661 research outputs found

    Wind energy harvester interface for sensor nodes

    Get PDF
    The research topic is developping a power converting interface for the novel FLEHAP wind energy harvester allowing the produced energy to be used for powering small wireless nodes. The harvester\u2019s electrical characteristics were studied and a strategy was developped to control and mainting a maximum power transfer. The electronic power converter interface was designed, containing an AC/DC Buck-Boost converter and controlled with a low power microcontroller. Different prototypes were developped that evolved by reducing the sources of power loss and rendering the system more efficient. The validation of the system was done through simulations in the COSMIC/DITEN lab using generated signals, and then follow-up experiments were conducted with a controllable wind tunnel in the DIFI department University of Genoa. The experiment results proved the functionality of the control algorithm as well as the efficiency that was ramped up by the hardware solutions that were implemented, and generally met the requirement to provide a power source for low-power sensor nodes

    Modeling, hardware-in-the-loop simulations and control design for a vertical axis wind turbine with high solidity

    Get PDF
    Vertical axis wind turbines (VAWTs) are advantageous in gusty, turbulent winds with rapidly changing direction such as surface winds by the virtue of their omnidirectional and simple design. Thus, a small-scale VAWT is favorable in urban areas, e.g., on top of a building, as well as in rural areas away from integrated grid systems where it can be used as a portable generator. In this thesis, a methodology is presented for the assessment of overall performance for a small-scale VAWT system that consists of a three-straight-bladed rotor with high solidity, electromechanical and power electronics components and controller. Salient features of this approach include a validated computational fluid dynamics (CFD) model and a hardware-inthe- loop (HIL) simulation. The time-dependent, two-dimensional CFD model is coupled with the dynamics of the rotor subject to inertia and generator load. The HIL test-bed consists of an electrical motor, a gearbox, a generator, a rectifier and a programmable electronic load. In this setup, the electrical motor emulates the VAWT rotor. The HIL simulation is used to study the impact of electromechanical energy conversion on the overall performance and to evaluate control algorithms in real-time. For variable-speed control of the turbine, maximum power point tracking (MPPT) and model predictive control (MPC) algorithms and a simple MPC-mimicking control are designed and tested. According to results, the coupled CFD model is an effective tool in evaluation of the realistic transient behavior of the VAWT including the inertial effects of the rotor and the feedback control; the electromechanical energy conversion has a profound effect on the power characteristics and the efficiency of the VAWT system; the MPC and MPC-mimicking control algorithms outperform the MPPT algorithms in terms of energy output by allowing deviations from the maximum power instantaneously for future gains in energy generation; and all of the controllers perform satisfactorily under step wind, wind gust and real wind conditions

    Modeling and control of stand-alone AC microgrids: centralized and distributed storage, energy management and distributed photovoltaic and wind generation

    Get PDF
    El aumento de la penetración de energías renovables en la red eléctrica es necesario para el desarrollo de un sistema sostenible. Para hacerlo posible técnicamente, se ha planteado el uso de microrredes, definidas como una combinación de cargas, generadores distribuidos y elementos de almacenamiento controlados gracias a una estrategia global de gestión energética. Además, las microrredes aumentan la fiabilidad del sistema puesto que pueden funcionar en modo aislado en caso de fallo de red. Esta tesis se centra en el desarrollo de microrredes AC en funcionamiento aislado. El objetivo principal es el diseño y la implementación de estrategias de gestión energéticas sin utilizar cables de comunicación entre los distintos elementos, lo que permite reducir los costes del sistema y aumentar su fiabilidad. Para ello, se abordan los siguientes aspectos: • Gestión energética de una microrred AC con generador diesel, almacenamiento centralizado y generación renovable distribuida • Diseño de técnicas de control “droop” para repartir la corriente entre inversores conectados en paralelo • Gestión energética de una microrred AC con almacenamiento distribuido y generación renovable distribuida • Control de la etapa DC/DC de inversores fotovoltaicos con pequeño condensador de entrada en el seno de una microrred • Control de extracción de máxima potencia sin sensores mecánicos para sistemas minieólicos en el seno de una microrred.The introduction of distributed renewable generators into the electrical grid is required for a sustainable system. In order to increase the penetration of renewable energies, microgrids are usually proposed as one of the most promising technologies. A microgrid is a combination of loads, distributed generators and storage elements which behaves as a single controllable unit for the grid operator. Furthermore, microgrids make it possible to improve the system reliability because they are capable of standalone operation in case of grid failure. This thesis is focused on the development of AC microgrids under stand-alone operation. Its main objective is to design and implement overall control strategies which do not require the use of communication cables, thereby reducing costs and improving reliability. For this purpose, the following aspects are tackled: • Energy management of an AC microgrid with diesel generator, centralized storage and distributed renewable generation • Design of droop methods so that the current is shared among parallel-connected inverters • Energy management of an AC microgrid with distributed storage and distributed renewable generation • Control of the DC/DC stage in photovoltaic inverters with small input capacitors within a microgrid • Sensorless MPPT control for small wind turbines within a microgrid.Programa Oficial de Doctorado en Energías Renovables (RD 1393/2007)Energia Berriztagarrietako Doktoretza Programa Ofiziala (ED 1393/2007

    Investigation of Some Self-Optimizing Control Problems for Net-Zero Energy Buildings

    Get PDF
    Green buildings are sustainable buildings designed to be environmentally responsible and resource efficient. The Net-Zero Energy Building (NZEB) concept is anchored on two pillars: reducing the energy consumption and enhancing the local energy generation. In other words, efficient operation of the existing building equipment and efficient power generation of building integrated renewable energy sources are two important factors of NZEB development. The heating, ventilation and air conditioning (HVAC) systems are an important class of building equipment that is responsible for large portion of building energy usage, while the building integrated photovoltaic (BIPV) system is well received as the key technology for local generation of clean power. Building system operation is a low-investment practice that aims low operation and maintenance cost. However, building HVAC and BIPV are systems subject to complicated intrinsic processes and highly variable environmental conditions and occupant behavior. Control, optimization and monitoring of such systems desire simple and effective approaches that require the least amount of model information and the use of smallest number but most robust sensor measurements. Self-optimizing control strategies promise a competitive platform for control, optimization and control integrated monitoring for building systems, and especially for the development of cost-effective NZEB. This dissertation study endorses this statement with three aspects of work relevant to building HVAC and BIPV, which could contribute several small steps towards the ramification of the self-optimizing control paradigm. This dissertation study applies self-optimizing control techniques to improve the energy efficiency of NZEB from two aspects. First, regarding the building HVAC efficiency, the dither based extremum seeking control (DESC) scheme is proposed for energy efficient operation of the chilled-water system typically used in the commercial building ventilation and air conditioning (VAC) systems. To evaluate the effectiveness of the proposed control strategy, Modelica based dynamic simulation model of chilled water chiller-tower plant is developed, which consists of a screw chiller and a mechanical-draft counter-flow wet cooling tower. The steady-state performance of the cooling tower model is validated with the experimental data in a classic paper and good agreement is observed. The DESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the whole dynamic simulation model with different environment conditions. The simulation results demonstrated the effectiveness of the proposed ESC strategy under abrupt changes of ambient conditions and load changes. The potential for energy savings of these cases are also evaluated. The back-calculation based anti-windup ESC is also simulated for handling the integral windup problem due to actuator saturation. Second, both maximum power point tracking (MPPT) and control integrated diagnostics are investigated for BIPV with two different extremum seeking control strategies, which both would contribute to the reduction of the cost of energy (COE). In particular, the Adaptive Extremum Seeking Control (AESC) is applied for PV MPPT, which is based on a PV model with known model structure but unknown nonlinear characteristics for the current-voltage relation. The nonlinear uncertainty is approximated by a radial basis function neural network (RBFNN). A Lyapunov based inverse optimal design technique is applied to achieve parameter estimation and gradient based extremum seeking. Simulation study is performed for scenarios of temperature change, irradiance change and combined change of temperature and irradiance. Successful results are observed for all cases. Furthermore, the AESC simulation is compared to the DESC simulation, and AESC demonstrates much faster transient responses under various scenarios of ambient changes. Many of the PV degradation mechanisms are reflected as the change of the internal resistance. A scheme of detecting the change of PV internal shunt resistance is proposed using the available signals in the DESC based MPPT with square-wave dither. The impact of the internal resistance on the transient characteristics of step responses is justified by using the small-signal transfer function analysis. Simulation study is performed for both the single-string and multi-string PV examples, and both cases have demonstrated successful results. Monotonic relationship between integral error indices and the shunt internal resistance is clearly observed. In particular, for the multi-string, the inter-channel coupling is weak, which indicates consistent monitoring for multi-string operation. The proposed scheme provides the online monitoring ability of the internal resistance condition without any additional sensor, which benefits further development of PV degradation detection techniques

    Survey on Photo-Voltaic Powered Interleaved Converter System

    Get PDF
    Renewable energy is the best solution to meet the growing demand for energy in the country. The solar energy is considered as the most promising energy by the researchers due to its abundant availability, eco-friendly nature, long lasting nature, wide range of application and above all it is a maintenance free system. The energy absorbed by the earth can satisfy 15000 times of today’s total energy demand and its hundred times more than that our conventional energy like coal and other fossil fuels. Though, there are overwhelming advantages in solar energy, It has few drawbacks as well such as its low conversion ratio, inconsistent supply of energy due to variation in the sun light, less efficiency due to ripples in the converter, time dependent and, above all, high capitation cost. These aforementioned flaws have been addressed by the researchers in order to extract maximum energy and attain hundred percentage benefits of this heavenly resource. So, this chapter presents a comprehensive investigation based on photo voltaic (PV) system requirements with the following constraints such as system efficiency, system gain, dynamic response, switching losses are investigated. The overview exhibits and identifies the requirements of a best PV power generation system

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Towards green energy for smart cities: particle swarm optimization based MPPT approach

    Get PDF
    This paper proposes an improved one-power-point (OPP) maximum power point tracking (MPPT) algorithm for wind energy conversion system (WECS) to overcome the problems of the conventional OPP MPPT algorithm, namely, the difficulty in getting a precise value of the optimum coefficient, requiring pre-knowledge of system parameters, and non-uniqueness of the optimum curve. The solution is based on combining the particle swarm optimization (PSO) and optimum-relation-based (ORB) MPPT algorithms. The PSO MPPT algorithm is used to search for the optimum coefficient. Once the optimum coefficient is obtained, the proposed algorithm switches to the ORB MPPT mode of operation. The proposed algorithm neither requires knowledge of system parameters nor mechanical sensors. In addition, it improves the efficiency of the WECS. The proposed algorithm is studied for two different wind speed profiles, and its tracking performance is compared with conventional optimum torque control (OTC) and conventional ORB MPPT algorithms under identical conditions. The improved performance of the algorithm in terms of tracking efficiency is validated through simulation using MATLAB/Simulink. The simulation results confirm that the proposed algorithm has a better performance in terms of tracking efficiency and energy extracted. The tracking efficiency of the PSO-ORB MPPT algorithm could reach up to 99.4% with 1.9% more harvested electrical energy than the conventional OTC and ORB MPPT algorithms. Experiments have been carried out to demonstrate the validity of the proposed MPPT algorithm. The experimental results compare well with system simulation results, and the proposed algorithm performs well, as expected

    Power Electronics in Renewable Energy Systems

    Get PDF

    Real-time Modelling, Diagnostics and Optimised MPPT for Residential PV Systems

    Get PDF
    The work documented in the thesis has been focused into two main sections. The first part is centred around Maximum Power Point Tracking (MPPT) techniques for photovoltaic arrays, optimised for fast-changing environmental conditions, and is described in Chapter 2. The second part is dedicated to diagnostic functions as an additional tool to maximise the energy yield of photovoltaic arrays (Chapter 4). Furthermore, mathematical models of PV panels and arrays have been developed and built (detailed in Chapter 3) for testing MPPT algorithms, and for diagnostic purposes.In Chapter 2 an overview of the today’s most popular MPPT algorithms is given, and, considering their difficulty in tracking under variable conditions, a simple technique is proposed to overcome this drawback. The method separates the MPPT perturbation effects from environmental changes and provides correct information to the tracker, which is therefore not affected by the environmental fluctuations. The method has been implemented based on the Perturb and Observe (P&O), and the experimental results demonstrate that it preserves the advantages of the existing tracker in being highly efficient during stable conditions, having a simple and generic nature, and has the benefit of also being efficient in fast-changing conditions. Furthermore, the algorithm has been successfully implemented on a commercial PV inverter, currently on the market. In Chapter 3, an overview of the existing mathematical models used to describe the electrical behaviour of PV panels is given, followed by the parameter determination for the five-parameter single-exponential model based on datasheet values, which has been used for the implementation of a PV simulator taking in account the shape, size ant intensity of partial shadow in respect to bypass diodes.In order to eliminate the iterative calculations for parameter determinations, a simplified three-parameter model is used throughout Chapter 4, dedicated to diagnostic functions of PV panels. Simple analytic expressions for the model important parameters, which could reflect deviations from the normal (e.g. from datasheet or reference measurement) I −V characteristic, is proposed.A considerable part of the thesis is dedicated to the diagnostic functions of crystalline photovoltaic panels, aimed to detect failures related to increased series resistance and partial shadowing, the two major factors responsible for yield-reduction of residential photovoltaic systems.Combining the model calculations with measurements, a method to detect changes in the panels’ series resistance based on the slope of the I − V curve in the vicinity of open-circuit conditions and scaled to Standard Test Conditions (STC) , is proposed. The results confirm the benefits of the proposed method in terms of robustness to irradiance changes and to partial shadows.In order to detect partial shadows on PV panels, a method based on equivalent thermal voltage (Vt) monitoring is proposed. Vt is calculated using the simplified three-parameter model, based on experimental curve. The main advantages of the method are the simple expression for Vt, high sensitivity to even a relatively small area of partial shadow and very good robustness against changes in series resistance.Finally, in order to quantify power losses due to different failures, e.g. partial shadows or increased series resistance, a model based approach has been proposed to estimate the panel rated power (in STC). Although it is known that the single-exponential model has low approximation precision at low irradiation conditions, using the previously determined parameters it was possible to achieve relatively good accuracy. The main advantage of the method is that it relies on already determined parameters (Rsm, Vt) based on measurements, therefore reducing the errors introduced by the limitation of the single-exponential model especially at low irradiation conditions
    corecore