855 research outputs found

    Predicting your next OLAP query based on recent analytical sessions

    Get PDF
    International audienceIn Business Intelligence systems, users interact with data warehouses by formulating OLAP queries aimed at exploring multidimensional data cubes. Being able to predict the most likely next queries would provide a way to recommend interesting queries to users on the one hand, and could improve the efficiency of OLAP sessions on the other. In particular, query recommendation would proactively guide users in data exploration and improve the quality of their interactive experience. In this paper, we propose a framework to predict the most likely next query and recommend this to the user. Our framework relies on a probabilistic user behavior model built by analyzing previous OLAP sessions and exploiting a query similarity metric. To gain insight in the recommendation precision and on what parameters it depends, we evaluate our approach using different quality assessments

    Applying UML and XML for designing and interchanging information for data warehouses and OLAP applications

    Get PDF
    Multidimensional (MD) modeling is the basis for data warehouses (DW), multidimensional databases (MDB) and on-line analytical processing (OLAP) applications. In this paper, we present how the unified modeling language (UML) can be successfully used to represent both structural and dynamic properties of these systems at the conceptual level. The structure of the system is specified by means of a UML class diagram that considers the main properties of MD modeling with minimal use of constraints and extensions of the UML. If the system to be modeled is too complex, thereby leading us to a considerable number of classes and relationships, we describe how to use the package grouping mechanism provided by the UML to simplify the final model. Furthermore, we provide a UML-compliant class notation (called cube class) to represent OLAP users’ initial requirements. We also describe how we can use the UML state and interaction diagrams to model the behavior of a data warehouse system. To facilitate the interchange of conceptual MD models, we provide a Document Type Definition (DTD) which allows us to represent the same MD modeling properties that can be considered by using our approach. From this DTD, we can directly generate valid eXtensible Markup Language (XML) documents that represent MD models at the conceptual level. We believe that our innovative approach provides a theoretical foundation for simplifying the conceptual design of MD systems and the examples included in this paper clearly illustrate the use of our approach

    Memory-aware sizing for in-memory databases

    Get PDF
    In-memory database systems are among the technological drivers of big data processing. In this paper we apply analytical modeling to enable efficient sizing of in-memory databases. We present novel response time approximations under online analytical processing workloads to model thread-level forkjoin and per-class memory occupation.We combine these approximations with a non-linear optimization program to minimize memory swapping in in-memory database clusters. We compare our approach with state-of-the-art response time approximations and trace-driven simulation using real data from an SAP HANA in-memory system and show that our optimization model is significantly more accurate than existing approaches at similar computational costs

    Data Mining in Hospital Information System

    Get PDF

    The Utilization of Data Analysis Techniques in Predicting Student Performance in Massive Open Online Courses (MOOCs)

    Get PDF
    The growth of the Internet has enabled the popularity of open online learning platforms to increase over the years. This has led to the inception of Massive Open Online Courses (MOOCs) that enrol, millions of people, from all over the world. Such courses operate under the concept of open learning, where content does not have to be delivered via standard mechanisms that institutions employ, such as physically attending lectures. Instead learning occurs online via recorded lecture material and online tasks. This shift has allowed more people to gain access to education, regardless of their learning background. However, despite these advancements in delivering education, completion rates for MOOCs are low. In order to investigate this issue, the paper explores the impact that technology has on open learning and identifies how data about student performance can be captured to predict trend so that at risk students can be identified before they drop-out. In achieving this, subjects surrounding student engagement and performance in MOOCs and data analysis techniques are explored to investigate how technology can be used to address this issue. The paper is then concluded with our approach of predicting behaviour and a case study of the eRegister system, which has been developed to capture and analyse data. Keywords: Open Learning; Prediction; Data Mining; Educational Systems; Massive Open Online Course; Data Analysi
    • …
    corecore