
A Monte Carlo Model Checker
for Probabilistic LTL with Numerical Constraints

Robin Donaldson, David Gilbert
Bioinformatics Research Centre, University of Glasgow

Glasgow G12 8QQ, Scotland, UK
radonald@brc.dcs.gla.ac.uk, drg@brc.dcs.gla.ac.uk

Abstract

We define the syntax and semantics of a new temporal logic called probabilistic LTL with numerical constraints (PLTLc).
We introduce an efficient model checker for PLTLc properties. The efficiency of the model checker is through approximation
using Monte Carlo sampling of finite paths through the model’s state space (simulation outputs) and parallel model checking
of the paths. Our model checking method can be applied to any model producing quantitative output – continuous or
stochastic, including those with complex dynamics and those with an infinite state space. Furthermore, our offline approach
allows the analysis of observed (real-life) behaviour traces. We find in this paper that PLTLc properties with constraints
over free variables can replace full model checking experiments, resulting in a significant gain in efficiency. This overcomes
one disadvantage of model checking experiments which is that the complexity depends on system granularity and number of
variables, and quickly becomes infeasible. We focus on models of biochemical networks, and specifically in this paper on
intracellular signalling pathways; however our method canbe applied to a wide range of biological as well as technical
systems and their models. Our work contributes to the emerging field of synthetic biology by proposing a rigourous approach
for the structured formal engineering of biological systems.

1. Motivation

The greatest challenge in modern bioscience is arguably thedevelopment of techniques for the engineering of living
systems in a rigourous manner. This is the domain of the emerging discipline of “Synthetic Biology” [16], which can
be defined as the design and construction of new biological parts, devices, and systems, as well as the re-design of existing
natural biological systems for useful purposes [23]. One aspect of Synthetic Biology which distinguishes it from conventional
genetic engineering is a heavy emphasis on the development of foundational technologies that make the engineering of
biology easier and more reliable.

Therefore, a crucial enabling technology is that of modelling, both in system design and verification of the constructed
system. An important early stage in the design process is confirming that the behaviour of the model conforms to the desired
behaviour, i.e. “model checking”. Qualitative and especially quantitative model checking has been proven to be usefulin
systems biology to validate models derived from the observed real-life behaviour, see e.g. [5], [6], [10], [15], and is likely
to be of equal importance for synthetic biology. Thus, when asystem has been constructed, the actual behaviour should
be checked for conformance with the desired behaviour. A characteristic of biological systems is their inherently stochastic
behaviour when considered at low numbers of molecules or cells, and thus it is highly desirable that models and model
checking techniques can deal with continuous-time stochastic behaviour.

In this paper we present work for the development of rigourous approaches for the structured formal engineering of
biological systems. Driven by the limitations imposed by the computational effort of exact probabilistic model checking,
for example as encountered in applying CSL/PRISM [21], and inspired by approximate model checking [17], [24], we
extend probabilistic LTL [3] with numerical constraints todefine PLTLc and employ Monte Carlo approximation for PLTLc
properties. Monte Carlo approximation samples a finite set of finite paths through the model’s state space (simulation outputs)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and decides the probability of properties based on this set.We introduce a parallelised model checker called the Monte Carlo
Model Checker for PLTLc properties MC2(PLTLc).

Our approach can be applied to both stochastic models, for example stochastic Petri nets, and deterministic models,
constructed using for example continuous Petri nets or ordinary differential equations. Notably the Monte Carlo and offline
approach of MC2(PLTLc) can handle state spaces beyond the current limits of exact analyses, and also for systems with
complex dynamics as semi-Markov processes or generalized semi-Markov processes as well as for systems with an infinite
state space. Our method can also be applied to validate the behaviour of a system which has been constructed according to a
model, through model checking real-life behaviour traces.We focus on models of biochemical networks, and specificallyin
this paper on intracellular signalling pathways; however our method can be applied to a wide range of biological as well as
technical systems and their models.

PLTL with numerical constraints is a novel extension of constraints over free variables previously applied in model check-
ing of continuous behaviour, for example [9]. To apply numerical constraints in a probabilistic setting, a probabilistic domain
is computed for each free variable in the property. We describe two examples where constraints can replace an experiment
comprising many properties. Thus a single PLTLc property can replace a set of properties, resulting in a significant improve-
ment in efficiency. This improvement is especially significant when a property contains several variables, as a single PLTLc
property replaces a set of properties of sizeO(Ln), wheren is the number of variables andL the number of levels.

This paper is organised as follows. The next section defines and details the theory behind our proposed logic. Section 3
deals with the implementation of our model checker tool and discusses the choices used in our analysis. Section 4 gives ex-
amples of our analysis approach, relating to the biochemical context. We conclude in the last two sections with a comparison
to related work and a summary of the main accomplishments of this work.

2. PLTLc
Syntax Linear-time Temporal Logic (LTL) [22] is the fragment of full Computational Tree Logic (CTL*) [8] without path
quantifiers, implicitly quantifying universally over all paths. LTL has been introduced in a probabilistic setting in [3], and
extended by numerical constraints over real value variables in [9]. PLTLc combines both extensions, complemented by the
filter construct as used in Probabilistic Computational Tree Logic (PCTL) [14] and Continuous Stochastic Logic (CSL) [1].
We start with the LTL with numerical constraints (LTLc) syntax:

φ ::= Xφ|Gφ|Fφ|φUφ|φRφ|φ∨φ|φ∧φ|¬φ|φ → φ|value = value|value 6= value|value > value|value ≥ value|
value < value | value ≤ value | true | false

Numerical constraints over free variables are defined in this logic through the inclusion of free variables denoted by
$fVariable in the definition ofvalue below – the symbol$ differentiates a free variable from a regular variable. Regular
variables are read-only values which form the behaviour of the model, whereas free variables are instantiated during the model
checking process to the values for which the temporal logic property holds. In our current implementation free variables are
defined to have integer domains initialised to[0 → ∞) and describe protein concentrations, numbers of moleculesand time.
Constraints over free variables, which involve equality/inequality and relational operators, restrict the domain ofthe free
variable, such that with$X ∈ [0 → ∞), $X > 5 sets$X to be[6 → ∞). If there is a constraint over free variables involving
real numbers, then the real numbers are cast to integers. Notice also that disjunction, conjunction, negation and implication
of constraints over free variables are allowed. Finally, the values considered in this logic are integers and real numbers, and
the four basic arithmetic operations over these values:

value ::= value + value | value − value | value ∗ value | value/value | $fVariable| Variable| function | Int | Real
whereInt is any integer number andRealis any real number. In our biochemical pathway analysis we define Variable to

be the time dependant value of the concentration of any biochemical species in the model, either integers for molecules/levels
or real numbers for concentrations, and we define a special variable calledtimeto stand for the values of state time. State time
values are the simulation time points such that we can, for example, express properties relative to simulation time. This is
especially useful for expressing a property before or aftersome event, such as introducing a drug into a cell. We providethe
ability to define anyfunctionreturning a real or integer value, and in our current system we have chosen to implement the two
functions,max(variable)andd(variable). The functionmaxoperates over all the values of a species to return the maximum
of the species’ value in the simulation run, thus the peak of aspecies can be expressed;Protein = max(Protein). We also
define a functiond which returns the derivative of the concentration of the species at each time point, thus increasing and
decreasing species value can be expressed;d(Protein) > 0 andd(Protein) < 0 respectively.

PLTLc enhances LTLc by the inclusion of a probability operator and filter construct, and the probabilistic interpretation
of the domains for the free variables. The top-level definition of PLTLc is:

ψ ::= PEx[φ] | PEx[φ{SP}]

whereφ is an LTLc expression.SP is a State Proposition containing an AP, or any boolean combination of APs using
{∨,∧,¬,→}, containingno free variables without a loss of expressivity. Note that thesquare and curly brackets are part
of PLTLc. Given thatE ∈ {>,≥, <,≤}, PEx is any inequality comparison of the probability of the property holding true,
for exampleP≥0.5. We also permit the expressionP=? returning the value of the probability of the property holding true.
We disallow equality testing of the probability,P=x because of the representation of real values and the semantics of their
equality.

We define filters similar to those used in PCTL and CSL. This permits specifications to refer to the state or states that
the property is checked from, rather than default to the initial state. Hence, for a property of the formφ{SP}, φ is checked
from the first state thatSP is satisfied. In PLTLc this is equivalent to the formula(¬SP)U(SP ∧ φ), however the filter
abbreviation is introduced to increase readability and compatibility with branching-time logics.

Semantics The semantics of PLTLc is defined over a finite set of finite paths through the system’s state space – in our case,
stochastic or deterministic simulations, or time series data recorded in wet lab experiments.

First, let a pathπ be a finite sequence of states describing the behaviour of a biochemical system,π = s0, s1, ..., sn

(n < ∞) andπi be the subsequence ofπ starting from statesi, i ≤ n, thusπi = si, si+1, ..., sn. The semantics of checking
φ or φ{SP} as appropriate is described in the standard way in Table 1. Each path in the set of paths can be evaluated to a
boolean value as to whetherφ or φ{SP} holds in the path. When all paths are evaluated, the number of true values in the set
over the size of the set yields the overall probability of thePLTLc property. Hence for a stochastic model, where the set of
paths is typically> 1, the probability is in the range[0 → 1] and calculated through Monte Carlo approximation, whereasa
continuous model has a probability of either0 or 1.

π |= Xφ iff π1 |= φ
π |= Gφ iff for all k ≥ 0, πk |= φ
π |= Fφ iff there exists ak ≥ 0, πk |= φ
π |= φ1Uφ2 iff there exists ak ≥ 0, πk |= φ2 and for allj, 0 ≤ j < k, πj |= φ1

π |= φ1Rφ2 iff for all k ≥ 0, πk |= φ2 or there exists aj, such that for allk, 0 ≤ k < j, πk |= φ2

andπj |= φ1

π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

π |= φ1 ∧ φ2 iff π |= φ1 andπ |= φ2

π |= ¬φ iff π 6|= φ
π |= φ1 → φ2 iff π |= φ2 or π 6|= φ1

π |= φ{SP} iff the smallestk such thatπk |= SP , alsoπk |= φ
π |= AP iff s0 |= AP
s |= AP iff s satisfies the atomic proposition,AP .

Table 1. The standard semantics of checking φ or φ{SP} against a finite path.

Finally, the two PLTLc functions we have chosen to implement, max(variable)andd(variable)are defined as follows.
max(variable)calculates the first statesmax in the finite pathπ for which the value ofvariable is maximal and returns this
value.d(variable)calculates for each statesi in the finite pathπ the derivative of the value ofvariablebetween statesi and
si+1. In the case of the final state in the finite pathsn which contains no next state, the derivative is equal to the derivative of
the previous statesn−1.

The choice of simulator and simulation parameters used to compute the finite path can affect the semantics of the PLTLc
property and the correctness of the result. For example the Next operator refers to the next time step in the simulator, however
in a fixed time-step ODE solver, adaptive time-step ODE solver and exact Gillespie simulator these refer to a fixed, varying
and random amount of time in the future respectively. We demonstrate this problem in an example in Section 4.2.

Probabilistic Domains Each path in the set of paths is also evaluated to a domain of validity, Dφ or φ{SP} ⊂ N
n for n free

variables in the PLTLc property,$fV ar1, $fV ar2, ...$fV arn. The domain of validity is defined such that for all valuations
v of the n free variables, wherev ∈ Dφ or φ{SP}, the propertyφ or φ{SP} as appropriate holds true for the path. Thus
each path has an associated domain of validity, with paths resulting in a boolean value of true having a non-empty domain of
validity, i.e. for these paths there must be valuations of the variables for which the property holds.

After the set of domains of validity is evaluated from the setof paths, a probabilistic domain for each of then free
variables in the PLTLc property is calculated. A probabilistic domain associates with each integer value in the domain the

probability of the property holding true for that value. If the PLTLc property evaluates to a probabilityp, then the maximum
probability of any value in the probabilistic domains isp, such that a property with 0 probability has probabilistic domains
with 0 probability for all values. The probabilistic domainof free variable$fV ari is calculated by iterating through each
integer value in the domainI. A count is performed on the set of domains of validity for thenumber of domains which
contain at least one valuationv with v($fV ari) = I. This number over the size of the set is the probability of thevalueI in
the probabilistic domain of$fV ari.

In the case that the system is described by a stochastic model, the probabilistic domains are calculated through Monte
Carlo approximation – the number of occurrences of a value for a free variable in each domain of validity in the set over the
size of the set. In the case of a continuous model where the size of the set is 1, the probabilistic domain contains probabilities
0 and 1 and can equally be represented by a probabilistic domain or a regular domain.

Monotone Properties Properties expressed in a logic can be categorised as monotone if they satisfy the following con-
dition; if the property is satisfied in any path through the state space, then it is satisfied in any extension of the path [17].
A subset of PLTLc called Essentially Positive Fragment (EPF) expresses only monotone properties, consisting of PLTLc
without the Globally operator and disallowing any negationof path formulas.

Our approach to model checking incorporates two approximations. We approximate the truth value of a path by operating
over a finite sequence of states. We also approximate the probability of the property through sampling a finite number of paths
(a subset of the model’s behaviour). When assessing a monotone property against a set of paths, the probability value can
only increase if those paths were extended in time. Hence ignoring the Monte Carlo (sampling) approximation, monotone
properties permit an estimate of the lower bound in the time approximation made. We find that monotone properties are
useful in our biochemical pathway analysis and in fact all the properties considered in our results section are monotone.

Relation to Branching-Time Logics PLTLc differs in several ways from probabilistic branching-time logics such as PCTL
and CSL which operate on discrete-time and continuous-timeMarkov chains (DTMC, CTMC) respectively. PLTLc is a
linear-time logic and operates in-turn on paths through thestate space, thus it is not possible to compute probabilities at any
desired state. This means we cannot have probability operators embedded within the expression. In our approach to PLTLc
checking, the Markov chain is never constructed which helpsfor efficiency (and even feasibility for coping with infinitestate
spaces).

Furthermore, PCTL and CSL define a filter construct which changes the initial state from which the property is checked.
PRISM’s implementation of CSL’s filters chooses the first state lexicographically from the set of states the filter satisfies.
This is an arbitrary decision by PRISM, and the user is notified if there is more than one state satisfying the filter. PLTLc also
defines filters, however in a linear-time setting, and chooses the first state chronologically (in simulation time) in each path
which satisfies the filter. The filter state which is chosen to check the property from may be different between paths. Thus,
with no extra effort, we calculate the probability of the property from many initial filter states weighted by the probability of
their occurrence (through Monte Carlo).

Finally, PCTL and CSL can check for steady state behaviour using exact analysis. PLTLc approximates steady state
behaviour analysis through model checking long paths and using the time value to check late in the path, however this cannot
prove the existence of steady state behaviour.

3. Model Checking
Model Checking Algorithm We have implemented a computational system in Java called Monte Carlo Model Checker
for PLTLc properties MC2(PLTLc) to evaluate PLTLc properties. This is an offline model checker, decoupled from the
simulator used to generate the paths allowing any quantitative simulator to be connected or even recorded traces from wet lab
experiments.

Model checking of a PLTLc property returns two results; the overall probability of the property holding true, and the
probabilistic domains of any free variables, each of which describe the probability of the property holding true for anyvalue
of the free variable. For the time being, we only implement constraints between a free variables and value in MC2(PLTLc),
for example$X > $Y would be disallowed.

The trace-based∃-constraint-LTL formula instantiationalgorithm from [9] is applied to every path in the set of paths
The PLTLc property is parsed resulting in a parse tree with leaf nodes as the Atomic Propositions and the root node as full
property. This algorithm labels each statesi in the pathπ with the domain of validity according to the current node in the
parse tree, traversed using a depth-first traversal. Starting with the APs, if the AP does not contain any free variables,statesi

is labelled with the domain of validityDAP (si) = N
n if the AP is true in that state, otherwise labelled withDAP (si) = ∅.

If the AP contains a free variable, then the state is labelledby the half-space ofN for which the constraint is true. Next we

explain the temporal operators, for example the Finally operatorFφ. Starting at the last state, the statesi is labelled with
the domain of validityDFφ (si) = DFφ (si+1) ∪ Dφ (si). Lastly, we explain the boolean connectives, for example the And
operatorφ1 ∧ φ2. The statesi is labelled with the domain of validityDφ1∧φ2

(si) = Dφ1
(si)∩Dφ2

(si). The full details of
this algorithm and the associated strong completeness theorem are described in [9].

If a filter is present in the PLTLc property then trivially thefirst statesf which satisfies the filter’s State Proposition{SP}
is found. Each path satisfies the property if the first states0, or sf if a filter is present, has a non-empty domain of validity
for the root node of the parse tree, i.e. there are values of the free variables for which the entire PLTLc expression (root
node) is true. This domain of validity is added to an overall set of domains of validity, used later to compute the probabilistic
domains. After all paths in the set are evaluated, the probability operator calculates the probability based on the fraction of
paths which satisfy the property over the size of the set. If the probability operator contains an inequality, then this inequality
is evaluated returning a boolean value, or else the probability value is returned.

The probabilistic domain of each free variable in the property is calculated from the set of domains of validity. The
probability of each integer valueI in a probabilistic domain of a free variable is calculated inturn. The probability is the
number of domains of validity in the set which contain a valuation of the free variable with valueI over the size of the set.
Probabilistic domains contain integer values from[0 → ∞) and so the stopping condition is when every subsequent value
tending to infinity has a constant probability.

Model Checking of Continuous Behaviour Model checking of deterministic simulations in this paper is performed
through an integration of MC2(PLTLc) in the ODE-based BioNessie simulator [4]. A feature of the integration of MC2(PLTLc)
in BioNessie is property checking over parameter scans. A parameter in the model definition (kinetic rate or initial species
concentration) can take a sequence of values (value range and step-size). ODE simulation is then performed with the param-
eter set to each value in the sequence. The MC2(PLTLc) integration can be used to check the PLTLc property against each
of these simulation outputs, where the overall probabilityof the property is the fraction of parameter values which result in
simulations which satisfy the property over of the number ofparameter values. Note that even though the system is deter-
ministic, there is a range of behaviours from the parameter scan such that the overall probability of the property holding true
is within in the range[0, 1]. This feature can be used to efficiently find a desired behaviour of a model, assess the role of a
reaction/species or assess the probabilistic domain of a free variable in a parameter range (e.g. the distribution of peak values
of a species when a parameter is varied).

Model Checking of Stochastic Behaviour MC2(PLTLc) can operate on output from any stochastic simulator, either with
discrete values such as Gillespie’s algorithm [12] or continuous values such as Stochastic Differential Equations (SDEs).
In this paper we use an efficient implementation of Gillespie’s algorithm called Gillespie2 [11]. We have modified this
implementation to become an exact Gillespie simulator and the output has been restricted to only the values of species and
molecular events of interest to the property being checked.

However, to handle model checking of a set of large simulation output files, such as a set of Gillespie simulations with
many molecules, we carry out simulation and analysis over a cluster of computers, performing model checking of single
simulation runs on each node in the cluster.
Concentration Levels Calderet al.[5] and later Gilbertet al.[10] assess properties in terms of discrete concentration levels
as shown in Figure 1. The range of the continuous ODE concentrations is split evenly into N equivalence classes, defining
the N+1 levels 0, 1, N. In the following characterisation of the granularity we always give the highest level number,
hence 4 levels defines levels at 0, 1, ... 4. We have taken a similar approach, however we additionally define a distinction
between molecules and levels. Molecules refer to the granularity of the system (the number of tokens in the simulation) and
levels refer to the granularity of model checking (the concentration values at which to check the property). Essentially the
number of levels relates to the granularity of the analysis,with a higher number of levels checking at smaller increments
in the molecular range. Of course, we cannot assess a property at a higher number of levels than number of molecules in
simulation. In this paper we have used the same number of levels as the number of molecules with a maximum of 500 levels,
producing sufficiently smooth and detailed graphs of the results. It is advisable for the sake of efficiency that the ratioof
levels to molecules is reduced for higher system granularities.

4. Results

4.1. Two Reaction Model

As an initial illustrative example and to calibrate our model checker, we have constructed a simple reaction model com-
prising two mono-molecular reactions of the form:

Figure 1. The abstraction from a concentration range of 0 mMo l to 0.4 mMol to 4 and 8 concentration
levels.

A
0.01
−→ B

C
0.1
−→ D

where the initial concentration of the reactants, A and C are0.1mMol and there are initially no products B and D. The
values 0.01 and 0.1 above the arrows denote the rates of the reactions, inmMol · s−1. In the deterministic world, the rate
values are the values of the ODE rates. In (stochastic) Gillespie simulation the rate of a reaction over the sum of all rates in
the system is the probability of that molecular event occurring, hence reactionA → D occurs with probability0.01/0.11.
The time interval until this molecular event occurs is sampled from an exponential distribution with lambda equal to thesum
of all rates of the enabled reactions.

We assess the probability of the reactantA equalling for the first time the productD at some value represented by the
placeholderX, written in PLTLc as:

P=?[(A = X){A = D}]
‘Experiments’ replace the placeholderX with a range of values to produce a set of properties whereX is instantiated to

each value in the range. Each property in the experiment assesses the probability thatA = D for the first time at a different
value, such that there is the same number of properties as values in the range. The number of values in the range is equivalent
to the number of levels, which we define previously as the detail of the analysis.

We first assess how close the approximate results of MC2(PLTLc) are to exact results provided by analytical approaches,
for example PRISM. The deterministic model involving concentrations inmMol is converted to a stochastic model with
10 molecules. The property is assessed in an experiment withX replaced by values0, 1, ..., 10. A comparison of PRISM’s
exact results and MC2(PLTLc)’s approximate results (with asimulation time of 100s, sufficient to captureA = D) is shown
in Figure 2. From this figure it is clear that considering the given inaccuracies in determining the rate constants, 10,000
simulation runs matches exact results and 1,000 simulationruns provides sufficient approximation. The mean squared errors
between the exact results and approximated results for 100,1,000 and 10,000 simulation runs are 0.0134, 0.0036 and 0.0010
respectively.

Continuing with sufficient approximation using 1,000 simulation runs, the property is assessed with models up to 10,000
molecules. To exploit PLTLc fully, the placeholder X is replaced with a free variable$X:

P=?[(A = $X){A = D}]
The constraintA = $X now sets the free variable$X to the value at whichA = D for the first time. Considered over

the set of 1,000 simulation outputs, the probabilistic domain of $X, evaluated through a single property, contains the same
information as an experiment containing, in the worst case in our example, 10,000 properties to be checked. The property
has probability 1, stating that in all simulationsA = D at some point, and the probabilistic domain of$X has the values at
which A = D for the first time with the associated probability. We observe that as the number of molecules in the model
increases, the most probable value predicted in the probabilistic domain of$X tends towards the intersection ofA andD in
ODE simulation at around 8.35mMol. This is shown in Figure 3.

Table 2 shows the model checking time in MC2(PLTLc) (approximate) with the constraint and experiment approaches and

the model checking time in PRISM (exact) with the experimentapproach. The gain in efficiency when using constraints is
clear, and the exact approach quickly becomes infeasible. For systems containing more than one placeholder, free variables
result in an even greater improvement of efficiency. The efficiency gain forn variables andL levels isO(Ln). Furthermore,
the experiment approach requiresa priori knowledge of the value range of the variables allowed in the model.

Molecules Approximate Approximate Exact
Constraint Experiment Experiment
Approach Approach Approach

10 33 seconds 35 seconds 2 seconds
100 37 seconds 54 seconds 20 minutes

1,000 1 minute 8 minutes N/A
10,000 8.5 minutes 13 hours N/A

Table 2. A comparison of the model checking times of the appro ximate constraint, approximate ex-
periment and exact experiment approaches with the two react ion model. In the experiment approach,
the same number of levels as molecules is used. Times listed f or MC2(PLTLc) are the combination of
1,000 simulations at 100s and model checking, and all times l isted are for a current standard work-
station. The size of the state space that the exact approach m ust construct is (#molecules + 1)2. N/A
indicates that the time taken to perform model checking of a s ingle query exceeded 24 hours.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

Level

P
ro

ba
bi

lit
y

PRISM
MC2−1,000 traces
MC2−10,000 traces

Figure 2. A comparison of exact PRISM results and approximat e MC2(PLTLc) results with 1,000 and
10,000 simulation runs. This is the probability of the prope rty as per Figure 3. From this graph
it is clear that 10,000 simulation runs approximates the exa ct results nearly perfectly, while 1,000
simulation runs delivers sufficient accuracy.

4.2. Mitogen Activated Protein Kinase (MAPK) Signalling Pathway

We perform model checking of a model of the mitogen-activated protein kinase (MAPK) cascade published in [20]. This
is the core of the ubiquitous ERK/MAPK pathway that can, for example, convey cell division and differentiation signals
from the cell membrane to the nucleus. The description of thepathway starts at the RasGTP complex which acts as a kinase
to phosphorylate Raf, which phosphorylates MAPK/ERK Kinase (MEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). The response of the cell to the inputsignal is dependent on the activity of activated ERK (ERKPP).

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

10 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

100 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 200 400 600 800 1000

0.
00

0.
02

0.
04

1,000 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 2000 4000 6000 8000

0.
00

0
0.

01
0

0.
02

0

10,000 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

Figure 3. The probabilistic domain of variable X compared to the deterministic result. From top-
left to bottom-right; 10, 100, 1,000, 10,000 molecules. The most probable value for [A] = [D] tends
towards the deterministic answer as the number of molecules increases. Note that in these graphs
the deterministic behaviour is cut off and actually rises to a probability of 1.

The Petri net in Figure 4 describes the typical modular structure for such a signalling cascade. The Petri net can be read
as continuous or stochastic and in the following illustrative examples we recast the continuous and stochastic properties from
Gilbertet al. [10] to PLTLc and perform model checking using MC2(PLTLc).

Properties C1, C2 & C3 We have performed the continuous queries C1, C2 and C3 (See Table 3) using the BioNessie
simulator up to simulation time 400s and our MC2(PLTLc) model checker. As the set of simulations contains only one
simulation which is the average behaviour of the model (deterministic simulation), the resulting probability value ofeither
1 or 0 is converted to a boolean value true or false through theprobability operatorP≥1 . The original analysis in [10]
was performed through Biocham and its inbuilt LTL model checker. A comparison of our results to the original results are
summarised in Table 3.

PLTLc Query BioNessie & Biocham
MC2(PLTLc)

C1 P≥1[((MEKPP < 0.001) ∧ (ERKPP < 0.0002))U(Raf P > 0.06)] true true
C2 P≥1[((Raf P > 0.06) ∧ (ERKPP < 0.0002)) → ((Raf P > 0.06) ∧

(ERKPP < 0.0002))U(MEKPP > 0.004)]

false true

C3 P≥1[((Raf P > 0.06) ∧ (MEKPP > 0.004)) → ((Raf P > 0.06) ∧

(MEKPP > 0.004))U(ERKPP > 0.0005)]

true true

Table 3. The results for the replication of C1, C2 and C3 queri es [10] in PLTLc, showing a discrepancy
in C2 with the original (Biocham) results.

The difference in the results is due to the different ODE solvers used in BioNessie and Biocham. We found that due to the
adaptive time steps used in Biocham’s ODE solver, no state information is outputted for an important time period which is

Raf 4

RasGTP

Raf_RasGTP

RafP

RafP_Phase1

MEK_RafP MEKP_RafP

MEKP_Phase2 MEKPP_Phase2

ERK

ERK_MEKPP ERKP_MEKPP

ERKP

MEKPP

ERKPP_Phase3ERKP_Phase3

MEKP

ERKPP

Phase2

Phase3

MEK

Phase1

k3

k6

k21

k18

k9 k12

k15

k24

k27k30

k1/k2

k4/k5

k7/k8 k10/k11

k16/k17

k22/k23k19/k20

k13/k14

k28/k29 k25/k26

Figure 4. The Petri net for the ERK/MAPK pathway model [20] wi th initial marking for the 4 level
version.

a counter-example to the C2 query, shown in Figure 5. The fixedtime step and sufficient granularity of time points used in
BioNessie provided state information which was a counter-example to this query, thus resulting in a false value. This isan
example of where the simulator choice affects the model checking result.

Property S1 The first stochastic property S1 is defined as: “What is the probability of the concentration of RafP increasing,
when starting in the first encountered state where the level is already at L?” This is written in CSL and PLTLc as:

P=?[(RafP = L)U(RafP > L){RafP = L}]
This query was checked using MC2(PLTLc) with 1,000 Gillespie simulation runs up to simulation time 300s at 4 and

8 molecules. In this case we have had to use MC2(PLTLc) in an experiment approach for the placeholder L. As the filter
relativises the property to the placeholder L, each property in the experiment has a different filter state – a free variable cannot
perform this relativising. The original results using PRISM at 8 concentration levels contrasted with our reproduced results
are shown in Figure 7. Importantly, the time taken to performboth the simulation and model checking was significantly less
in our method. Furthermore, unlike in the original paper, the time efficiency of our approach means that we do not have to
impose time bounds on temporal operators as done in the original paper.

We extend the analysis of the stochastic properties S1 and S2in [10] to higher numbers of molecules. First this acts as a
platform to demonstrate the computational efficiency of ourapproach. However more than this, such system granularities are
required to accurately check some behaviours. For example,in order to check increases in MEKPP and ERKPP in a similar
manner to S1 and S2 we would need 50 and 200 molecules respectively. Furthermore, to check these properties, we would
need two and three placeholders respectively.

We have extended this analysis up to 4,000 molecules shown inFigure 6 and observe that when increasing the number of
molecules, the behaviour of the pathway tends towards the deterministic behaviour. The deterministic behaviour states that
the protein RafP will always increase (property probability 1) until it reaches its maximum concentration value of around
0.1182mMol. With increasing molecules, the maximum possible number ofmolecules in the stochastic behaviour of RafP
tends towards the deterministic maximum (vertical line). The stochastic behaviour is seen to tend towards a probability of
0.5 between its maximum and minimum value, due to the stochastic nature where there is always a possibility of the protein

0 20 40 60 80 100

0.
00

0
0.

00
3

MEKPP Simulation

Time

C
on

ce
nt

ra
tio

n

0 20 40 60 80 100

0.
00

00
0

0.
00

02
0

ERKPP Simulation

Time

C
on

ce
nt

ra
tio

n

Figure 5. The output of Biocham simulation showing that it do es not output a state in the time period
where ERKPP (bottom) > 0.0002 before MEKPP (top) > 0.004, which is a counter example to C2.

decreasing or increasing.

Property S2 The second stochastic property S2 is defined as: “What is the probability that, given the initial concentrations
of RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above some level L while the concentrations of
MEKPP and ERKPP remain at zero, i.e. RafP is the first species to react?” This is written in CSL and PLTLc as:

P=?[((MEKPP = 0)∧ (ERKPP = 0))U (RafP > L){(MEKPP = 0)∧ (ERKPP = 0)∧ (RafP = 0)}]
To perform this analysis, we use the same simulation time (300s) and number of runs (1,000) as per S1. In this case we

can use a constraint approach where we replace the placeholderL with a free variable$L:
P=?[((MEKPP = 0)∧ (ERKPP = 0))U (RafP > $L){(MEKPP = 0)∧ (ERKPP = 0)∧ (RafP = 0)}]
For a single simulations, this sets the free variable $L to the natural numbers which RafP is greater than while MEKPP

and ERKPP are 0. Over the 1,000 simulations, the probabilistic domain of$L contains for each value the probability that
RafP is greater than it while MEKPP and ERKPP are 0. The reproduction of the original results at 8 molecules is shown
in Figure 7. Similar to S1, we have extended model checking upto 4,000 molecules shown in Figure 8 and note that the
stochastic behaviour again begins to approximate the deterministic behaviour. In the deterministic behaviour, only at the
initial state of the system are RafP, MEKPP and ERKPP all zero, hence a probability of 1 at this state and probability of 0
elsewhere. With increasing molecules, the stochastic behaviour becomes less curved and more step-like, tending towards the
vertical line in the deterministic behaviour.

From Figure 7 it can be seen that there is a large difference between the original results and the reproduced results using
PLTLc. This is due to the discussed difference in filter implementation, where we assess many initial states and CSL in
PRISM assesses only one initial state.

We observe a similar gain in efficiency for property S2 when using the constraint approach as reported for the two reaction
model in Section 4.1.

4.3. Oscillation Example

We have also performed model checking on a parameter scan of the continuous oscillating Kholodenko model of the
MAPK pathway [19]. This model of the MAPK pathway is smaller than the Levchenko model, comprising 8 species and
10 reactions. We vary the strength of the negative feedback (inhibition) in the model, said to account for the oscillatory
behaviour, and note the effect on oscillations. The patternused to check for oscillatory behaviour is written in PLTL as:

P≥1[F (d(Protein) > 0 ∧ F (d(Protein) < 0 ∧ ...)))]

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

400 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4,000 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

Figure 6. Model checking for property S1 using a larger numbe r of molecules. From top-left to
bottom-right; 4, 40, 400 and 4,000. This shows a progression towards the deterministic behaviour as
the number of molecules increases.

This pattern can be used to check for a varying number of peaksin oscillatory behaviour. Note that such use requires
knowledge of the expected start orientation of oscillations – oscillations start upwards or downwards. The results forchecking
for various number of peaks in a simulation time of 5,000s while varying the strength of negative feedbackKi between 1
and 30nMols−1 in steps of 1 are summarised in Figure 9.

There are differences between our approach to oscillation detection and the approaches of CTL and CSL. We can only
ever check for oscillating behaviour in the simulated time period whereas exact approaches can guarantee oscillation forever.
Furthermore, we base detection through a numerical approach using the derivative pattern. This means we can only check for
oscillations when the derivatives are trustworthy, however in the stochastic world the derivatives would be the derivatives of
the noise rather than the signal. Various measures were considered to overcome this; Fourier transforms, curve fitting,noise
reduction. However, oscillation detection in the stochastic world remains a challenge in this approach.

5. Related Work

Two approaches can be distinguished in probabilistic modelchecking; exact and approximative. Exact methods provide
- if they are applicable - a higher accuracy, however usuallywith much higher costs than approximative methods. Exact
methods construct the (discrete or continuous) Markov chain, so they require finite state spaces, i.e. bounded models, and
to apply them to complex dynamics is still a challenge. Exactmethods are for instance used in PRISM [21] for PCTL/CSL
model checking, and in LiQuor [7] for automata-based LTL model checking.

Approximative model checking of CSL using discrete event simulation of probabilistic models has been proposed in
[25] and implemented in the tool Ymer [24]. Unlike our offlinemodel checking approach, they follow an inline (on-the-
fly) approach by generating the simulation runs as long as needed to decide time-bounded properties and as many runs
as necessary to pass an acceptance sampling test. The required time bound on the temporal operators brings about the
termination of the generation of sample executions. In our approach, the time bound is specified as parameter to the stand-
alone stochastic simulation algorithm.

While the inline approach allows the adjustment of the lengthand number of simulation runs according to the given
property to be checked, it prohibits the reuse of established stand-alone simulators, including deterministic ones. Moreover,

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Property S1: 8 Molecules

Level

P
ro

ba
bi

lit
y

Original
Reproduced

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Property S2: 8 Molecules

Level

P
ro

ba
bi

lit
y

Original
Reproduced

Figure 7. The original results from PRISM [10] at 8 levels con trasted with the reproduced results
using MC2(PLTLc) for properties S1 and S2.

our decoupled approach permits the validation of a synthetic biological system by checking time series data recorded in
biochemical experiments against the behaviour of the modelused for the design of the system.

Ymer supports nested CSL queries, whereby the total number of required samples grows rapidly with the level of nesting.
To solve this problem, a combination of exact and statistical techniques is proposed. On the contrary, we introduce a dedicated
linear-time logic which seems to be more suited to the analysis of sets of independent simulation runs, i.e. in a non-branching
time scenario. So, PLTLc could be considered as a linear-time counterpart to CSL, and can easily be used to formalize the
visual evaluation of diagrams as generated by deterministic/stochastic simulation runs or by recording experimentaltime
series.

Approximative model checking of PLTL and PCTL by distributed path sampling is also applied in the tool APMC [18].
APMC takes PRISM’s modelling language as its input language, so it requires bounded models anda priori knowledge of
the boundedness degree.

MC2 [13] performs approximative LTL model checking by random walks on the B̈uchi automaton, so it requires finite
state spaces to follow the automata-based LTL model checking approach.

None of these probabilistic model checkers supports the constraint approach, which has been proven to be extremely
powerful to replace the much more expensive experiment approach.

Finally, approximative LTL model checkers are also available in Simpathica [2] and Biocham [9], however both support
only the analysis of deterministic simulation runs.

6. Summary

We have defined a Probabilistic Linear-time Temporal Logic with numerical constraints (PLTLc) and developed a Monte
Carlo Model Checker for PLTLc properties MC2(PLTLc). With increasing system granularities and variables in the property,
model checking experiments quickly become intractable. Wedefine probabilistic domains for free variables in a property
which can replace model checking experiments (comprising of a set of properties) with a single property. We have illustrated
the increase in efficiency with our approach through the analysis of a biochemical system, specifically a model of an intra-
cellular signalling pathway. MC2(PLTLc) utilises a general technique for model checking of dynamic systems. It accepts
any quantitative time-series output from a simulation or actual system behaviour. Our work contributes to the emergingfield
of synthetic biology by proposing a rigourous approach for the structured formal engineering of biological systems. This
method can be applied to perform checking over the behaviours of models or indeed over behaviours of a biological system,
permitting verification of a system which is being constructed according to the model.

The MC2(PLTLc) tool, together with the sample models in thispaper, simulation outputs, PLTLc queries and analysis
results are available at:
www.brc.dcs.gla.ac.uk/software/mc2.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

40 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

400 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4,000 Molecules

Value

P
ro

ba
bi

lit
y

Deterministic
Stochastic

Figure 8. The probabilistic domain of L through model checki ng property S2 in PLTLc using a larger
number of molecules. From top-left to bottom-right; 4, 40, 4 00 and 4,000. This shows a progression
towards the deterministic behaviour as the number of molecu les increases.

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying Continuous-Time Markov Chains. In Rajeev Alur and Thomas
A. Henzinger, editors,Eighth International Conference on Computer Aided Verification CAV, volume 1102, pages 269–276, New
Brunswick, NJ, USA, / 1996. Springer Verlag.

[2] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model Building and Model Checking for Biochemical Processes.Cell Biochem-
istry and Biophysics, 38:271–286, 2003.

[3] C. Baier.On Algorithmic Verification Methods for Probabilistic Systems. Habilitation thesis, University of Mannheim, 1998.
[4] BioNessie. A Biochemical Pathway Simulation and Analysis Tool. University of Glasgow, www.bionessie.org.
[5] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of Signalling Pathways using Continuous Time Markov Chains. In

T. Comp. Sys. Biology VI, pages 44–67. LNCS 4220, Springer, 2006.
[6] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine Learning Biochemical Networks from Temporal Logic Properties.

In T. Comp. Sys. Biology VI, pages 68–94. LNCS 4220, Springer, 2006.
[7] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quantitative Linear Time Analysis of Reactive Systems. InQEST,

pages 131–132, 2006.
[8] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press 1999, third printing, 2001.
[9] F. Fages and A. Rizk. On the Analysis of Numerical Data Time Series inTemporal Logic. InProc. CMSB 2007, pages 48–63.

LNCS/LNBI 4695, Springer, 2007.
[10] D. Gilbert, M. Heiner, and S. Lehrack. A Unifying Framework forModelling and Analysing Biochemical Pathways Using Petri

Nets. InProc. CMSB 2007, pages 200–216. LNCS/LNBI 4695, Springer, 2007.
[11] C. S. Gillespie, D. J. Wilkinson, C. J. Proctor, D. P. Shanley, R. J.Boys, and T. B. L. Kirkwood. Tools for the SBML community.

Bioinformatics, 22(5):628–629, 2006.
[12] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361,

1977.
[13] R. Grosu and S. A. Smolka. Monte Carlo Model Checking. InTACAS, pages 271–286, 2005.
[14] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability. Formal Aspects of Computing, 6(5):512–535, 1994.
[15] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic Model Checking of Complex Biological

Pathways. InProc. CMSB 2006, pages 32–47. LNCS/LNBI 4210, Springer, 2006.
[16] M. Heinemann and S. Panke. Synthetic Biology - Putting Engineering into Biology. Bioinformatics, 22(22):2790–2799, 2006.

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Oscillation Detection

Value of Parameter Ki

N
um

be
r

of
 O

sc
ill

at
io

ns
 D

et
ec

te
d

0
1

2
3

4
5

Figure 9. The number of oscillations detected in 5,000 secon ds (Y-axis) for a varying value of the
parameter Ki (X-axis), responsible for the inhibition in th e Kholodenko model.

[17] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Probabilistic Model Checking. InProc. 5th International
Conference on Verification, Model Checking and Abstract Interpretation (VMCAI’04): 307–329, volume 2937 ofLNCS. Springer,
2004.

[18] T. Hérault, R. Lassaigne, and S. Peyronnet. APMC 3.0: Approximate Verification of Discrete and Continuous Time Markov Chains.
In QEST, pages 129–130, 2006.

[19] B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase
cascades.Eur. J. Biochem. 2000, 267(6): 1583–1588, 2000.

[20] A. Levchenko, J. Bruck, and P. Sternberg. Scaffold proteinsmay biphasically affect the levels of mitogen-activated protein kinase
signaling and reduce its threshold properties.Proc Natl Acad Sci USA, 97(11):5818–5823, 2000.

[21] D. Parker, G. Norman, and M. Kwiatkowska.PRISM 3.0.beta1 Users’ Guide, 2006.
[22] A. Pnueli. The Temporal Semantics of Concurrent Programs.Theor. Comput. Sci., 13:45–60, 1981.
[23] SyntheticBiology.org. www.syntheticbiology.org.
[24] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical vs. Statistical Probabilistic Model Checking.STTT,

8(3):216–228, 2006.
[25] H. L. S. Younes and R. G. Simmons. Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling.LNCS,

2404:223–235, 2002.

