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Algebraic Model Checking for Discrete
Linear Dynamical Systems

Florian Luca1, Joël Ouaknine2(B), and James Worrell3
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Johannesburg, South Africa

2 Max Planck Institute for Software Systems, Saarland Informatics Campus,
Saarbrücken, Germany
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3 Department of Computer Science, Oxford University, Oxford, UK

Abstract. Model checking infinite-state systems is one of the central
challenges in automated verification. In this survey we focus on an impor-
tant and fundamental subclass of infinite-state systems, namely discrete
linear dynamical systems. While such systems are ubiquitous in mathe-
matics, physics, engineering, etc., in the present context our motivation
stems from their relevance to the formal analysis and verification of pro-
gram loops, weighted automata, hybrid systems, and control systems,
amongst many others. Our main object of study is the problem of model
checking temporal properties on the infinite orbit of a linear dynamical
system, and our principal contribution is to show that for a rich class
of properties this problem can be reduced to certain classical decision
problems on linear recurrence sequences, notably the Skolem Problem.
This leads us to discuss recent advances on the latter and to highlight
the prospects for further progress on charting the algorithmic landscape
of linear recurrence sequences and linear dynamical systems.

Keywords: Discrete Linear Dynamical Systems · Linear Recurrence
Sequences · Model Checking · Orbit Problem · Skolem Problem

1 Introduction

Dynamical systems are a fundamental modelling paradigm in many branches
of science, and have been the subject of extensive research for many decades.
A (rational) discrete linear dynamical system (LDS) in ambient space R
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Matemáticas UNAM, Morelia, Mexico; and the Max Planck Institute for Software Sys-
tems, Saarland Informatics Campus, Germany.
J. Ouaknine—Also affiliated with Keble College, Oxford as emmy.network Fellow, and
supported by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-
computing.science).

c© The Author(s) 2022
S. Bogomolov and D. Parker (Eds.): FORMATS 2022, LNCS 13465, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-15839-1_1



4 F. Luca et al.

given by a square d × d matrix M with rational entries, together with a start-
ing point x ∈ Q

d. The orbit of (M,x) is the infinite trajectory O(M,x) :=
〈x,Mx,M2x, . . . 〉. An example of a two-dimensional LDS is given in Fig. 1. A
central concern in the computational theory of dynamical systems is the task
of devising algorithms enabling one to decide various kinds of assertions on
dynamical-system orbits.

Fig. 1. A two-dimensional discrete linear dynamical system.

One of the most natural and fundamental computational questions concerning
linear dynamical systems is the Point-to-Point Reachability Problem, also known
as the Kannan-Lipton Orbit Problem: given a d-dimensional LDS (M,x) together
with a point target y ∈ Q

d, does the orbit of the LDS ever hit the target? The
decidability of this question was settled affirmatively in the 1980s in the semi-
nal work of Kannan and Lipton [28,29]. In fact, Kannan and Lipton showed that
this problem is solvable in polynomial time, answering an earlier open problem of
Harrison from the 1960s on reachability for linear sequential machines [26].

Interestingly, one of Kannan and Lipton’s motivations was to propose a line
of attack to the well-known Skolem Problem, which had itself been famously open
since the 1930s. The Skolem Problem remains unsolved to this day, although sub-
stantial advances have recently been made—more on this shortly. Phrased in the
language of linear dynamical systems, the Skolem Problem asks whether it is decid-
able, given (M,x) as above, together with a (d − 1)-dimensional subspace H of
R

d, to determine if the orbit of (M,x) ever hits H. Kannan and Lipton suggested
that, in ambient space R

d of arbitrary dimension, the problem of hitting a low-
dimensional subspace might be decidable. Indeed, this was eventually substanti-
ated by Chonev et al. for linear subspaces of dimension at most 3 [17,19].

Subsequent research focussed on the decidability of hitting targets of increas-
ing complexity, such as half-spaces [25,33,36–38], polytopes [3,18,42], and semi-
algebraic sets [4,5]. It is also worth noting that discrete linear dynamical systems
can equivalently be viewed as linear (or affine) simple, branching-free while loops,
where reachability corresponds to loop termination. There is a voluminous liter-
ature on the topic, albeit largely focussing on heuristics and semi-algorithms (via
spectral methods or the synthesis of ranking functions), rather than exact decid-
ability results. Relevant papers include [6–9,13,14,16,21,27,40,41,44]. Several
of these approaches have moreover been implemented in software verification
tools, such as Microsoft’s Terminator [22,23].

In recent years, motivated in part by verification problems for stochastic sys-
tems and linear loops, researchers have begun investigating more sophisticated
specification formalisms than mere reachability: for example, the paper [1] stud-
ies approximate LTL model checking of Markov chains (which themselves can
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be viewed as particular kinds of linear dynamical systems), whereas [32] focuses
on LTL model checking of low-dimensional linear dynamical systems with semi-
algebraic predicates.1 In [2], the authors solve the semialgebraic model-checking
problem for diagonalisable linear dynamical systems in arbitrary dimension
against prefix-independent MSO2 properties, whereas [31] investigates semialge-
braic MSO model checking of linear dynamical systems in which the dimensions
of predicates are constrained. For a comprehensive survey of the state of the art
on model checking for linear dynamical systems, we refer the reader to [30].

There is an intimate connection between linear dynamical systems and linear
recurrence sequences. A (rational) linear recurrence sequence (LRS) u = 〈un〉∞

n=0

is an infinite sequence of rational numbers satisfying

un+d = c1un+d−1 + · · · + cd−1un+1 + cdun (1)

for all n ∈ N, where the coefficients c1, . . . , cd are rational numbers and cd �= 0.
We say that the above recurrence has order d. We moreover say that an LRS is
simple if the characteristic polynomial3 of its minimal-order recurrence has no
repeated roots. The sequence of Fibonacci numbers 〈fn〉∞

n=0 = 〈0, 1, 1, 2, 3, 5, . . .〉,
which obeys the recurrence fn+2 = fn+1 + fn, is perhaps the most emblematic
LRS, and also happens to be simple. It is a straightforward exercise to show that
the orbit 〈x,Mx,M2x, . . . 〉 of the LDS from Fig. 1 consists precisely of successive
pairs of consecutive Fibonacci numbers:

〈x,Mx,M2x, . . . 〉 =
〈(

1
0

)
,

(
1
1

)
,

(
2
1

)
, . . .

〉
=

〈(
f1
f0

)
,

(
f2
f1

)
,

(
f3
f2

)
, . . .

〉
. (2)

Let us now define the following two bivariate predicates:

P (y, z) def=
(
y2 − yz − z2 − 1 = 0

)
(3)

Q(y, z) def=
(
y2 − yz − z2 + 1 = 0

)
. (4)

Identifying P and Q with the respective subsets of R2 that they represent, one
can straightforwardly show that the orbit of (M,x) visits P precisely at even-
valued indices, and Q at odd-valued indices (where the first element of the orbit
is understood to have index 0). In other words, the LDS (M,x) satisfies the
following LTL specification:

P ∧ ¬Q ∧ G(P ⇒ XQ) ∧ G(Q ⇒ XP ) . (5)

Of course, the general task of determining algorithmically whether a given
LDS (in arbitrary dimension) meets a given specification would appear to be
1 Semialgebraic predicates are Boolean combinations of polynomial equalities and

inequalities.
2 Monadic Second-Order Logic (MSO) is a highly expressive specification formalism

that subsumes the vast majority of temporal logics employed in the field of auto-
mated verification, such as Linear Temporal Logic (LTL).

3 The characteristic polynomial associated with recurrence (1) is Xd−c1X
d−1−. . .−cd.
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highly challenging. The principal goal of this paper is to delineate the extent to
which this can be achieved automatically when the predicates are built from
algebraic sets4 and the specification formalism is either MSO, or its prefix-
independent fragment. Before stating our key results, we need to take a brief
detour through the Skolem landscape.

1.1 Skolem Oracles

The celebrated theorem of Skolem, Mahler, and Lech (see [24]) describes the
structure of the set {n ∈ N : un = 0} of zero terms of an LRS as follows:

Theorem 1. Given a linear recurrence sequence u = 〈un〉∞
n=0, its set of zero

terms is a semilinear set, i.e., it consists of a union of finitely many full arith-
metic progressions,5 together with a finite set.

As shown by Berstel and Mignotte [10], in the above one can effectively
extract all of the arithmetic progressions; we refer herein to the corresponding
procedure as the ‘Berstel-Mignotte algorithm’. Nevertheless, how to compute
the leftover finite set of zeros remains open, and is easily seen to be equivalent
to the Skolem Problem: given an LRS u, does u contain a zero term?

Let us therefore introduce the notion of a Skolem oracle: given an LRS u =
〈un〉∞

n=0, such an oracle returns the finite set of indices of zeros of u that do
not already belong to some infinite arithmetic progression of zeros. Likewise, a
Simple-Skolem oracle is a Skolem oracle restricted to simple LRS.

As mentioned earlier, the decidability of the Skolem Problem is a longstand-
ing open question [24,39], with a positive answer for LRS of order at most 4
known since the mid-1980s [43,45]. Very recently, two major conditional advances
on the Skolem Problem have been made, achieving decidability subject to certain
classical number-theoretic conjectures: in [34], Lipton et al. established decid-
ability for LRS of order 5 assuming the Skolem Conjecture (also known as the
Exponential Local-Global Principle); and in [11], Bilu et al. showed decidabil-
ity for simple LRS of arbitrary order, subject to both the Skolem Conjecture
and the p-adic Schanuel Conjecture. It is interesting to note that in both cases,
the procedures in question rely on the conjectures only for termination; correct-
ness is unconditional. In fact, these procedures are certifying algorithms (in the
sense of [35]) in that, upon termination, they produce an independent certifi-
cate (or witness) that their output is correct. Such a certificate can be checked
algorithmically by a third party with no reliance on any unproven conjectures.
The authors of [11] have implemented their algorithm within the skolem tool,
available online.6

In view of the above, Simple-Skolem oracles can be implemented with uncon-
ditional correctness, and guaranteed termination subject to the Skolem and p-
adic Schanuel conjectures. Whether full Skolem oracles can be devised is the
4 Algebraic sets correpond to positive Boolean combinations of polynomial equalities.
5 A full arithmetic progression is a set of non-negative integers of the form {a + bm :

m ∈ N}, with a, b ∈ N.
6 https://skolem.mpi-sws.org/.
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subject of active research; at the time of writing, to the best of our knowledge,
no putative procedure is even conjectured in the general (non-simple) case.

To illustrate the applicability of Skolem oracles to model checking linear
dynamical systems, let us return to our running example involving the LDS
(M,x) from Fig. 1. Recall predicate P (y, z) from Eq. (3), and identify it with
the polynomial it implicitly represents, namely P (y, z) = y2 − yz − z2 − 1. In
view of Eq. (2), we can write the orbit of (M,x) as follows:

〈Mnx〉∞
n=0 =

〈(
yn

zn

)〉∞

n=0

=
〈(

fn+1

fn

)〉∞

n=0

,

where the reader will recall that 〈fn〉∞
n=0 is the LRS of Fibonacci numbers.

Evaluating the polynomial P (y, z) at each point of the orbit therefore yields the
sequence 〈f2

n+1 − fn+1fn − f2
n − 1〉∞

n=0. Given that LRS (resp. simple LRS) are
closed under addition and multiplication, the resulting sequence is immediately
seen to be a (simple) LRS. Therefore the Berstel-Mignotte algorithm, together
with a (Simple-)Skolem oracle, enable us to compute the set of zeros of this
LRS as a semilinear set. In turn, this set is precisely the sequence of indices at
which the predicate P holds, i.e., at which the orbit of the LDS (M,x) visits
the set represented by P . Since one-dimensional semilinear sets are ultimately
periodic, and since every step along the way was effective (assuming the existence
of (Simple-)Skolem oracles), evaluating the predicate P on the orbit of (M,x)
gives rise to an effectively ultimately periodic word. As already noted, this word
is indeed in fact 〈TRUE ,FALSE ,TRUE ,FALSE ,TRUE ,FALSE ,TRUE , . . .〉.

One can of course repeat the procedure with the predicate Q, so that both P
and Q are effectively ultimately periodic. Since MSO over effectively ultimately
periodic words is decidable, we have just outlined a general algorithmic process
by which one can decide algebraic MSO specifications (such as (5)) on orbits of
linear dynamical systems, assuming the existence of Skolem or Simple-Skolem
oracles.

Remark 2. As hinted above, it is a general fact that the sequence of values
obtained by evaluating a multivariate polynomial on the successive points of the
orbit of an LDS is always an LRS; moreoever, whenever the LDS is diagonalis-
able7, the corresponding LRS is always simple. We provide sketch justifications
of these facts in Sect. 2.

1.2 Main Results

We require one final ingredient in order to state the main contributions of this
paper. Fix the ambient space to be R

d, and define the collection C of subsets
of R

d to be the smallest set containing all algebraic subsets of R
d, and which

is closed under finite union, finite intersection, and complement. In algebraic
geometry, C is usually referred to as the collection of constructible subsets of Rd.
7 An LDS (M, x) is diagonalisable provided the matrix M is diagonalisable over the

complex numbers.
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We refer to MSO formulas over predicates from C as algebraic MSO, and the
corresponding model-checking problem as algebraic model checking.

Our main results are as follows (precise definitions and statements can be
found in Sect. 2):

1. The algebraic model-checking problem for LDS is decidable in arbitrary
dimension, subject to the existence of a Skolem oracle.

2. The algebraic model-checking problem for diagonalisable LDS is decidable in
arbitrary dimension, subject to the existence of a Simple-Skolem oracle.

– As an immediate corollary, decidability holds subject to the Skolem and
p-adic Schanuel conjectures; moreover, correctness of the model-checking
procedure is unconditional, and independent correctness certificates can
always be produced upon termination.

3. The algebraic model-checking problem for LDS against prefix-independent
specifications is (unconditionally) decidable.

Item 3 above follows from the fact that prefix-independent assertions depend
only upon the ultimately periodic components of predicates (see, e.g., [2]), and
the latter can be effectively extracted via the Berstel-Mignotte algorithm.

Three further remarks are in order: (i) in ambient space R
3, algebraic and

even semialgebraic model checking for LDS become unconditionally decidable;
this follows immediately from the results of [31], since every predicate in R

3

belongs to a 3-dimensional subspace (namely R
3). However: (ii) in ambient space

R
4, unconditional decidability of algebraic model checking in not known to hold

even for diagonalisable LDS, as one can establish hardness for the Skolem Prob-
lem at order 5; see [18] for details. (iii) For simplicity, all our results are stated in
terms of rational linear dynamical systems, living in ambient space R

d. Never-
theless, it is a straightforward corollary that we can extend our entire framework
to complex-algebraic8 linear dynamical systems, replacing the ambient space R

d

by C
d, Q

d by Q
d
, and real constructible sets by complex constructible sets.9

As we sketch in Sect. 2, our main results (as listed above) carry over easily to
this more general complex setting. In this extension, it is noteworthy that our
Skolem oracles however remain unchanged, i.e., are maintained to apply only to
rational (rather than complex-algebraic) linear recurrence sequences.

Lastly, it is interesting to note that the algebraic model-checking problem for
LDS subsumes not only the original Point-to-Point Reachability Problem, but
also the Subspace Reachability Problem suggested by Kannan and Lipton [29]
(along with its affine variants), as well as reachability for the glued vector spaces
of [20].

8 We are referring here to the field of complex algebraic numbers, denoted Q.
9 Complex constructible sets play a central rôle in algebraic geometry; moreover, since

the first-order theory of algebraically closed fields admits quantifier elimination, the
constructible subsets of Cd are exactly the subsets of Cd that are first-order definable
over C.
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In the next section, we present a slightly more formal treatment of our
framework and results, along with justifications for some of our unsupported
assertions. Section 3 concludes with a brief summary and directions for further
research.

2 Algebraic Model Checking

Throughout this section, we assume familiarity with the elementary theory of
linear recurrence sequences as well as the rudiments of Monadic Second-Order
Logic (MSO); there are many excellent references for both topics, such as [24]
and [12].

Let us work in fixed ambient space R
d, and consider a d-dimensional LDS

(M,x) (i.e., M ∈ Q
d×d and x ∈ Q

d). Recall that the orbit O = O(M,x) of our
LDS is the infinite sequence 〈x,Mx,M2x, . . .〉 in Q

d. Let us write O[n] for the
nth term of the orbit, and, for 1 ≤ i ≤ d, O[n]i for the ith entry of the point
O[n] ∈ Q

d.

Lemma 3. Let (M,x) be as above. For any fixed i ∈ {1, . . . , d}, the sequence
〈O[n]i〉∞

n=0 is an LRS whose characteristic polynomial divides the minimal poly-
nomial of M .

Proof. The fact that the minimal polynomial of M is associated with a recur-
rence satisfied by the sequence 〈O[n]i〉∞

n=0 is a straightforward linear-algebraic
calculation. It follows that sequence 〈O[n]i〉∞

n=0 is indeed an LRS having charac-
teristic roots among the eigenvalues of M , with the multiplicity of each charac-
teristic root at most the algebraic multiplicity of the corresponding eigenvalue.
The result then immediately follows. 	

Corollary 4. Let (M,x) be as above. If M is diagonalisable, then for each fixed
i ∈ {1, . . . , d}, the LRS 〈O[n]i〉∞

n=0 is simple.

Proof. This follows immediately from the well-known fact that a square matrix
M is diagonalisable if and only if its minimal polynomial is a product of distinct
linear factors (over C). 	


A set A ⊆ R
d is algebraic if A can be written as a finite positive Boolean

combination of polynomial equalities, where all polynomials involved have inte-
ger coefficients. The collection C ⊆ 2R

d

of constructible subsets of R
d is the

smallest set that includes all algebraic sets and is closed under finite Boolean
combinations (including complementation). Any constructible set C ∈ C can
therefore be represented in conjunctive normal form, i.e., as an expression of
the form C =

⋂a
i=1

⋃b
j=1 Bi,j , where each Bi,j is either an algebraic set or the

complement of one.
Let C = {C1, . . . , C�} be a finite list of constructible sets (not necessarily

disjoint), giving rise to an alphabet Σ
def= 2C . The orbit O of our LDS (M,x)

then naturally gives rise to an infinite characteristic word w ∈ Σω, as follows:
writing w[n] for the nth letter of w, we have Ci ∈ w[n] iff Mnx ∈ Ci.
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Proposition 5. Characteristic words over constructible predicates are ulti-
mately periodic.

Proof. Let us write O = 〈xn〉∞
n=0 to denote the orbit of our LDS (M,x), and let

us further write each xn as (x(1)
n , . . . , x

(d)
n )T . Fix a polynomial f ∈ Z[X1, . . . , Xd],

and consider the sequence 〈f(xn)〉∞
n=0. Since sums and products of LRS are

LRS, by Lemma 3 the sequence 〈f(xn)〉∞
n=0 is an LRS, and by the Skolem-

Mahler-Lech theorem its set of zeros is therefore semilinear, hence ultimately
periodic. Since pointwise Boolean combinations (including complementation) of
ultimately periodic words are ultimately periodic, and taking account of the fact
that any constructible set is a finite Boolean combination of algebraic sets, the
result immediately follows. 	


We say that a word is effectively ultimately periodic if one can compute an
integer threshold beyond which the word in question becomes periodic. Stringing
everything together:

Corollary 6.

1. Assume the existence of a Skolem oracle. Then characteristic words over con-
structible predicates are effectively ultimately periodic.

2. Suppose (M,x) is a diagonalisable LDS, and assume the existence of a Simple-
Skolem oracle. Then any characteristic word associated with the orbit of
(M,x) over constructible predicates is effectively ultimately periodic.

Proof. The first item follows directly from Proposition 5, together with the
Berstel-Mignotte algorithm. So does the second item, invoking in addition Corol-
lary 4, and taking account of the fact that simple LRS are closed under sums
and products, along with the fact that constant sequences are themselves simple
LRS. 	


Let (M,x) and C be as above, and let ϕ be an MSO formula with atomic
predicates drawn from C—we refer to such formulas as algebraic MSO specifi-
cations. The question of whether the characteristic word w associated with the
orbit of (M,x) satisfies specification ϕ—which is usually written as (M,x) � ϕ—
is the algebraic model-checking problem for discrete linear dynamical systems.

In addition, we say that ϕ is prefix-independent if the infinite words that
satisfy it are closed under the operations of insertion and deletion of finitely
many letters. Prefix-independent properties can be used to describe asymptotic
behaviours (e.g., “does the orbit enter C1 infinitely often?”), but not reachability.

We are now ready to formally state our main results:

Theorem 7.

1. The algebraic model-checking problem for LDS is decidable, subject to the
existence of a Skolem oracle.

2. The algebraic model-checking problem for diagonalisable LDS is decidable,
subject to the existence of a Simple-Skolem oracle.
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3. The algebraic model-checking problem for LDS against prefix-independent
specifications is (unconditionally) decidable.

Proof. Item 1 is an immediate consequence of Büchi’s seminal work [15] estab-
lishing the decidability of MSO, together with Corollary 6(1) and the observation
that effectively ultimately periodic predicates can be algorithmically translated
to ordinary MSO by encoding the predicates as formulas.

The same holds for Item 2, invoking Corollary 6(2) in lieu of Corollary 6(1).
Finally, Item 3 follows from the fact that prefix-independent assertions depend

only upon the ultimately periodic components of predicates (see, e.g., [2]), and the
latter can be effectively extracted via the Berstel-Mignotte algorithm. 	


As noted earlier, since Simple-Skolem oracles can be implemented into prov-
ably correct certifying procedures which terminate subject to classical number-
theoretic conjectures [11], we have:

Corollary 8. The algebraic model-checking problem for diagonalisable LDS is
decidable, assuming the Skolem Conjecture and the p-adic Schanuel Conjecture.
Moreover, correctness of the attendant procedure is unconditional, and indepen-
dent correctness certificates can be produced upon termination.

Corollary 8 is arguably our most consequential and interesting contribution.
Given that promising experimental results are reported in [11] regarding the
implementation of a Simple-Skolem algorithm, it appears rather plausible that
one could likewise build an efficient and practical model checker for diagonalis-
able LDS against algebraic specifications.

Finally, let us record, as already noted in the Introduction, that both Theo-
rem 7 and Corollary 8 can be extended mutatis mutandis to complex-algebraic
linear dynamical systems, whilst only invoking Skolem oracles for rational linear
recurrence sequences. We sketch a short justification of this claim below.

Let (M,x) be a complex-algebraic LDS in ambient space C
d, i.e., M ∈ Q

d×d

and x ∈ Q
d
, and let f ∈ Q[X1, . . . , Xd] be an arbitrary polynomial with complex-

algebraic coefficients. Let Z
def= {n ∈ N : f(Mnx) = 0} be the set of indices at

which the orbit of (M,x) lies in the algebraic set f−1(0). The crux of our claim
boils down to the following lemma:

Lemma 9. Let (M,x), f , and Z be as above. Then one can effectively construct
a rational LRS u = 〈un〉∞

n=0 such that Z is precisely the zero set of u. Moreover,
if M is diagonalisable, then u is a simple rational LRS.

Proof. Let K ⊂ Q be the smallest number field containing all the entries of M
and x, as well as all the coefficients of f . As in the proof of Proposition 5, one
easily shows that the sequence v = 〈f(Mn(x))〉∞

n=0 is an LRS lying entirely in K.
Recall the notion of norm NK : K → Q from algebraic number theory, defined

as NK(x) =
∏

σ : K → C

σ(x), where the product is indexed by the collection of field

embeddings of K into C. Since v is an LRS, then so is σ(v) = 〈σ(vn)〉∞
n=0 for any
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embedding σ : K → C, and moreover such applications will also preserve sim-
plicity of LRS (this can be seen by inspecting the effect of σ on the exponential-
polynomial closed-form representation of v). Write u

def= NK(v) = 〈NK(vn)〉∞
n=0.

Since products of (simple) LRS are again (simple) LRS, we have that u is a
(simple) LRS lying entirely in Q. Moreover, since field embeddings fix 0, u and
v have precisely the same zero set, as required. 	


3 Conclusion

This paper has demonstrated that solving the Skolem Problem is key to model
checking a rich class of algebraic properties on linear dynamical systems. We
have formulated our results in terms of the existence of oracles for the Skolem
Problem and a special subcase, the Simple-Skolem Problem. Implementing such
oracles is the subject of ongoing research. As remarked earlier, we have recently
devised an algorithm for the Simple-Skolem Problem whose output comes with
an easily checkable correctness certificate (namely a set of zeros of the given
sequence and a certificate that the remaining terms of the sequence are non-zero)
and which terminates subject to certain classical number-theoretic conjectures.
We are currently investigating whether a similar approach can be devised in the
general (non-simple) case.

In this note we have concentrated on logical specifications built over con-
structible predicates, that is, those that are defined by Boolean combinations of
polynomial equalities. In many applications, one is also interested in the more
general class of semialgebraic predicates, that is, those defined by Boolean com-
binations of polynomial inequalities. The task of model checking MSO formu-
las over such predicates appears vastly more complex. Already the question of
whether the orbit of an LDS remains within a prescribed halfspace—or equiv-
alently whether all terms of an LRS are non-negative, known as the Positivity
Problem—is highly challenging: decidability is known only for sequences of order
at most 5, whereas for sequences of order 6 a solution to the Positivity Problem
would entail major breakthroughs in number theory [37,39].
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linéaires. Bull. Soc. Math. France 104, 175–184 (1976)

11. Bilu, Y., Luca, F., Nieuwveld, J., Ouaknine, J., Purser, D., Worrell, J.: Skolem
meets Schanuel. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2022, 22–
26 August 2022, Vienna, Austria. LIPIcs, vol. 241, pp. 62:1–62:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2022)

12. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic, Springer, Heidelberg (1997)

13. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination analysis of integer linear loops.
In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502.
Springer, Heidelberg (2005). https://doi.org/10.1007/11539452 37

14. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 34
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