogeneous environment
typically the video content needs to be adapted in order
to meet different end terminal capability requirements (user
adaptation) or fluctuations of the available bandwidth (network
or rate adaptation). In this work we address only the rate
adaptation problem. The scalability features given by the
scalable video coding offer a very flexible way to perform
the adaptation, for example reducing the spatial resolution
or the video quality. In particular, with the SVC scalability
features, rate adaptation can be efficiently managed using
quality scalability, i.e. coarse grain (CGS) or fine grain (FGS)
scalability. Although the intrinsic support for adaptation pro-
vided with the scalability, the problem of the adaptation for

scalable video content is an open research issue that is still
under investigation.

An exhaustive survey on the proposed approaches for
solving the adaptation problem can be found in [3]. In [3]
different classification criteria and properties of the adaptation
methods are presented. For the purpose of the present work,
three aspects have to be considered when comparing different
adaptation methods:

• the performance, evaluated in terms of decoded quality
(depending on a particular metrics) of the extracted data.

• the satisfaction of additional constraints on the decoded
video sequences.

• the complexity of the adaptation process.

Among the different approaches presented in [3] the first and
most attractive approach proposed for rate adaptation with
SVC is that proposed in [4]. Recently, another interesting
approach has been proposed in [5]. In [5] the authors compare
their approach to that in [4] and they show that the two
approaches have similar extraction performance. Since the
implementation of the approach in [4] is included in the SVC
reference software (JSVM 9, version 9.14) [6] we decide to use
only this approach as reference for evaluating the performance
of our method, described in the following sections.

Although SVC is the reference standard for scalable video
coding, other scalable video coding approaches has been pro-
posed in literature. Most of them are based on the wavelet tech-
nology, that has native spatial scalability features. Furthermore,
JPEG2000 is the state-of-the-art in still image compression and
it offers very efficient spatial and SNR scalability. Inspired
by the potentialities of JPEG2000 and the previous wavelet
approaches we have proposed a very simple but efficient new
scalable video coding solution based on JPEG2000. In Section
II we define the architecture of the proposed codec and the
main features of JPEG2000 that are fundamental to understand
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Fig. 1. Proposed JPEG2000-based codec architecture

the proposed adaptation solution. At present, the proposed
architecture is still under investigation relatively to the spatial
scalability. Thus, in this work, we only focus on the SNR
scalability, also avoiding to consider the temporal scalability
for adaptation purposes.

The main idea behind the proposed approach is that the rate
adaptation problem for SNR scalable coding can be seen as
an “optimal resources allocation” problem and thus formulated
using Integer Linear Programming (ILP) as follows:

minimize cTx

subject to
{

Ax ≥ b
x ≥ 0 integer

(1)

where cTx is the objective function and describes the target
of the adaptation problem, Ax ≥ b represents the constraints
given by the coding system and additional constraints on the
decoded video sequence and x is a vector of binary unknowns
describing how resources are allocated.

In Section III we describe the proposed integer program-
ming problem for rate adaptation and underline some of its
properties. Although NP-hard, the problem (1) can be effi-
ciently solved by means of a commercial software for mixed
integer linear programming such as CPLEX and exploiting
particular properties of the model. Finally, Section IV is
devoted to compare our approach performance with that of the
method in [4], whereas in Section V conclusions and possible
future developments are drawn.

II. PROPOSED CODEC SOLUTION

The proposed scalable video coding system, that at present
only offers temporal and SNR scalability features, is based on
a very simple architecture shown in Figure 1. The input video
sequence is temporally decomposed using a similar approach
to Hierarchical B-picture decomposition proposed for SVC
(see [2] and [7]), that enables closed-loop motion estimation
and native temporal scalability. Hierarchical B-picture decom-
position is based on the definition of key picture and group
of picture (GOP). The first picture of a video sequence is
an intra-coded picture, while the other key-pictures could be
intra-coded or inter coded using the previous key pictures as
reference. Usually key-pictures are coded at regular intervals,
and the distance between two key-pictures defines the GOP
length. In fact a key picture and all pictures that are temporally
located between the key picture and the previous key picture
are considered to build a group of pictures. Figure 2 shows
a typical decomposition structure based on hierarchical B-
picture for a GOP with length equal to 8. This particular GOP
structure enables 4 levels of temporal scalability. In the first

one, which we call level 0 and represents the sequence at its
lowest available frame rate, we consider only the sequence
made of key pictures, while in a generic level i (i ≥ 1)
we consider the pictures used at lower temporal levels plus
the pictures indicated in Figure 2 as “B level i” pictures.
For each GOP there is only 1 “B level 1” picture and it
is predicted using the key picture of the previous GOP for
forward prediction and the key picture of the same GOP for
backward prediction. For i > 1 the “B level i” pictures are
predicted using the pictures belonging to the lower temporal
resolution. It should be noticed that the hierarchical B-picture
structure enables closed-loop coding. In fact, the encoding
order is different from the display order. The first encoded
picture is the first frame of the sequence, then for every
GOP we encode the key picture before motion estimation
and compensation for the “B level 1” picture. Then every
“B level i” picture is encoded before motion estimation and
compensation of the “B level i + 1” pictures. This encoding
order ensures that at each temporal level the motion estimation
and compensation process uses the already encoded reference
pictures.
In the proposed scalable video codec the hierarchical B-picture
decomposition is adopted with the only constraint that the key-
picture of each GOP can be only intra-coded.

After the temporal decomposition, for each GOP, the key-
picture and the moto-compensation residual for all the B-
pictures within a GOP are encoded with a JPEG2000 frame-
work as a single picture. SNR scalability is obtained generating
JPEG2000 codestreams with multiple quality layers. Since
the proposed work addresses only the SNR scalability, in the
following we overview the main features of JPEG2000 that
are fundamental to understand the model proposed in Section
III.
JPEG2000 is the state-of-the-art in image compression and
is based on the Discrete Wavelet Transform (DWT), together
with Embedded Block Coding with Optimized Truncation
(EBCOT) [8]. D stages of DWT analysis decompose the image
into 3D+1 subbands, labeled LHd, HLd, HHd and LLD, for
d = 1, ..., D. An useful overview of the main features of
JPEG2000 can be found in [9], while for a complete technical
description the reader is referred to [10]. Each subband is
partitioned into rectangular blocks called code-blocks, each
of which is independently coded. Resolution scalability is
obtained by discarding the code-blocks of detail subbands and
omitting the final DWT synthesis stage. Quality scalability
is obtained through a “quality layers” abstraction. Each layer
represents an incremental contribution (possibly empty) from
the embedded bit-stream associated with each code-block in
the image. Discarding one or more layers (starting from the
highest one) produces a representation of the code-block with
lower quality. JPEG2000 also defines collections of spatially
adjacent code-blocks as “precincts”. Each precinct of resolu-
tion level LLd consist of the code-blocks corresponding to the
same spatial region within the subbands LHd+1, HLd+1 and
HHd+1 if d < D, or within the subband LLD if d = D. The
data-stream associated with each precinct is organized as a
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Fig. 2. Hierarchical B-pictures temporal decomposition with GOP size equal to 8

collection of “packets”, one for each quality layer.

III. RATE EXTRACTION OPTIMIZATION

As previously described, the rate adaptation problem can be
formulated as a problem of optimal allocation of resources.
Since in the proposed scalable video codec the frames (intra-
frames and moto-compensated residual) are encoded using
JPEG2000, the “resources” that have to be allocated are the
JPEG2000 coding elements. In the proposed integer model the
minimum addressable coding element is the JPEG2000 packet,
whereas we avoid to consider for the adaptation the motion
information.

In the proposed approach the adaptation is performed inde-
pendently on each GOP (with length equal to F frames and F
is a power of 2), and consequently the optimal allocation of the
JPEG2000 packets has to be performed in order to minimize
the overall distortion over the GOP, given by:

DTOT =
F∑
t=1

Dt (2)

where Dt is the distortion for the frame t evaluated as
MSE between the original and the decoded frame. The total
distortion (2) represents the objective function cTx of the
model (1). The “budget” available for the allocation is given
by the bandwidth or equivalently by the data-rate. Given the
GOP length and the frame-rate of the sequence, it is always
possible to determine the amount of bits L that can be used
to encode each GOP, where constant bit-rate transmission is
considered.

In section III-A the expressions for the distortion of the key-
picture and the B-pictures within each GOP will be provided,
avoiding the mathematical details that can be found in [11],
while in section III-B the ILP model will be presented.

A. Distortion computation

First, we introduce the distortion contribution given by a
single JPEG2000 packet. Let I be the number of precincts in
each frame (supposed to be constant over the frames), K the
number of quality layers included in the data-stream associated
with each precinct and F the GOP length (in frames). We

define the following quantities: Pti a generic precinct i, i =
1, ..., I , belonging to frame t, t = 1, ..., F , Pt,ki the decoded
version of Pti using k, k = 1, ...,K, quality layers and Lt,ki
the size (in bits) of the first k packets related to the precinct
Pti . The distortion introduced approximating Pti with Pt,ki is
given by Dt,k

i = ‖Pti −P
t,k
i ‖2. Introducing the rate-distortion

slope St,ni , defined as the ratio ∆D/∆L related to each quality
layer of each code-block, the distortion Dt,k

i can be expressed
as:

Dt,ki = Dt,Ki +
K∑

n=k+1

St,ni ∆Lt,ni (3)

where Dt,K
i is the distortion experienced (possibly equal to 0)

if all the quality layers are considered, ∆Lt,ni = Lt,ni −L
t,n−1
i

is the size (in bits) of the quality layer n and St,ni ∆Lt,ni is the
distortion contribution given by the layer n. Unfortunately, the
exact calculation of the distortion introduced for each precinct
Pti require the knowledge of the rate-distortion slopes St,ni .
Typically, in order to reduce the overhead required to maintain
this slope information, only the rate-distortion slope threshold
values used for the layer generation are included into the
JPEG2000 codestream header (see [10] for more details). This
means that the rate distortion slope for a particular layer n is
considered to be constant over the precincts and equal to the
threshold T nt . Using the rate-distortion slope thresholds the
distortion (3) can be approximated as:

D̂t,ki = Dt,Ki +
K∑

n=k+1

T nt ∆Lt,ni (4)

In order to estimate the overall distortion DTOT , the main
assumption that is considered hereafter is that the JPEG2000
packets are independent, that is approximately true for the
9/7 tap biorthogonal filters typically used in JPEG2000. This
leads to an additive model for the distortion of a frame
so that the sum of all the precincts distortion contribution∑I
i=1Dti , where the single contribution Dti is estimated using

the equation (4), can be considered as a good approximation
of Dt.
In order to estimate the distortion of a generic frame t inside
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Fig. 3. Typical Rate-Distortion performance of a key-picture encoded with 8 quality layers
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Fig. 4. Analysis of the drift distortion contribution on B-frames at different temporal levels

each GOP, different expressions has to be considered for
intra-frames (key-pictures) and inter-frames (B-pictures). To
correctly define these quantities in view of their use inside the
integer problem, we need to introduce the problem variables as
follows. Let x = (x1, ...,xF) be a vector of binary variables
where xt is given by:

xt =
(
xt,11 , . . . , xt,K1 , xt,12 , . . . , xt,K2 , . . . , xt,1I , . . . , xt,KI

)
Each binary variable xt,ki assumes value 1 if the JPEG2000
packet made by the layer k of the precinct Pti is considered
in the decoding process and 0 otherwise.
Intra-frames are managed as still pictures, and this leads to a
straightforward expression for the distortion estimation:

D̂F = DF,K +
I∑
i=1

K∑
k=1

(1− xF,ki )T kF ∆LF,ki (5)

where we recall that with the hirarchical B-picture decompo-
sition the key-picture is always the last picture of each GOP
and consequently it is in position F , and that DF,K is the
key picture distortion if all the quality layers are decoded.
The correctness of the expression (5) has been experimentally
validated, and the results are reported in Figure 3 which is
referred to a key-picture encoded with 8 quality layers. Figure
3 compares the distortion model given by the equation (5) to
the real distortion experimentally measured. Figures 3(a), 3(b)
and 3(c) show respectively the Rate-Distortion performance
for the quality layer 1,3 and 7. For a particular layer, each

point in the R-D curve is the contribution given by a precinct,
i.e. the contribution of a packet, to the distortion reduction
of the whole frame. As it can be noticed in Figure 3 the
distortion model given by equation (5) is quite accurate, except
for the very first quality layer. For the purpose of the rate
adaptation, this distortion model inconsistency in the lowest
quality layer is negligible, since in typical adaptation scenario
the lowest quality layer is always fully considered in the
decoding process, and, as it can be noticed from Figure 3(a),
the overall distortion contribution given by layer 1 is correctly
estimated with the model (5).

The expression of the distortion for an inter-frame is not
easy to derive, since the hierarchical B-picture decomposi-
tion with closed-loop motion estimation introduces complex
relationships between the distortion on the inter-frames at a
particular level of temporal decomposition and the distortion
on the reference frames of the higher temporal levels.
Briefly, the distortion on the inter-frames depends on two
factors: the distortion on the motion-compensated residual
related to the inter-frame and the “drift” effect that depends on
the fact that in SNR scalability different “quality version” of
the reference frames could be used for motion compensation.
If the quality version that has been used at the encoder
for the motion estimation and compensation process is not
available at the decoder, for example because parts of the
video bitstream are discarded for rate adaptation purpose, the
drift is introduced. The drift problem can be reduced using
a low quality version of the reference frames for motion



D̂τ =

initial distortion︷ ︸︸ ︷
2τ−1∑
y=1

Dλ,K +

motion-compensated residual component︷ ︸︸ ︷
2τ−1∑
y=1

I∑
i=1

K∑
k=1

(1− xλ,ki )T kλ ∆Lλ,ki +

drift component from lower temporal layers︷ ︸︸ ︷
τ−1∑
z=1

2z−1∑
w=1

2τ−2−z

[
I−1∑
i=0

H∑
k=1

(1− xλz,ki )T kλz∆L
λz,k
i

]
+

+ 2τ−3
I∑
i=1

K∑
k=1

(1− xF,ki )T kF ∆LF,ki︸ ︷︷ ︸
drift component from GOP key-picture

+ 2τ−3
I∑
i=1

K∑
k=1

(1− xP,ki )T kP ∆LP,ki︸ ︷︷ ︸
drift component from previous GOP key-picture

(6)

estimation and compensation, but it is well know that this
choice decreases the prediction efficiency and consequently the
coding performance. Therefore, the common adopted solution
is to use the highest available quality version, i.e. considering
all the quality layers, for the reference frames in motion
estimation and compensation process, and to accept the drift
effect. Furthermore, with the hierarchical B-picture temporal
decomposition, the drift effect also depends on the temporal
level. Intuitively, referring to Figure 2, it is clear as the drift
component of the distortion introduced on the “B-level-1”
picture f4 depends only on the key-pictures fP and f8, the
drift effect introduced on the “B-level-2” picture f2 depends
on the the key-picture fP and the “B-level-1” picture f4 (that
is also affected by f8), and so on.

Although we intentionally avoid the mathematical details,
it can be shown that a good approximation of the overall
distortion on the “B-level-τ” frames, τ = 1, ..., log2 F , is
given by equation (6), where

λ = s+ (y − 1)δ δ =
F

2τ−1
s =

F

2τ

λz = sz + (w − 1)δz δz =
F

2z−1
sz =

F

2z

It is important to note as in expression (6) it has been
considered that the highest available quality version of the
reference frames has been used for motion estimation and
compensation, as previously described. This means that the
three drift components are affected by all the missing quality
layers up to K.
Although the proof of the expression (6) can be found in
[11], the expression has been experimentally validated, and the
results are shown in Figure 4. Figure 4 shows the distortion on
the frames that belong to different temporal levels, assuming
that the motion-compensated residual if fully considered in the
decoding process. Consequently, the distortion is given by the
effect of the three drift components and the initial distortion
(not equal to 0 since lossy coding is considered). In order to
show the effect of the drift and its approximation given by
equation (6), we discard whole quality layers of the reference
frames in the decoding process, from 0 discarded layers (no
drift) to 5 quality layers, where the encoding process has been
performed generating 8 quality layers.
As it can be noticed in Figure 4 the distortion model given by
equation (6) is accurate assuming to discard up to 3 quality lay-
ers, a model error of approximately 10% is evidenced for the

fourth discarded layer while a greater error is introduced from
the fifth discarded layer. Nevertheless, some consideration has
to be done in order to justify the error introduced. First, the aim
of the proposed work is not to give a quantitative expression of
the GOP distortion, but to provide a consistent approximation
in order to use it for the rate adaptation model described in
the following section. Furthermore, the approximation error is
introduced only if we discard many quality layers, that means
that most of the original video bitstream has to be discarded
for rate adaptation purposes. Nevertheless, the typical rate
adaptation scenario that has been considered in the simulations
performed assumes to discard from 30% to 50% of the
compressed video bitstream. It has been verified that in this
range the proposed distortion models are accurate.

B. The ILP model
We now describe how modeling the optimal extraction as an

ILP problem. The vector x of binary variables has already been
defined. We use binary variables since, in order to optimize the
decoding performance, we assume to decode only full packets
and the situation in which part of packets are forwarded or
discarded is not taken into account. The objective function of
the ILP problem is represented by the overall distortion (2)
that, using the distortion models introduced in the previous
section, can be approximated as

D̂TOT =
F∑
t=1

D̂t = D̂F +
log2 F∑
τ=1

D̂τ (7)

where D̂F and D̂τ are respectively given by equations (5) and
(6).

In the basic ILP model two types of constraints can be iden-
tified: the quality layer constraints and the budget constraint.
By the progressive layers generation process of the EBCOT
algorithm, the extraction has to verify the following conditions:

xt,ki − x
t,k+1
i ≥ 0 (8)

with i = 1, ..., I , k = 1, ...,K − 1 and t = 1, ..., F . As
previously described, the amount of packets that have to be
discarded to perform the adaptation depends on the available
bandwidth, that could be converted in terms of bits (L)
available for each GOP. Consequently, the following budget
constraint has to be considered:

F∑
t=1

I∑
i=1

K∑
k=1

xt,ki ∆Lt,ki ≤ L (9)



The exact solution of the described ILP problem provides the
Rate-Distortion optimal way to adapt the bitstream for each
GOP. Additionally, further constraints could be introduced in
order to satisfy particular decoding requirements. For example,
in the performed tests the video sequences have been encoded
in order to enable near constant decoded quality if the full
video bitstream is decoded. Typically, after the rate adaptation
process this feature is not maintained. In order to limit
the decoded quality fluctuation potentially introduced by the
adaptation, the following constraints could be introduced in
the ILP model:

β
D̂TOT

F
≤ D̂t ≤ γ D̂TOT

F
t = 1, ..., F (10)

where β ≤ 1 and γ ≥ 1. The constraints (10) controls the
fluctuation of the distortion on the single frame with respect to
the mean distortion over the GOP. Adjusting the values β and
γ it is possible to control the level of the distortion fluctuations.
Nevertheless, it is important to note that the introduction of
the constraint (10) does not guarantee that the ILP problem
have a solution for all the values of β and γ. Furthermore, it
is expected that the decoding performance will be reduced in
order to satisfy the constraints. The effect of the constraints
(10) on the decoding performance will be analyzed in section
IV.

In contrast to Linear Programming (LP) problems, which
can be efficiently solved, ILP problems are typically NP-
hard thus requiring a computational time which increases
exponentially with the problem size. The analyzed problem is
NP-hard. Nevertheless, it has a particular structure. The matrix
associated to the quality layer constraints (8) can be shown to
be Totally Unimodular (TUM) (a proof is provided in [11]).
ILP problems with TUM constraint matrix and integer right-
hand-sides can be solved very efficiently, since the optimal
solution of the related LP problem (obtained relaxing the
constraint that variables x are integer) corresponds to the
optimal integer solution. However, it has to be noted that the
constraints matrix of our problem is not TUM, since we have
the extra budget constraint (9) and eventually the constraints
(10) for the distortion control. Nevertheless, the constraint (9)
is a classical knapsack constraint, that can be efficiently man-
aged by common solvers for mixed integer linear programming
problems as CPLEX. Different considerations has to be done
for the constraints (10), that, depends on the values of β and
γ, could decrease the model resolution efficiency.

IV. EXPERIMENTAL VALIDATION

To validate our method we compare it to the approach
proposed in [4]. It is worth noticing that the two approaches
are applied on different scalable video codec, i.e. SVC and the
proposed JPEG2000-based video codec. In order to compare
the different coding performance of the two systems Figures
5(a) and 5(b) show the comparison of the two codecs in single
layer mode, i.e. generating a non-scalable bitstream. As it
can be noticed, SVC has better compression performance. A
deeper investigation shows that this difference depends on the
features of the video sequence.

Two aspects are evaluated related to the SNR extraction
performance: the mean PSNR over the frames obtained ex-
tracting sub-bitstream at different data-rate from the full SNR
scalable bitstream, and the PSNR fluctuations (evaluated as
the PSNR standard deviation) between the frames. The PSNR
fluctuations are evaluated since the method proposed in [4]
operationally starts by discarding parts of the full scalable
bitstream from the lower temporal layers. This approach
enables to maximize the mean distortion over the frames but
could introduce a fluctuation of the video quality that generates
annoying visual artifacts.
As previously described, due to the discrepancy between
the real distortion and the proposed distortion models, the
rate adaptation is performed in order to discard up to the
50% of the full video bitstream. As shown in Figures 5(c)
and 5(d), the proposed extraction model enables comparable
performance for Soccer sequence, and better performance for
Harbour sequence. However, for both the sequences the coding
performance in SNR extraction scenario increases compared
to the single layer scenario. Furthermore, Figures 5(e) and 5(f)
show as the proposed approach maintains limited the PSNR
fluctuations compared to [4], especially at higher bitrates.
It has to be noted that at lower bitrates the extraction perfor-
mance of the proposed method decreases compared to SVC.
This not only depends on the lower coding efficiency of our
codec compared to SVC, but also by the consideration that
the proposed distortion models became inaccurate when many
quality layers have to be discarded, as described in section
III-A, generating a non-optimal extraction.

Relatively to the additional constraints (10), in Figure 6
is shown the effect of the constraints on the extraction per-
formance and on the PSNR fluctuations, where the distortion
fluctuations have been controlled setting β = 0 and γ = 1.1.
Figure 6(a) shows how the additional constraints decrease
the extraction performance of approximately 0, 5dB, but, as
shown in Figure 6(b), with a considerable reduction of the
PSNR fluctuations.

As a final remark, it is important to note as the computa-
tional time of the proposed adaptation approach is negligible.
For example, in the test reported in Figure 5 we used a video
sequence at 4CIF resolution (704x576 pixel), a GOP length
equal to 8 frames, and we configured the JPEG2000 encoder
in order to have 5 levels of resolution, precinct size equal to
64×64 pixel and 8 quality layers. This leads to approximately
3000 JPEG2000 packets (equal to the problem size) for each
GOP. For each GOP the optimal allocation of the rate, obtained
solving the ILP problem with the CPLEX version 8.1 [12],
is performed in fractions of seconds, approximately 2 or 3
tenths of a second. This is mainly due the special structure
of the described problem. Similar computational time can be
obtained also increasing the problem size, for example for
video at High Definition (HD) resolution. Furthermore, even
in the test reported in Figure 6 when the additional constraints
(10) have been added to the model, the optimal allocation is
performed in similar computational time. This is mainly due
to the fact that the distortion threshold γ = 1.1 is not very
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restrictive. Decreasing its value increases the computational
time required to solve the model.

V. CONCLUSIONS

In this work we propose an efficient method for SNR
scalable video adaptation based on the formulation of the
adaptation problem as an Integer Linear Programming problem
and successfully applied to a JPEG2000-based scalable video
codec. The proposed approach shows two very interesting
features. First, it provides a comparable performance with
respect to the adaptation method used for SVC. Secondly, the
TUM property of part of the constraints matrix of the proposed
ILP problem can be exploited to find efficient approximated
solutions (for instance, by means of Lagrangian Relaxation)
to more complex adaptation problems where additional con-
straints such as a further control on the distortion fluctuation
are introduced.
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