113 research outputs found

    Time-Offset Fractional-N PLLs for Heterodyne FMCW SAR

    Get PDF
    This text contains an investigation into the use of time-offset fractional-N phase locked loops (PLLs) for heterodyne frequency-modulated continuous-wave (FMCW) synthetic aperture radar (SAR) and the impact of spurii on such a system. Heterodyne receiver architectures avoid phenomena which limit the sensitivity of their homodyne counterparts, and enable certain inter-antenna feed-through suppression techniques. Despite these advantages, homodyne receivers are more prevalent owing to advantages in size, weight and cost. Designed to address this dilemma, the miloSAR is believed to be the only heterodyne FMCW SAR to employ a pair of time-offset fractional-N PLLs for waveform synthesis to enable low-cost heterodyning and simplify filter-based feed-through suppression. This system architecture is revealed to be susceptible to swept-offset spurii termed spur chirps which hinder the sensor's performance. While integer boundary spurs and phase detector harmonics infamously plague fractional-N PLLs, their resultant spur-chirps have not seen analysis in the context of FMCW SAR. Simulations and measurements reveal that these spurii significantly degrade SAR image quality in terms of peak sidelobe ratio, structural similarity index measure and root mean square error. To combat this, several suppression techniques were assessed, namely: time domain zeroing, PLL loop bandwidth reduction, and a novel method termed range-Doppler spur masking. A subset of these suppression techniques were applied to measured SAR data sets, including car-borne data measured in Iowa, USA and airborne data captured in Oudtshoorn, South Africa. These results show that the impact of spur chirps can be effectively quelled, meaning that time-offset fractional-N PLLs offer an attractive, low-cost approach to the implementation of heterodyne FMCW SAR

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Techniques for Wideband All Digital Polar Transmission

    Get PDF
    abstract: Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured −113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the Σ-Δ noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the Σ-Δ modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz

    Hybrid DDS-PLL based reconfigurable oscillators with high spectral purity for cognitive radio

    Get PDF
    Analytical, design and simulation studies on the performance optimization of reconfigurable architecture of a Hybrid DDS – PLL are presented in this thesis. The original contributions of this thesis are aimed towards the DDS, the dithering (spur suppression) scheme and the PLL. A new design of Taylor series-based DDS that reduces the dynamic power and number of multipliers is a significant contribution of this thesis. This thesis compares dynamic power and SFDR achieved in the design of varieties of DDS such as Quartic, Cubic, Linear and LHSC. This thesis proposes two novel schemes namely “Hartley Image Suppression” and “Adaptive Sinusoidal Interference Cancellation” overcoming the low noise floor of traditional dithering schemes. The simulation studies on a Taylor series-based DDS reveal an improvement in SFDR from 74 dB to 114 dB by using Least Mean Squares -Sinusoidal Interference Canceller (LM-SIC) with the noise floor maintained at -200 dB. Analytical formulations have been developed for a second order PLL to relate the phase noise to settling time and Phase Margin (PM) as well as to relate jitter variance and PM. New expressions relating phase noise to PM and lock time to PM are derived. This thesis derives the analytical relationship between the roots of the characteristic equation of a third order PLL and its performance metrics like PM, Gardner’s stability factor, jitter variance, spur gain and ratio of noise power to carrier power. This thesis presents an analysis to relate spur gain and capacitance ratio of a third order PLL. This thesis presents an analytical relationship between the lock time and the roots of its characteristic equation of a third order PLL. Through Vieta’s circle and Vieta’s angle, the performance metrics of a third order PLL are related to the real roots of its characteristic equation
    corecore