22 research outputs found

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid

    Post-Lie Algebras and Isospectral Flows

    Get PDF
    In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical RR-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation

    Backward error analysis and the substitution law for Lie group integrators

    Full text link
    Butcher series are combinatorial devices used in the study of numerical methods for differential equations evolving on vector spaces. More precisely, they are formal series developments of differential operators indexed over rooted trees, and can be used to represent a large class of numerical methods. The theory of backward error analysis for differential equations has a particularly nice description when applied to methods represented by Butcher series. For the study of differential equations evolving on more general manifolds, a generalization of Butcher series has been introduced, called Lie--Butcher series. This paper presents the theory of backward error analysis for methods based on Lie--Butcher series.Comment: Minor corrections and additions. Final versio

    On the Lie enveloping algebra of a post-Lie algebra

    Full text link
    We consider pairs of Lie algebras gg and gˉ\bar{g}, defined over a common vector space, where the Lie brackets of gg and gˉ\bar{g} are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra U(g)U(g). This permits us to define another associative product on U(g)U(g), which gives rise to a Hopf algebra isomorphism between U(gˉ)U(\bar{g}) and a new Hopf algebra assembled from U(g)U(g) with the new product. For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge--Kutta methods.Comment: 25 page

    Invariant connections, Lie algebra actions, and foundations of numerical integration on manifolds

    Get PDF
    Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical results of Cartan and Nomizu to invariant connections on algebroids. This has fundamental consequences for the theory of numerical integrators, giving a characterization of the spaces on which Butcher and Lie-Butcher series methods, which generalize Runge-Kutta methods, may be applied.Comment: 18 page

    Free post-groups, post-groups from group actions, and post-Lie algebras

    Full text link
    After providing a short review on the recently introduced notion of post-group by Bai, Guo, Sheng and Tang, we exhibit post-group counterparts of important post-Lie algebras in the literature, including the infinite-dimensional post-Lie algebra of Lie group integrators. The notion of free post-group is examined, and a group isomorphism between the two group structures associated to a free post-group is explicitly constructed
    corecore