
Location-based Software Modeling and Analysis:

Tropos-based Approach

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy.
{raian.ali, fabiano.dalpiaz, paolo.giorgini}@disi.unitn.it

Abstract. The continuous growth of interest in mobile applications
makes the concept of location essential to design and develop software
systems. Location-based software is supposed to be able to monitor the
surrounding location and choose accordingly the most appropriate be-
havior. In this paper, we propose a novel conceptual framework to model
and analyze location-based software. We mainly focus on the social facets
of locations adopting concepts such as actor, resource, and location-based
behavior. Our approach is based on Tropos methodology and allows the
analyst to elicit and model software requirements according to the differ-
ent locations where the software will operate. We propose an extension of
Tropos modeling and adapt its process to suit well with the development
of location-based software. The proposed framework also includes auto-
mated analysis techniques to reason about the relation between location
and location-based software.

1 Introduction

Advances in computing, sensing and communication technology have recently
led to the growth of interest in software mobility. Mobility emphasizes several
concerns (space, time, personality, society, environment, and so on) often not
considered by the traditional desktop systems [1]. Besides computing ubiquity,
the 21st century computing [2] is expected to have a core “mental” part: com-
puting systems act on behalf of humans executing tasks without prompting them
for and receiving their explicit requests, i.e. computing will realize the concept
of agency. Advances in technology do not necessarily imply the easiness of ex-
ploiting it, rather more challenges are introduced. Software systems can be given
more responsibility, and they can now actively support several decision making
processes. Appropriate software development methods and models need to be de-
veloped, or adapted, to cope with the new achievable innovative requirements.

Location-based software is characterized by its ability to reason about the
surrounding location, including the user, and adapt autonomously a behavior
that complies with the location settings. Consequently, we need to model and
analyze the variable locations that users can be part of, and define how location
influences software. To adopt one behavior, the software needs to reason on what
exists and what can be done, basing its choice on user preferences, cost, time,
priority, and so on [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4900206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In the area of context modeling, the relation between context and its use
is not clearly considered (e.g. [4], [5] and [6]). We believe in the tight com-
plementary relation between the variable behavior (both human and software
ones) and context. When the relation between context and its use is omitted,
we cannot answer questions like “how do we decide the relevant context?”, “why
do we need context?” and “how does context influence behavior adaptation?”.
Modeling context information has not to be a standalone activity, that is context
has to be elicited in conjunction with the analysis we do for discovering alterna-
tive behaviors. Salifu et al. [7] investigate the use of problem frames to handle
variability in context-aware software. In our work, we use goal analysis to elicit
requirements without assuming that requirements are already recognized. We
also integrate the goal and location models to enable useful automated analysis.

Software variability is a term commonly used to define a software provided
with different behaviors, whose variants can be produced guaranteeing low costs,
short time, and high quality [8]. Feature modeling is a well known modeling
technique exploited by product line engineering to derive a tailored product from
a family of possible products [9]. Location-based software is expected to select
autonomously among the different alternatives it supports depending on the
location settings. Lapouchnian et al. [10] propose techniques to design autonomic
software based on an extended goal modeling framework, but the relation with
the surrounding location is not focused on. A variant of this approach is proposed
by the same authors in [11], where the emphasis is on variability modeling under
the requirements engineering perspective, and on the classification of intentional
variability when decomposing a goal. In our work, we focus on the variability of
location, i.e. the unintentional variability, which influences the applicability and
the efficiency of each goal satisfaction alternative.

Goal models, mainly adopted by KAOS [12] and Tropos [13, 14] methodolo-
gies, represent a paradigmatic shift from object orientation. While goal-oriented
analysis is more natural for the early stages of requirement analysis, the object-
oriented analysis fits well to the later stages [15]. With goal models, we take a
high level goal and start a top-down analysis to discover the more specific sub-
goals and tasks that are needed to satisfy that goal. Goal model allows for differ-
ent alternatives to satisfy a goal, but it does not specify where each alternative
can be adopted. Alternative behaviors and location variability are complemen-
tary. Supporting two alternative behaviors without specifying when to follow
each of them rises the question “why do we support two alternatives and not just
one?”. Conversely, considering location variability without supporting alterna-
tive behaviors rises the question “what can we do if the location changes?”.

In this paper, we introduce location-based Tropos as a variant of Tropos
conceptual modeling framework [13, 14], for developing location-based software.
We deal with the social level of location, discuss how to model it and how
it influences the adaptation of a location-based behavior. We discuss Tropos
process for developing location-based software, and then suggest a new variant
of it. We introduce three automated analysis on the proposed models to check
software against location and vice versa.



The paper is structured as follows: Section 2 discusses location-based vari-
ability and a variety of conceptual modeling challenges introduced by it, and
classifies the main features the location-based software in particular has to sup-
port. In Section 3, we study Tropos conceptual modeling framework for location-
based software development. In Section 4, we introduce location-based Tropos,
proposing modifications on Tropos at both modeling and process levels. In Sec-
tion 5, we show several kinds of analysis on the new models, and in Section 6,
we draw conclusions and present future work.

2 Location Variability and Location-based Software

One main concern of software mobility is the ability to perceive the location
where the user is, and then tailor a location-based bahavior to achieve user
objectives. Location-based software has not only to perceive the technical details
of computing environment (communication protocols, network roaming, data
interoperability, and so on), but also the social environment the user is part of.
The technical level will certainly be the base to handle the low level aspects of
software interoperability, related to the machine level. On the other hand, the
social level will be the base for tailoring human-oriented behaviors to achieve
user goals. In this work, we focus on modeling the social variability of location
and how it can be used to derive suitable behaviors for satisfying user goals.

Let us consider a passenger with the goal of buying a ticket in a railway
station. Each specific railway station enables different ways to buy tickets (e.g.,
a passenger can buy a ticket through terminals, e-pay, offices, or through passen-
ger assistance clerks when passenger needs help). Each of these different ways
requires specific location properties. For example, buying through terminals re-
quires that a free terminal exists, has one language in common with the passen-
ger, and accept the money or the credit card the passenger has.

In order to satisfy user’s needs and goals, location-based software is supposed
to be able to select one appropriate behavior according to the location. The
behavior has to be compliant with the current state of the location, considering
the availability of resources and the existence of other users. Location may be
characterized by different dimensions, such as the degree of expertise each user
has (in using resources, and communicating with other users), the availability of
resources, and the rules that have to be used to coordinate the use of resources, or
regulate the interactions between users. In this vision, the conceptual modeling
of software system needs to deal with a variety of challenges, such as:

1. Location modeling constructs: we need to find an appropriate set of modeling
concepts that can capture efficiently a variable location.

2. Location relevancy: to build a location model, we need a systematic way to
decide what has to be modeled, i.e. what is relevant in a location to the
target software. E.g. when we model a railway station location, do we need
to include passengers current position, or expertise in using PDAs, in the
model? and how do we decide that?



3. Location rules : location, as a system, will impose rules for the interaction
among people and for the use of resources. Rules have to be integrated with
the location model and modeled using location constructs. E.g. a railway
station might impose the rule that only passengers who are foreigners or
over a certain age can ask for assistance, and passenger assistant must help
even if this implies stoping less priority activity the assistant is involved in.

4. Location-based behavior : to satisfy one of the user objectives, the current
location allows a certain set of behaviors. Modeling the relation between the
location and the corresponding possible behaviors is essential for location-
based software. E.g. buying a ticket through e-payment can be done only if
the station has a network and the passenger is allowed and able to access it.

5. Hierarchial behaviors construction: modeling in a way to avoid “one location,
one behavior” enumeration, to exploit commonality of both locations and
behaviors fragments, and to enable a hierarchial construction of location-
based behavior. E.g. getting passenger position automatically is a shared
objective that needs an automatic positioning system in the station, and
this objective is needed to satisfy other objectives like guiding passengers or
listing the nearest terminals that in turn is needed for buying a ticket.

6. Location-based behaviors evaluation: based on some payoff functions, each
behavior in each location has to be evaluated. We need to model the criteria
for evaluating alternative behaviors in variable locations. E.g. when a rail-
way station provides both terminals and e-pay, the software has to decide
which one to adopt, and consequently which tasks to do. We need modeling
constructs for the criteria on which such kinds of decisions can be taken.

Location-based software is supposed to support mainly five features (hierar-
chically represented using feature model in Fig. 1):

– Location identification: representing what exists, where the mobile user is, ac-
cording to a pre-defined location model, i.e. instantiating the location model.
E.g. software will receive railway station description and instantiate a railway
station model that reflects the current station.

– Location-based behavior adaptation: having an objective, and knowing the
current location, the software will reason and select a possible, and even
recommended, behavior through which the user objective can be achieved.
Behaviors include operational tasks that are done by software, and non-
operational ones the software assists, or simply asks, user to do. To tailor a
location-based behavior, the software has to support features like:

– Location-based information processing:
1. Information request : software enables users to request location-based in-

formation explicitly, e.g. enabling passengers to ask for the train schedule
in the current railway station. Other information requests are implicitly
made when location changes, e.g. when train is not in the time, certain
information has to be presented to passenger.

2. Relevant information extraction: filtering what is relevant, and compos-
ing useful information. E.g. when a train is late, but it is not the passen-
ger train, the warning has not to be shown. Also, when a passenger asks



how to buy a ticket, and has only cash money that are not accepted by
the railway station terminals, the location-based software will exclude
terminals from the possible ways of buying a ticket.

3. Information delivery: communicating information to the user in a right
way. E.g. notifying the passenger assistant has not to be done by voice
message when the assistant is using his/her PDA for a phone call. Also,
a demo about using terminals should be interactive, only when the pas-
senger has a good expertise in using PDAs.

– Acting on behalf of user : location-based software will represent the user when
interacting with other location actors, both in requesting and answering re-
quests, and in using resources available in a location. E.g. when the passenger
asks for a help, the help request will be prepared and sent on behalf of the
passenger, including the information needed by the passenger assistant to
decide how to accomplish the help.

– Personalization: location-based software will behave differently with differ-
ent users. Software considers user personality as one location mobility di-
mension. E.g. when both wireless and wired connections are available in a
railway station, and the passenger prefers reliable connection, the software
will lead passenger to wired connection terminal, and when passenger wants
more easy connection, the software will configure wireless one.

Fig. 1. Feature model for location-based Software

3 Tropos for Location-based Software

Our approach is based on Tropos methodology [13, 14], which offers an agent-
oriented conceptual framework for modeling both the social environment and the
system-to-be. Tropos starts its software development life cycle with the early re-
quirements phase. In this phase, the organization (location at the social level)



is modeled as a set of actors that strategically depend on each other for satis-
fying their objectives, then the rationale of satisfying each actor own objectives
is modeled. If we take the railway station scenario, the strategic dependency
between railway station actors with respect to the goal Ticket is Issued will be
as shown in Fig. 2. Tropos early requirement fits well to project the social struc-
ture of the location at a higher level as a set of actors and resources. Taking into
consideration a variable location, this phase will not be sufficient enough and we
will need to adapt it to deal with points such as:

Fig. 2. A strategic dependency model for the railway station scenario.

1. Tropos modeling supposes the existence of all modeled actors (terminal, e-
pay, offices, passenger assistant), and this assumption will not hold when we
consider a variable location, i.e. location structure is not static.

2. Tropos modeling has to consider actors and resources profiles to deal with
several location modeling difficulties:
(a) Tropos modeling is not able to differentiate between availability levels

of actors and resources. In such modeling, all railway station terminals
are equally available, but it is more useful to consider a terminal, that is
close to the passenger, more available than a terminal which is far away.

(b) Dependencies between actors are not required or achievable in every
location, and we can not specify that using the rigid form of describing
actors and resources in Tropos modeling. Credit card info can be required
when Ticket Issuing System enables payment through credit cards, and
when the passenger’s credit card is compatible with the supported ones.

(c) When more than one actor is available to satisfy one objective, there is
no way to differentiate between them, and then to choose the best. If
we consider Terminal and E-Pay as two Ticket Issuing Systems without
considering their profiles and matching them with passenger profile, these
two ticket issuing systems can not be differentiated.

3. Tropos proceeds, in the next step of early requirements phase, to analyze the
rationale of Ticket Issuing System to satisfy Ticket is Issued goal, and that
is not what we always need. Ticket Issuing System already exists, and we do
not need to develop a software for it, rather for Passenger to deal with this
already functioning system.



In Tropos late requirements phase, the system-to-be is introduced as a new
actor that takes some responsibilities, already identified in the first phase, and
provides an automated solution. The rational of the system-to-be actor is repre-
sented by a goal model, starting with a high level goal and finding alternative sets
of behaviors that lead to the satisfaction of that goal. Considering location-based
software, the rationale of the system-to-be actor is to find suitable behavior for
each possible location. In our railway station scenario, the developed location-
based software will be for passengers, and passenger assistants as mobile actors.
It will work as an automated location expert that operates on the user’s com-
puting device, and knows both its user and its location social structure.

In a way different from Tropos late requirements, the system-to-be actor is
not necessarily assigned an objective that is recognized in the first phase, and
is mainly developed to assist users in the already functioning system that is
modeled in the first phase. In our example, two system-to-be actors need to be
introduced, one for passenger and another for passengers assistant. The rationale
of these two location-based software actors is partially shown in Fig. 3. On this
goal-oriented rationale model, that represents well the alternative behaviors of
location-based software, we can also highlight several remarks:

1. The system-to-be has, in particular, two characteristics:
(a) It is naturally decentralized, that is a location-based software will be as-

signed for each mobile actor that might also deal with another location-
based software assigned to other actors. In our example, we need two
location-based software actors, one for Passengers, and another for Pas-
senger Assistants.

(b) The responsibilities given to the system-to-be actors fall into the cate-
gories we have listed in Section 2, and the rationale analysis concerns
how to assist the mobile users in an already functioning system. For ex-
ample, passengers location-based software will choose the way that fits
to them and to the station when they need to buy tickets, and it will
interact with passengers assistants on behalf of the passengers for a help.

2. Tropos goal analysis supports different alternatives to satisfy the high level
goals. What we need is a kind of location-based goal analysis, that adds
location properties to each alternative specifying where it can be adopted.
For example, in Tropos goal analysis shown in Fig.3, we do not specify where
each of the possible alternatives for having a ticket can be adopted.

3. The contribution to softgoals can be location-based, and is not always static.
The relation between the contribution and the location is omitted in the
current Tropos goal model. For example, the goal Wireless Connection con-
tributes better to the softgoal Reliable Connection when the passenger is
close to wireless network access points, than it does when user is far from it.

4. The autonomous selection amongst alternatives, when more than one are
available, needs to be specified based on some criteria. For example, in a
railway station where offices are opened, terminals are available, and pas-
senger has the ability to adopt each of these alternatives, we need to specify
the decision to be taken.



Fig. 3. System-to-be actors goal model for the railway station scenario.

4 Location-based Tropos

In the previous section we have addressed the potential and the limitation of
Tropos with regards to location-based software development. Early requirements
conceptualization, that concerns modeling location, is not sufficient enough to
model variable location and needs mainly to consider actors and resources pro-
files. We have shown the system-to-be, introduced in the late requirements, as
a set of location-based software actors that assist mobile actors to satisfy their
needs in a location. We have also addressed the gap between Tropos goal-oriented
rationale and location, since we need mainly to associate between the goal sat-
isfaction alternatives and the locations where they can be adopted.



When the analyst builds the goal model shown in Fig. 3, a specific assumption
about the location, where each of the alternatives can be adopted, could be
thought about but was not explicitly represented in the model. Here we discuss
five variation points on Tropos goal model that might need location properties
to take location-based decision:

1. Location-based Or-decomposition: Or-decomposition is the basic variability
construct; in current Tropos the choice of a specific Or-alternative is left to
the actor intention, without considering location properties that can inhibit
some alternatives. E.g. the alternative By Terminal can be adopted when a
terminal is free, has one language in common with the passenger, and sup-
ports the cash money -in both of the type (coins, papers) and the currency-
or one credit card the passenger has. The alternative E-Pay can be adopted
when there is a wireless network in the railway station and the passenger’s
PDA supports WiFi, or when there is a wired network with a cable-based
connection terminals and the passenger’s PDA has cable connectivity.

2. Location-based contribution to softgoals : the value of contributions to soft-
goals can vary from one location to another. E.g. the goal Interactive Demo
contributes positively to the softgoal User Comfort when the user has good
expertise in using PDAs, and the used PDA has a touch screen, while the
contribution is negative in the opposite case. Also, the goal Wireless Connec-
tion contribution to the softgoal Reliable Connection depends on the distance
between passenger and WiFi access point to which passenger is connected.

3. Location-based dependency: in some locations, an actor might be unable to
satisfy a goal using its own alternatives. In such case, the actor might delegate
this goal to another actor that is able to satisfy it. E.g. delegation of the goal
Establish E-Pay to the actor Railway Website can be done when that web
site enables e-payment using one credit card in common with user’s credit
cards, and has a mobile device version.

4. Location-based goal activation: an actor, and depending on the location set-
tings, might find necessary or possible triggering (or stopping) the desire of
satisfying a goal. E.g. the goal Assistant Makes Decision is activated when
the assistant is not doing any particular activity, has one language in com-
mon with the requesting passenger, and close to that passenger.

5. Location-based And-decomposition: a sub-goal might (or might not) be needed
in a certain location, that is some sub-goals are not always mandatory to
fulfill the top-level goal in And-decomposition. E.g. The goal Show Demo
has to be satisfied when the passenger is not familiar with using terminals.

The goal analysis of location-based Tropos associates location properties to
each location-based variation point. In addition, this analysis helps to refine the
initial location model represented in the first phase. If we consider the location
properties in the above examples, we can identify how the location model of
Fig.2 can be refined. The resulted location model of the railway station scenario,
with respect to the location properties given in the examples above, is shown in
Fig. 4. This model adds mainly actors and resources profiles, and also introduces
new resources and actors that can influence tailoring location-based behavior.



Fig. 4. Location model for the railway station scenario

There are two top-level classes in the location model: actors and resources
(Res in the figure). The actor Passenger is characterized by some attributes:
spoken Languages (we put it as a single attribute to simplify the diagram),
Position in the railway station, and Expertise in using PDAs. The passenger
might have three relevant resources: PDA, Credit Card, and Cash Money. The
resource PDA is characterized by an attribute Screen Type, defining if the PDA
has a touch screen or not, and it has a Can Connect association to the Network
it can connect to. A network can be specialized into Cable NT and Wireless.
Cable NT stands for wired networks, and it is composed of a set of network
terminals (NT Terminals), characterized by a Status that can be free, busy,
under maintenance, out of service, and so on. Wireless network is composed of
several wireless access points (Access Point); an Access Point has the attributes
Position and Coverage Range, used together to compute if a customer is covered
by an access point signal. The actor Assistant has a Current Activity he/she
is performing, a Position in the railway station, and spoken Languages. The
assistant’s relevant resources include only the assistant’s used PDA. The actor
Railway Website has the attributes E Pay Supported, to indicate if e-payments
are supported, and Has Mob Device Version, set to true when the website can
be browsed by PDAs. The Credit Card resource class represents the types of
credit cards passenger might use, and terminals and railway station website
might support. The actor Terminal might support multiple Languages, be in a
variable Status, and support Credit Card or Cash Money payment.



We describe now our proposed location-based Tropos process that leads the
production of our proposed models. We start by (i) modeling the social struc-
ture of a location class, before introducing the system to-be, using a strategic
dependency diagram. In this step, we identify roughly the main location actors
and the strategic dependencies between them. Then (ii), this diagram is exam-
ined to determine a set of mobile actors, i.e. actors who need location-based
software to assist them in the considered class of locations. The next step is to
(iii) assign a system-to-be actor to each mobile actor, and to model the rationale
of these system-to-be actors, using goal analysis. While doing the goal analysis,
system analyst (iv) decides those location-based variation points, and specifies
the location properties at each of them to help selecting between alternatives.
Location properties refine the location model, that consists initially of the ac-
tors and resources recognized in the first step. System analyst (v) will extract
new location model constructs (actors or resources properties and relations, new
resources or actors) that each location property at each location-based variation
point might contain, and keep updating the location model.

By following our proposed location-based Tropos process, we will have three
models: the first is the classical Tropos strategic dependencies model, the second
represents the location-based rationale of the system-to-be actors (Fig. 3 asso-
ciated with location properties at the location-based variation points), and the
third is the elicited location model (the model of Fig. 4). The metamodel of our
proposed extension of Tropos modeling is shown in Fig.5.

Fig. 5. Metamodel shows the proposed extension of Tropos



5 Reasoning on Location-based Models

We propose various types of analysis for examining location-based software
against a specific location, and vice versa. A preliminary step consists of evalu-
ating the validity of location properties at the variation points of the goal model
on the current location instance. This step can be done automatically using an
automated solver after formalizing the location and location-based goal models.
In [16], we used class diagram to represent location, and we formalized it besides
the location properties using Datalog¬. We used DLV solver to do the reasoning.
Here we discuss several kinds of automated analysis on our proposed models:

– Location-based goal satisfiability: this kind of analysis is aimed to verify if a
goal is achievable through one alternative in the current location instance.
The analysis can be performed using the goal reasoning algorithm proposed
by Giorgini et al. [17] on the goal model restricted by the evaluation of
the location properties. A strategy for evaluating satisfiability follows a top-
down approach: starting from a top-level goal, we should check that all (at
least one) sub-goals in and- (or-) decompositions can be achieved, or that
the top-level goal can be achieved via a makes (+1.0) contribution from an
achievable goal. For example, in a railway station where there is no position-
ing system, offices are closed because of vacation, there is a kind of network
compatible with the passenger’s PDA connectivity, and the railway company
website supports one of the passenger’s credit cards for e-pay, the algorithm
will mark the root goal “Ticket is Issued” as a satisfiable goal. The algo-
rithm finds the alternative E-Pay satisfiable, because of the satisfiability of
its two And-decomposition subgoals. The alternative By Terminal can not
be satisfied due to the absence of any positioning system, and therefore the
unsatisfiability of its and-decomposition subgoal Lead to Terminal that can
not be satisfied by any of its alternatives in its turn. The alternative By
Offices can not be adopted, because it requires a location property Offices
are working, to be satisfied.

– Location properties satisfiability: this analysis checks if the current location
structure is compliant with the software goals. It is exploited to identify what
is missing in a particular location where some top-level goals have been iden-
tified as unsatisfiable by location-based goal satisfiability analysis. When a
goal can not be satisfied, the analysis will identify the denying conditions
and suggest ways for solving the problem. For example, in a railway station
while passengers have PDAs with only wired connectivity feature, while rail-
way station does not provide cable-based connection terminals, the previous
analysis will mark Configure Connection as unsatisfiable goal. The reason is
that location properties on each of the two connection modalities, wireless
and wired, are not satisfied. Location properties satisfiability will reason on
what is needed to satisfy the Configure Connection goal, i.e. what is needed
to satisfy location properties on its alternative behaviors.



– Preferences analysis: this type of analysis requires the specification of pref-
erences over alternatives. As shown in [18], preferences can be specified using
softgoals. This analysis is useful in cases like:
• When some locations allow for several alternatives to satisfy a goal: the

selection will be based on the contributions (possibly location-based) to
the preferred softgoals. For example, in a railway station where both
Wireless Connection and Wired Connection can be satisfied, location-
based software will adopt the one preferred by its users. User preferences
can be specified over softgoals: when user gives more importance to Re-
liable Connection than Easy Connection, the Wired Connection alterna-
tive will be adopted, while Wireless Connection is adopted when user
cares Easy Connection more than Reliable Connection.

• When a certain location does not allow for any alternative to satisfy a
goal: the location properties satisfiability might provide several proposals
about the needed location modifications. The adopted modifications are
those that lead to satisfy more the preferences expressed over softgoals.
For example, in one railway station where Configure Connection can
not be satisfied due to the absence of wireless network, or cable based
terminals, the railway adminstration has to decide between establishing
wireless or wired network. When the railway station adminstration cares
more Reliable Connection, a wired network terminals has to be installed
over the station, while wireless access points will be installed when Easy
Connection is more preferred.

6 Conclusions and Future Work

In this paper, we have shown the particularity and importance of modeling
location variability for location-based software, and addressed some challenges
the conceptual modeling faces with this regards. We classified several features
location-based software in particular has to support. To develop location-based
software we relied on Tropos methodology, and have shown its potential and
limitation for developing such software. We have suggested to modify the con-
ceptualization and the process of Tropos to fit well with location-based software
development. We have shown three kinds of automated analysis on our pro-
posed location-based models. In this work, we have considered the social level of
a location class as a set of profiled actors and resources; our future work will be
towards refining this modeling by finding a set of common concepts that can con-
struct more specifically actors and resources profiles and relations. Consequently,
we will also need a formal language that is expressive enough to represent the
location-based models, and practical for the needed automated analysis.

Acknowledgement

This work has been partially funded by EU Commission, through the SEREN-
ITY project, by MIUR, through the MEnSA project (PRIN 2006), and by the
Provincial Authority of Trentino, through the STAMPS project.



References

1. Krogstie, J., Lyytinen, K., Opdahl, A., Pernici, B., Siau, K., Smolander, K.: Re-
search areas and challenges for mobile information systems. International Journal
of Mobile Communications 2(3) (2004) 220–234

2. Weiser, M.: The Computer for the Twenty-First Century. Scientific American
265(3) (1991) 94–104

3. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile informa-
tion systems. In: Proc. 20th Intl. Conference on Advanced Information Systems
Engineering (CAiSE’08), LNCS 5074, Springer. (2008) 575–578

4. Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive
computing. In: Proc. Fourth IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS ’06). (2006) 5–10

5. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: Proc. Second IEEE Intl. Conference on Pervasive Com-
puting and Communications (PerCom’04). (2004) 77

6. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using owl. In: Proc. Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops. (2004) 18–22

7. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems
in context. In: Proc. 15th Intl. Conference on Requirements Engineering (RE’07).
(2007) 211–220

8. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

9. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Ann. Softw. Eng. 5
(1998) 143–168

10. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: Proc. 2006 conference of the Center for
Advanced Studies on Collaborative research (CASCON ’06), ACM (2006) 7

11. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based vari-
ability acquisition and analysis. In: Proc. 14th IEEE Intl. Requirements Engineer-
ing Conference (RE’06). (2006) 76–85

12. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1-2) (1993) 3–50

13. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 8(3) (2004) 203–236

14. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis,
University of Toronto (1995)

15. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1) (1999) 31–37

16. Ali, R., Dalpiaz, F., Giorgini, P.: Modeling and analyzing variability for mobile
information systems. In: Proc. Intl. Conf. on Computational Science and its Ap-
plications (ICCSA’08), UWSI’08 Workshop, LNCS 5073, Sprniger (2008) 291–306

17. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Proc. 21st Intl. Conf. on Conceptual Modeling (ER’02). (2002) 167–181

18. Liaskos, S., McIlraith, S., Mylopoulos, J.: Representing and reasoning with pref-
erence requirements using goals. Technical report, Dept. of Computer Science,
University of Toronto (2006) ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.


