114,148 research outputs found

    Model-checking Quantitative Alternating-time Temporal Logic on One-counter Game Models

    Full text link
    We consider quantitative extensions of the alternating-time temporal logics ATL/ATLs called quantitative alternating-time temporal logics (QATL/QATLs) in which the value of a counter can be compared to constants using equality, inequality and modulo constraints. We interpret these logics in one-counter game models which are infinite duration games played on finite control graphs where each transition can increase or decrease the value of an unbounded counter. That is, the state-space of these games are, generally, infinite. We consider the model-checking problem of the logics QATL and QATLs on one-counter game models with VASS semantics for which we develop algorithms and provide matching lower bounds. Our algorithms are based on reductions of the model-checking problems to model-checking games. This approach makes it quite simple for us to deal with extensions of the logical languages as well as the infinite state spaces. The framework generalizes on one hand qualitative problems such as ATL/ATLs model-checking of finite-state systems, model-checking of the branching-time temporal logics CTL and CTLs on one-counter processes and the realizability problem of LTL specifications. On the other hand the model-checking problem for QATL/QATLs generalizes quantitative problems such as the fixed-initial credit problem for energy games (in the case of QATL) and energy parity games (in the case of QATLs). Our results are positive as we show that the generalizations are not too costly with respect to complexity. As a byproduct we obtain new results on the complexity of model-checking CTLs in one-counter processes and show that deciding the winner in one-counter games with LTL objectives is 2ExpSpace-complete.Comment: 22 pages, 12 figure

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape

    Improving Saturation-based Bounded Model Checking

    Get PDF
    Formal verification is becoming a fundamental step in assuring the correctness of safety-critical systems. Since these systems are often asynchronous and even distributed, their verification requires methods that can deal with huge or even infinite state spaces. Model checking is one of the current techniques to analyse the behaviour of systems, as part of the verification process. In this paper a symbolic bounded model checking algorithm is presented that relies on efficient saturation-based methods. The previous approaches are extended with new bounded state space exploration strategies. In addition, constrained saturation is also introduced to improve the efficiency of bounded model checking. Our measurements confirm that these approaches do not only offer a solution to deal with infinite state spaces, but in many cases they even outperform the original methods

    An expectation transformer approach to predicate abstraction and data independence for probabilistic programs

    Full text link
    In this paper we revisit the well-known technique of predicate abstraction to characterise performance attributes of system models incorporating probability. We recast the theory using expectation transformers, and identify transformer properties which correspond to abstractions that yield nevertheless exact bound on the performance of infinite state probabilistic systems. In addition, we extend the developed technique to the special case of "data independent" programs incorporating probability. Finally, we demonstrate the subtleness of the extended technique by using the PRISM model checking tool to analyse an infinite state protocol, obtaining exact bounds on its performance

    Abstraction and Learning for Infinite-State Compositional Verification

    Full text link
    Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Predicate Abstraction with Indexed Predicates

    Full text link
    Predicate abstraction provides a powerful tool for verifying properties of infinite-state systems using a combination of a decision procedure for a subset of first-order logic and symbolic methods originally developed for finite-state model checking. We consider models containing first-order state variables, where the system state includes mutable functions and predicates. Such a model can describe systems containing arbitrarily large memories, buffers, and arrays of identical processes. We describe a form of predicate abstraction that constructs a formula over a set of universally quantified variables to describe invariant properties of the first-order state variables. We provide a formal justification of the soundness of our approach and describe how it has been used to verify several hardware and software designs, including a directory-based cache coherence protocol.Comment: 27 pages, 4 figures, 1 table, short version appeared in International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI'04), LNCS 2937, pages = 267--28

    Algebraic model checking for discrete linear dynamical systems

    Get PDF
    Model checking infinite-state systems is one of the central challenges in automated verification. In this survey we focus on an important and fundamental subclass of infinite-state systems, namely discrete linear dynamical systems. While such systems are ubiquitous in mathematics, physics, engineering, etc., in the present context our motivation stems from their relevance to the formal analysis and verification of program loops, weighted automata, hybrid systems, and control systems, amongst many others. Our main object of study is the problem of model checking temporal properties on the infinite orbit of a linear dynamical system, and our principal contribution is to show that for a rich class of properties this problem can be reduced to certain classical decision problems on linear recurrence sequences, notably the Skolem Problem. This leads us to discuss recent advances on the latter and to highlight the prospects for further progress on charting the algorithmic landscape of linear recurrence sequences and linear dynamical systems

    Algebraic Model Checking for Discrete Linear Dynamical Systems

    Get PDF
    Model checking infinite-state systems is one of the central challenges in automated verification. In this survey we focus on an important and fundamental subclass of infinite-state systems, namely discrete linear dynamical systems. While such systems are ubiquitous in mathematics, physics, engineering, etc., in the present context our motivation stems from their relevance to the formal analysis and verification of program loops, weighted automata, hybrid systems, and control systems, amongst many others. Our main object of study is the problem of model checking temporal properties on the infinite orbit of a linear dynamical system, and our principal contribution is to show that for a rich class of properties this problem can be reduced to certain classical decision problems on linear recurrence sequences, notably the Skolem Problem. This leads us to discuss recent advances on the latter and to highlight the prospects for further progress on charting the algorithmic landscape of linear recurrence sequences and linear dynamical systems
    corecore