2,327,028 research outputs found

    A software development and evolution model based on decision-making

    Get PDF
    Design is a complex activity whose purpose is to construct an artifact which satisfies a set of constraints and requirements. However the design process is not well understood. The software design and evolution process is the focus of interest, and a three dimensional software development space organized around a decision-making paradigm is presented. An initial instantiation of this model called 3DPM(sub p) which was partly implemented, is presented. Discussion of the use of this model in software reuse and process management is given

    Software quality model based on development team characteristics

    Get PDF
    Many factors have a significant impact on producing high-quality software products. Development team members are among the most important factors. Paying attention to the quality from this perspective will be a good innovation in the software development industry. Given that team members play a very important role in software products, this study tries to focus specifically on team characteristics in software product quality and provide a qualitative model based on this. The required data were collected through observations and interviews with project managers and development team members in several companies under study. Then, data were analyzed through hierarchical analysis. According to the results, the use of this model led to the improvement of the software development process so that the team members were satisfied with it. Also, time management was improved, and the customer expressed his satisfaction with the use of this model. Finally, data analysis showed that this model may lead to faster product delivery

    Location-based software modeling and analysis: Tropos-based approach

    Get PDF
    Abstract. The continuous growth of interest in mobile applications makes the concept of location essential to design and develop software systems. Location-based software is supposed to be able to monitor the surrounding location and choose accordingly the most appropriate behavior. In this paper, we propose a novel conceptual framework to model and analyze location-based software. We mainly focus on the social facets of locations adopting concepts such as actor, resource, and location-based behavior. Our approach is based on Tropos methodology and allows the analyst to elicit and model software requirements according to the different locations where the software will operate. We propose an extension of Tropos modeling and adapt its process to suit well with the development of location-based software. The proposed framework also includes automated analysis techniques to reason about the relation between location and location-based software.

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Set-Based Concurrent Engineering Model for Automotive Electronic/Software Systems Development

    Get PDF
    Organised by: Cranfield UniversityThis paper is presenting a proposal of a novel approach to automotive electronic/software systems development. It is based on the combination of Set-Based Concurrent Engineering, a Toyota approach to product development, with the standard V-Model of software development. Automotive industry currently faces the problem of growing complexity of electronic/software systems. This issue is especially visible at the level of integration of these systems which is difficult and error-prone. The presented conceptual proposal is to establish better processes that could handle the electronic/software systems design and development in a more integrated and consistent manner.Mori Seiki ā€“ The Machine Tool Compan

    Location-based Modeling and Analysis: Tropos-based Approach

    Get PDF
    The continuous growth of interest in mobile applications makes the concept of location essential to design and develop software systems. Location-based software is supposed to be able to monitor the location and choose accordingly the most appropriate behavior. In this paper, we propose a novel conceptual framework to model and analyze location-based software. We mainly focus on the social facets of locations adopting concepts such as social actor, resource, and location-based behavior. Our approach is based on Tropos methodology and allows the analyst to elicit and model software requirements according to the different locations where the software will operate. We propose an extension of Tropos modeling and adapt its process to suit well with the development of location-based software. The proposed framework also includes automated analysis techniques to reason about the relation between location and location-based behavior
    • ā€¦
    corecore