336 research outputs found

    Expanded delta networks for very large parallel computers

    Get PDF
    In this paper we analyze a generalization of the traditional delta network, introduced by Patel [21], and dubbed Expanded Delta Network (EDN). These networks provide in general multiple paths that can be exploited to reduce contention in the network resulting in increased performance. The crossbar and traditional delta networks are limiting cases of this class of networks. However, the delta network does not provide the multiple paths that the more general expanded delta networks provide, and crossbars are to costly to use for large networks. The EDNs are analyzed with respect to their routing capabilities in the MIMD and SIMD models of computation.The concepts of capacity and clustering are also addressed. In massively parallel SIMD computers, it is the trend to put a larger number processors on a chip, but due to I/O constraints only a subset of the total number of processors may have access to the network. This is introduced as a Restricted Access Expanded Delta Network of which the MasPar MP-1 router network is an example

    A multipath analysis of biswapped networks.

    Get PDF
    Biswapped networks of the form Bsw(G)Bsw(G) have recently been proposed as interconnection networks to be implemented as optical transpose interconnection systems. We provide a systematic construction of Îș+1\kappa+1 vertex-disjoint paths joining any two distinct vertices in Bsw(G)Bsw(G), where Îș≄1\kappa\geq 1 is the connectivity of GG. In doing so, we obtain an upper bound of max⁥{2Δ(G)+5,ΔÎș(G)+Δ(G)+2}\max\{2\Delta(G)+5,\Delta_\kappa(G)+\Delta(G)+2\} on the (Îș+1)(\kappa+1)-diameter of Bsw(G)Bsw(G), where Δ(G)\Delta(G) is the diameter of GG and ΔÎș(G)\Delta_\kappa(G) the Îș\kappa-diameter. Suppose that we have a deterministic multipath source routing algorithm in an interconnection network GG that finds Îș\kappa mutually vertex-disjoint paths in GG joining any 22 distinct vertices and does this in time polynomial in ΔÎș(G)\Delta_\kappa(G), Δ(G)\Delta(G) and Îș\kappa (and independently of the number of vertices of GG). Our constructions yield an analogous deterministic multipath source routing algorithm in the interconnection network Bsw(G)Bsw(G) that finds Îș+1\kappa+1 mutually vertex-disjoint paths joining any 22 distinct vertices in Bsw(G)Bsw(G) so that these paths all have length bounded as above. Moreover, our algorithm has time complexity polynomial in ΔÎș(G)\Delta_\kappa(G), Δ(G)\Delta(G) and Îș\kappa. We also show that if GG is Hamiltonian then Bsw(G)Bsw(G) is Hamiltonian, and that if GG is a Cayley graph then Bsw(G)Bsw(G) is a Cayley graph

    A systematic approach to reliable multistage interconnection network design

    Get PDF
    Bibliography: p. 34-35.Army Research Office grant no. DAAG29-84-K-0005 Advanced Research Projects Agency monitored by ONR, contract N00014-81-K-0742C.-C. Jay Kuo

    Modeling and Analysis of Fault Tolerant Multistage Interconnection Networks

    Get PDF
    Performance and reliability are two of the most crucial issues in today\u27s high-performance instrumentation and measurement systems. High speed and compact density multistage interconnection networks (MINs) are widely-used subsystems in different applications. New performance models are proposed to evaluate a novel fault tolerant MIN arrangement, thereby assuring performance and reliability with high confidence level. A concurrent fault detection and recovery scheme for MINs is considered by rerouting over redundant interconnection links under stringent real-time constraints for digital instrumentation as sensor networks. A switch architecture for concurrent testing and diagnosis is proposed. New performance models are developed and used to evaluate the compound effect of fault tolerant operation (inclusive of testing, diagnosis, and recovery) on the overall throughput and delay. Results are shown for single transient and permanent stuck-at faults on links and storage units in the switching elements. It is shown that performance degradation due to fault tolerance is graceful while performance degradation without fault recovery is unacceptable

    Evaluation of Two Terminal Reliability of Fault-tolerant Multistage Interconnection Networks

    Get PDF
    This paper iOntroduces a new method based on multi-decomposition for predicting the two terminal reliability of fault-tolerant multistage interconnection networks. The method is well supported by an efficient algorithm which runs polynomially. The method is well illustrated by taking a network consists of eight nodes and twelve links as an example. The proposed method is found to be simple, general and efficient and thus is as such applicable to all types of fault-tolerant multistage interconnection networks. The results show this method provides a greater accurate probability when applied on fault-tolerant multistage interconnection networks. Reliability of two important MINs are evaluated by using the proposed method

    Speeding-up the fault-tolerance analysis of interconnection networks

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksAnalyzing the fault-tolerance of interconnection networks implies checking the connectivity of each sourcedestination pair. The size of the exploration space of such operation skyrockets with the network size and with the number of link faults. However, this problem is highly parallelizable since the exploration of each path between a source–destination pair is independent of the other paths. This paper presents an approach to analyze the fault-tolerance degree of multistage interconnection networks using GPUs in order to speed-up it. This approach uses CUDA as parallel programming tool on a GPU in order to take advantage of all available cores. Results show that the execution time of the fault-tolerance exploration can be significantly reduced.This work was supported by the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO) and by FEDER funds under Grant TIN2012-38341-C04-01.BermĂșdez GarzĂłn, DF.; GĂłmez Requena, C.; LĂłpez RodrĂ­guez, PJ.; GĂłmez Requena, ME. (2015). Speeding-up the fault-tolerance analysis of interconnection networks. IEEE. https://doi.org/10.1109/HPCSim.2015.7237035

    Probabilistic Analysis of Multistage Interconnection Network Performance

    Get PDF
    We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation
    • 

    corecore