
w

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

//';z/¢c :-/ ,IA/x/f'--

/,,J-C, l . c f_..

A SOFTWARE DEVELOPMENT AND EVOLUTION
MODEL BASED ON DECISION-MAKING

By

J. Christian Wild, Principal Investigator

Final Report

For the period ended January 31, 1991

Prepared for
National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NAG-I-966
Dr. Dave E. Eckhardt, Jr., Technical Monitor

ISD-Systems Architecture Branch

Submitted by the
Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, Virginia 23508-0369

_ June 1991
p--

(NASA-CR-I_7t389) A SOFT_AP.E DEVELOPMFNT

EVJLUTION M(]_FL BASED ON DECISION-MAKING

Fin._l Report, period ending 31 Jdn. 1991
(01_# Domir_ion Univ.) i0 p CSCL

AND

0_

G3/51

N91-24758

Uncl_s

001&963

https://ntrs.nasa.gov/search.jsp?R=19910015444 2020-03-19T18:18:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42817802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGMENTS

The attached paper has been accepted for publication in the Third International

Conference on Software and Knowledge Engineering to be held in Skokie, Illinois, June

1991. The paper is being submitted in lieu of a final report for the research project

entitled, "A Project-Knowledge Base for Supporting Software Generation Based on

Documenting Decision Dependencies," supported by the National Aeronautics and Space

Administration, research grant NAG-I-966, Dr. Dave E. Eckhardt, Jr., of Information

Systems Division, Systems Architecture Branch was technical monitor.

ii

A Software Development and Evolution Model Based on

Decision-making

Jinghuan Dong Chris Wild Kurt Maly

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

Abstract

Design is a complex activity whose purpose is to con-
struct an artifact which satisfies a set of constraints and

requirements. However the design process is not well

understood. In this paper we focus on the software de-

sign and evolution process, and propose a three dimen-
sional software development space organized around

a decision-making paradigm, We present a initial in-

stantiation of this model called 3DPM_ which has
been partly implemented. Discussion of the use of this

model in software reuse and process management is

given.

1 Introduction

Design is a complex activity whose purpose is to con-
struct an artifact which satisfies a set of constraints and

requirements. Some of the characteristics of the design
activity which distinguish it among problem solving

activities are complexity and diversity of the design

space, interdependencies between artifact structures,
lack of well-defined criteria for evaluating resultant de-

signs [6] and inability to articulate a complete and

consistent set of requirements [15]. The intelligence

and knowledge of the designers decide the success and
failure of a design. In this paper we concentrate on

software design which is further characterized by con-

tinued evolution of the initial design through a process

commonly referred to as software maintenance.

The starting point for any design activity is a de-

scription of the problem given in the form of a set of

requirements. In many design situations a requirement

may be naturally stated in a sufficiently precise or for-
mal manner that one can construct definite and appli-

cable procedures for determining whether or not the

design meets such requirements. Such problems are
termed well-structured problem. However, many de-

sign problems are ill-structured in that there may be

no definite, objective criterion or procedure for deter-

mining whether or not a design meets its requirements.

This is the preciseness l)roblmn [4]. Other prot)lems

are inconsistency, incompleteness and ambiguity etc.
Given tile requirements, the designer may follow some

kind of design process (model) or design strategy to
analyze the requirements, to propose a candidate solu-

tion, to implement it and to test or verify it. However,

the nature of the design process is not well understood.

It wa_s over 20 years ago since the "'software crisis" was

advanced. Some well-known methodologies have been

proposed such as top-down analysis, object-oriented
method. These methodologies greatly improve the pro-

ductivity of software, but they haven't solved the "'cri-

sis" yet. One major problem is that most of these

methods focus on product development. Recently, the

investigation of software design process has received

much interest[2]. This research claims that not only

product information should be recorded, but also de-

sign process information pertaining to products should
be stored in order to increase maintainability.

Here we define the software process as the collection
of related activities, seen as a coherent process sub-

ject to reasoning, involved in the production and evolu-
tion of a software system. A software process model is

a perscriptive representation of software development
activities in [.erms of their order of execution and re-

source malaagement.. The basic function of a process

model of developing a software system is to describe
the chain of events required to create and maintain a

particular software product [11,8]. Software process
models may also provide a basis for structuring soft-

ware environments.J2]

Information relevant, to design shoukl be considered

from three different aspects of a software system.

• From the point of a system structure, components

of the desirable system and relation between them
are considered. The concepts of procedures, mod-

tries and subsystems etc. are proposed and widely
used.

• Fromthepointof developmentprocessof asoft-
waresystem,researchershaveproposedseveral
well-knownprocessmodelsuchasWaterfallmodel
andSpiralModel.

• A veryimportant,but sometimesneglected,as-
pectis theevolutionof a softwaresystem.Ver-
sioncontroland configurationmanagementare
amongtheexistingconceptsfor controllingsoft-
warechange.However,theseconceptsonlyrecord
theeffectsof change,theydonot helpmanage
change.

Although a number of models related to software

development activities have been proposed which cope

with the different information, how to organize the in-

formation from all these different aspects is still a prob-
lem which has not been fully considered. Therefore,

we put forward a proposal for an organization schema

which deals with the information pertaining to three

aspects of design mentioned above. All the informa-

tion from these three aspects will be organized in the
schema around the decisions which are made.

Since the products being developed in a project, the

processes which create and transform these products,

and the organization and environment in which these

processes occur have an interdependent progress, one

fundamental problem is how to organize them in a

schema which can be used conveniently to support, later
redevelopment activity.

In tile following sections, we first describe previous

work and give an outline of current research. Then the
significance of this research topic is summarized and

some of our work is given. Finally current directions

of our research project are described briefly.

2 Previous Work

As we noted earlier, modeling the process of software

engineering and evolution represents a promising ap-

proach toward understanding and supporting the de-
velopment of large-scale software systems. In the fol-

lowing subsection, we will first discuss the previous

works in the design process for initial development
Then evolution models from the view of a software

history are briefly described. Because design is a ill-

structured, knowledge intensive problem solving activ-

ity, an AI approach to design is discussed in section
2.3

2.1 Design Process Model

A ntunber of software process models have been

proposed such as Waterfall model[3], h.erative

Enhancement[12], the automation-based paradigm

[10]. Some of the limitations of current models are
the lack of support for project management, lack of

visibility of design decisions and rationales and limited

support for software evolution.

2.2 Software Evolution Models

A lrage software system usually experiences many
changes over the course of tis lifetime. Large systems

change gradually, in relatiw,ly small steps as it adpats

to changing user's requirements and problenls are fixed

and . The direct effort of each step in the evolution

of a software system is a change in one or more of

the component objects comprising the system. These
changes affect, tile functionality and the performance of

the systeln as well as its representation and must re-

spect many dependencies between the components to

avoid damaging the system. Two of the main objec-

tives of version management are:

• ensuring that consistency constraints are mot.

• coordinating concurrent updates to _ubconq)o-

nents of a system,

Evolution steps can be represented as dependency re-

lations between versions. There are often very many

evolution steps in the life-time of a software system,

and some of these steps may fork off new branches to
create families of alternative versions of the system,

which may differ in functionality or performance, and

may interface to different operating system, peripher-

als. These alternate instantiations of the system and

their supporting decisions offer a model of reuse based

on componenet families distinguished by a set of con-

trooling decisions. The complexity of this structure

and the dependence of future changes on past design
decisions make it important to record the evolution

history of a system.

Current version control systems, such as SCC'S and

RCS, provide good support for keeping track of ver-
sions of files in a software system. But they provide

only marginal support for understanding the structure

of a large system consisting of many modules or sub-

systems and for keeping track of relations between doc-

uments, source codes, and test cases.

Unlike version control systems which only aim at

identifying and efficiently storing many versions of soft-

ware objects up to date. configuration managemeul

software evolution '

software development

Figure 3.1 Three Dimensions in Software

Development Process Space

Figure1:ThreeDimensionsof SoftwareDevelopment

pAGe. _tl_lL_ [_ONALLY BLA_

Goal structure of the design. Design is a purpo-

sive activity, goals guide the choice of what to do

at each point These goals are not artifact descrip-

tions, but prescribe how those should be manipu-
lated.

Design decisions. Given a goal, there may be several
plans for achieving it. Design decisions represent

choices among them.

Rationales for design decisions. The rationale for

choosing a particular plan to achieve a goal ex-

plains why the plan is expected to work and why
it was selected instead of other alternatives.

Control of the design process. Guiding design re-

quires choosing which goal to work on at each

point and choosing which plan to achieve it with.

Our research focus on the following aspects:

1. Capturing the design rationales of soft.ware design

process in terms of decisions made during design

process;

2. Developing a meta-model which may include ma-

jor properties of contemporary software develop-
ment practice, that is, consider development ac-

tivities in a three dimension space; see figure 1

3. Advancing evaluation criteria for the development
and evolution model.

Following the development process of a software sys-

tem, traceability across the software life-cycle between

PRE,CEDIr,]G PAGE BLANK NOT FILMED

Figure 2: The Basic Model of 3DPM

view exactly those parts of a document impacted by a
single decision. Conversely, when viewing a document,

all the relevant decisions which impact that part of a

document can be accessed. A process model for devel-

opment and evolution within tile DBSD paradigm is

described in [14]
This model addresses the following:

Requirements Analysis. The purpose of this phase

could be to identify the characteristics and re-

quirements of the design problem.

Design Synthesis. involves exploring alternative so-

lutions to the design problem.

Design Evaluation. developes the criteria for justi-

fying a choice among a set of alternates.

Design Detail. Support implementing the chosen so-
lution.

4.1 An Abstractive Structure of Model

Our experimental model is called 3DPM v (three Di-

mensions Process Model - Prototype). A basic model

is shown in figure 2.

A Problem is a description of the requirement or

goal to be achieved.

Analysis of the problem given to identify all the pos-

sible alternatives and related justificalions.

A Decision includes decision-making process and a
final clloice.

_ PROBL_

I ARTIFACT

Resource is for organization management including

resource allocation for any action.

Activity is a step for carrying out any outcome from
decisions. It can not be activated until all neces-

sary resources are available.

An Artifact is the product produced by the process.

4.2 Directions of Our Current Re-

search

As described in [15], the DBSD paradigm is supported

by a prototype CASE tool called D-HyperCase. Our
current research focuses on the use of DBSD to facil-

itate reuse and to manage the development and evo-
lution process. First of all, we should articulate what
will be reused. In decision-based model, we will reuse

not only products, but also decisions, justifications and
alternates. The unit of reuse is a component family,

where the term component denotes any collection of
software function which can be considered as a solu-

tion to a generally recognized problem or set of related

problems. The set of specific component instances

comprises the family. Associated with a familty is a
set of decisions, called the component deczsion set. Dif-

ferent members of the family are distinguished by the
choices made for the set of decisions in that set. This
is a different view of reuse then the traditional com-

ponents of libraries approach. Generally, we have two

different models for reuse. One is composition model

(related to the abstraction reuse model of Campbell

[7]) and the modification model.

In the compositional model, the set of alternates for

each decision in the component decision set is kept in

a library. This model involves the instantiation of each

decision with a particular alternate and the composi-
tion of the chosen alternates into a fully instantiated

family member. The justifications between decision

serves to maintain consistency of the instantiated com-

ponents and to explain the relationships among the set

of decisions. This composition model will be used in
our version control subsystem.

The composition model assumes data base popu-
lated with a rich set of alternate views and a set of

rules of composition (in the form of a programming

language for views or as an automated synthesis algo-

rithm). In many cases, reusable components are or-

ganically grown with experience with its application.

Although DBSD was orginally developed to support

software maintenance, the same information structures

support the modification model of reuse. In this model,

an existing component is modified by changing one or

more decisions. The decision view pinpoints those por-

tions of the component which should be modified to
support the new alternate solutions, This produces
a new structure which instantiates another member

of the component family. Some of the open prob-

lems under investigation are how to identify potet_tially

reusable components, how to locate relevant decisions

which need to changed, how to assess impact of chang-

ing those decision (that is, to assess the cost of reuse)

and how to maintain consistency of the modified com-

ponents.
We have developed a process model for management

for decision-based software development paradigm. In

this model, the decision review meeting is a key com-

ponent. This meeting follows a structure which defines
roles for each of the team members, the set. of activities

to be undertaken, the documents produced and the ac-

tion items to be followed through after the meeting is

over. The process model consists of several activities

comprising the problem solving cycle.

A) Decision Review: The first step is the review of

all actions taken since the last meeting. During

this meeting the state of a problem can be changed

in the following ways: problem is new. alternate
solutions identified, rationale for choosing among

the alternates given, decision made to solv, + this

problem.

B) Knowledge Base Update: After t lw decision

review meeting, the status of the problem is
recorded in the DB.C; data base. Unresolved prob-

lems are placed on a problem agenda.

C) Resource Allocation: Management allocates re-

sources to the problems on these agendas moving
them into an active task list.

D) Implementation Chosen solutions to problems
on the active task list are in_plemented,

The primary reason why the decision is the focus of

our method is because of the key role decision play

during software maintenance. More detail on the pro-

cess model is given in [14].

5 Conclusions and Future

Work

A software development process involves many kinds
of information which should be considered in a threc

dimensions space called SDPS (Software Development

Process Space) and organized around the concept
decision.

Basedon thepreviousworkandexperiencelearned
fromit, ourworkis plannedasfollows:

1. Analyzetherelatedinformationentitiesin thede-
signprocess,especiallythedesignrationales,and
put themintohighlyabstractiveentityclasses;

2. Studythe possiblerelationsbetweenobjectsin
threedimensionsaswellastherelationsbetween
theobjectsanddecisions;

3. Usethe technologyof object-orienteddatabase,
hypermedia,andknowledgebaseto build3DPM;

4. Study the relationshipbetween3DPM recta-
modelandotherdesignapproachesandexplore
thewayof usingthismodelin practice;

5. Developmetricsto evaluatethepropertiesof this
modelandsetsomecriteriato useit in various
environments.

Tosupportevaluation,wehavedevelopedtheDecision,
Instrument,ReEvaluateparadigm(DIRE)inwhichde-
cisionswhichareweaklyjustifiedareidentifiedascon-
ditionaldecisions(thatis, adecisionismorelikelyot
changethanotherdecisions).Theartifactswhichde-
pendon theseconditionaldecisionsareinstrumented
to collectthedatanecessaryto evaluatethequalityof
thedecisionandmayleadto subsequentmaintenance
tasksto reworktheseconditionaldecisions.Metrics
areusedto supportor refutetheseconditionaldeci-
sionsbut mayalsoindicatethesituationsunderwhich
differentalternatesaremostappropriatewithinacom-
ponentfamily.Wearecurrentlyinstrumentinga pro-
totypeCASEtoolsupportingtheDBSDparadigmin
orderto developmentandvalidate3PDM.

6 Acknowledgments

This work is supported by NASA under grant NAG1-
966.

References

[1]

[2]

[3]

A.Lie and etc. Change oriented versioning in a

software engineering database. ACM software En-
gineering Notes, 14, no.7, Nov, 1989.

R. Balzer. Process programming: passing into a

new phase. Proceedings of the 4th international

software process workshop (May, 1988), 1989.

B.W.Boehm. Software engineering. [EEE Trans.

on Compulers, 25,no.12, 1976.

[4] S. Dasgupta. The structure of design processes.

,4dvances in Computers, 28, 1989.

[5] E.Horowitz and R. Williamson. Soddos: s soft-
ware documentation support environment - its

definition. IEEE Trans. Software Engineering, 12,

no.8, August, 1986.

[6] V. Goel and P. Pirolli. Motivating the notion

of generic design. AI Magazine, 10(1):118 38,

Spring 1989.

[7] J. Grady Campbell. Abstraction-
based reuse repositories. Prec. AIAA Computtr._

in Aerospace, VII:368-373, October 19_9.

[8] M. Jackson. Software development in tile year

2000. Proceedings of the 11th inlernalional con-

ference on software engzneerzng, May, 1989.

[9] J. Mostow. Toward better models of the design

process. AI magazine, 6 (1), Spring 1985.

[10] R:Balzer and etc. Software technology in the

1990"s: using a nem paradigm. Computer, 16,
no.ll, 1983.

[11] W. Scacchi. Modelling software evolution: a
knowledge-based approach. Proceedings of 4th

intem2alional .software process worl_'shop (May

I988), 1989.

[12] V.R.Basili and A.J.Turner. Iterative enhance-

ment: a practical technique for software develop-

ment. IEEE Trans. Software Engineering, 1,no.4,
1975.

[13] C. Wild and K. Maly. Decision-based software

development: design and lnaiutenance. Proceed-

_ngs of the Conference on Software Maintenance,
297-306, October 1989.

[14] C. Wild, K. Maly, J. DonE, and G. Hu. A process

model for decision based software development.

Proceedings of Conference on Software Mainte-
nance, submitted, Oct. 1991.

[15] C. Wild, K. Maly, and L. Liu. Decision-based

software development. Journal of Software Main-

lenance, 3(1):-, 1991.

[16] C. Wild, K. Maly, and L. Liu. Decision-based-
support-paradigm: a new method to st.rtlcture

source code. Proceedings of the Conference on

Software Maintenance. -, November 1990.

