6,766 research outputs found

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    Production planning systems for cellular manufacturing

    Get PDF
    New product development is one of the most powerful but difficult activities in business. It is also a very important factor affecting final product quality. There are many techniques available for new product development. Experimental design is now regarded as one of the most significant techniques. In this article, we will discuss how to use the technique of experimental design in developing a new product - an extrusion press. In order to provide a better understanding of this specific process, a brief description of the extrusion press is presented. To ensure the successful development of the extrusion press, customer requirements and expectations were obtained by detailed market research. The critical and non-critical factors affecting the performance of the extrusion press were identified in preliminary experiments. Through conducting single factorial experiments, the critical factorial levels were determined. The relationships between the performance indexes of the extrusion press and the four critical factors were determined on the basis of multi-factorial experiments. The mathematical models for the performance of the extrusion press were established according to a central composite rotatable design. The best combination of the four critical factors and the optimum performance indexes were determined by optimum design. The results were verified by conducting a confirmatory experiment. Finally, a number of conclusions became evident.

    A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand

    Get PDF
    The product-mix planning and the lot size decisions are some of the most fundamental research themes for the operations research community. The fact that markets have become more unpredictable has increaed the importance of these issues, rapidly. Currently, directors need to work with product-mix planning and lot size decision models by introducing stochastic variables related to the demands, lead times, etc. However, some real mathematical models involving stochastic variables are not capable of obtaining good solutions within short commuting times. Several heuristics and metaheuristics have been developed to deal with lot decisions problems, in order to obtain high quality results within short commuting times. Nevertheless, the search for an efficient model by considering product mix and deal size with stochastic demand is a prominent research area. This paper aims to develop a general model for the product-mix, and lot size decision within a stochastic demand environment, by introducing the Economic Value Added (EVA) as the objective function of a product portfolio selection. The proposed stochastic model has been solved by using a Sample Average Approximation (SAA) scheme. The proposed model obtains high quality results within acceptable computing times

    A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators

    Full text link
    [EN] In this article, a mixed integer linear program (MILP) model is proposed for the production, lot sizing, and scheduling of automotive plastic components to minimize the setup, inventory, stockout, and backorder costs, by taking into account injection molds as the main index to schedule on parallel flexible injection machines. The proposed MILP considers the minimum and maximum inventory capacities and penalizes stockout. A relevant characteristic of the modeled problem is the dependence between mold setups to produce plastic components. The lot sizing and scheduling problem solution results in the assignment of molds to machines during a specific time period and in the calculation of the number of components to be produced, which is often called lot size, following a sequence-dependent setup time. Depending on the machine on which the mold is setup, the number of units to be produced will be distinct because machines differ from one another. The stock coverage, defined in demand days, is also included in the MILP to avoid backorders, which is highly penalized in the automotive supply chain. Added to this, the proposed model is extended by considering setup common operators to respond to and fulfill the constraints that appear in automotive plastic enterprises. In this regard, the MILP presented solves a lot-sizing and scheduling problem, emerged in a second-tier supplier of a real automotive supply chain. Finally, this article validates the MILP by performing experiments with different sized instances, including small, medium, and large. The large-sized dataset is characterized by replicating the amount of data used in the real enterprise, which is the object of this study. The goodness of the model is evaluated with the computational time and the deviation of the obtained results as regards to the optimal solution.Thiis work was supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte-Generalitat Valenciana for hiring predoctoral research staff with Grant no. ACIF/2018/170 and European Social Fund with Grant Operational Program of FSE 2014-2020, the Valencian Community, and the authors would like to acknowledge the support of the researchers participating in the collaborative projects 'Cloud Collaborative Manufacturing Networks' (C2NET) (http://c2net-project.eu/), which has received funding from the EU Horizon 2020 Research and Innovation Programme with grant agreement no. 63690, and "Zero Defects Manufacturing Platform" (ZDMP) (http://www.zdmp.eu), which has received funding from the EU Horizon 2020 Research and Innovation Programme with grant agreement no. 825631.Andres, B.; Guzmán-Ortiz, BE.; Poler, R. (2021). A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators. Complexity. 2021:1-16. https://doi.org/10.1155/2021/6667516116202

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Integral Approaches to Integrated Scheduling

    Get PDF
    corecore