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Abstract

We define the syntax and semantics of a new temporal logedcatbbabilistic LTL with numerical constraints (PLTLc).
We introduce an efficient model checker for PLTLc properfid® efficiency of the model checker is through approximatio
using Monte Carlo sampling of finite paths through the madgtate space (simulation outputs) and parallel model dheck
of the paths. Our model checking method can be applied to adehproducing quantitative output — continuous or
stochastic, including those with complex dynamics andethigth an infinite state space. Furthermore, our offline apfo
allows the analysis of observed (real-life) behaviour &s.c We find in this paper that PLTLc properties with constsain
over free variables can replace full model checking expenits, resulting in a significant gain in efficiency. This @eenes
one disadvantage of model checking experiments which ishteacomplexity depends on system granularity and number of
variables, and quickly becomes infeasible. We focus on Im@ddiochemical networks, and specifically in this paper on
intracellular signalling pathways; however our method da applied to a wide range of biological as well as technical
systems and their models. Our work contributes to the emgfiggld of synthetic biology by proposing a rigourous apioa
for the structured formal engineering of biological syssem

1. Motivation

The greatest challenge in modern bioscience is arguablgekelopment of techniques for the engineering of living
systems in a rigourous manner. This is the domain of the @ntedjscipline of “Synthetic Biology” [16], which can
be defined as the design and construction of new biologigés padevices, and systems, as well as the re-design ofrexisti
natural biological systems for useful purposes [23]. Opeatsof Synthetic Biology which distinguishes it from contienal
genetic engineering is a heavy emphasis on the developnidatiedational technologies that make the engineering of
biology easier and more reliable.

Therefore, a crucial enabling technology is that of modglliboth in system design and verification of the constructed
system. An important early stage in the design process ifiroong that the behaviour of the model conforms to the delsire
behaviour, i.e. “model checking”. Qualitative and espiciquantitative model checking has been proven to be useful
systems biology to validate models derived from the obskreal-life behaviour, see e.g. [5], [6], [10], [15], and iisely
to be of equal importance for synthetic biology. Thus, whesystem has been constructed, the actual behaviour should
be checked for conformance with the desired behaviour. Aacheristic of biological systems is their inherently $tastic
behaviour when considered at low numbers of molecules ¢s,cahd thus it is highly desirable that models and model
checking techniques can deal with continuous-time stdithlashaviour.

In this paper we present work for the development of rigosrapproaches for the structured formal engineering of
biological systems. Driven by the limitations imposed bg tomputational effort of exact probabilistic model checki
for example as encountered in applying CSL/PRISM [21], argpired by approximate model checking [17], [24], we
extend probabilistic LTL [3] with numerical constraintsdefine PLTLc and employ Monte Carlo approximation for PLTLc
properties. Monte Carlo approximation samples a finite &fatite paths through the model’s state space (simulatidpuis)
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and decides the probability of properties based on this/geintroduce a parallelised model checker called the MouigoC
Model Checker for PLTLc properties MC2(PLTLc).

Our approach can be applied to both stochastic models, fampbe stochastic Petri nets, and deterministic models,
constructed using for example continuous Petri nets onargidifferential equations. Notably the Monte Carlo anitircd
approach of MC2(PLTLc) can handle state spaces beyond thentdimits of exact analyses, and also for systems with
complex dynamics as semi-Markov processes or generaleraddarkov processes as well as for systems with an infinite
state space. Our method can also be applied to validate tiaviber of a system which has been constructed according to a
model, through model checking real-life behaviour trad¥s.focus on models of biochemical networks, and specifically
this paper on intracellular signalling pathways; howeuar method can be applied to a wide range of biological as veell a
technical systems and their models.

PLTL with numerical constraints is a novel extension of ¢oaiats over free variables previously applied in modelathe
ing of continuous behaviour, for example [9]. To apply nuicerconstraints in a probabilistic setting, a probahiisiomain
is computed for each free variable in the property. We dbsdivo examples where constraints can replace an experiment
comprising many properties. Thus a single PLTLc propertyreplace a set of properties, resulting in a significant ovuer
ment in efficiency. This improvement is especially significasthen a property contains several variables, as a single®L
property replaces a set of properties of gixd.™), wheren is the number of variables arddthe number of levels.

This paper is organised as follows. The next section defindglatails the theory behind our proposed logic. Section 3
deals with the implementation of our model checker tool aisdusses the choices used in our analysis. Section 4 gives ex
amples of our analysis approach, relating to the biochdroaaext. We conclude in the last two sections with a conguari
to related work and a summary of the main accomplishmentsi®fitork.

2.PLTLcC

Syntax Linear-time Temporal Logic (LTL) [22] is the fragment of i@omputational Tree Logic (CTL*) [8] without path
quantifiers, implicitly quantifying universally over albths. LTL has been introduced in a probabilistic setting3ij §nd
extended by numerical constraints over real value vargipl¢d]. PLTLc combines both extensions, complemented by th
filter construct as used in Probabilistic ComputationakTtegic (PCTL) [14] and Continuous Stochastic Logic (CSL]) [1
We start with the LTL with numerical constraints (LTLc) sgmt

¢ = XP|GO|Fp|pUp|pRO| OV | pAP| 0| — ¢p|value = value|value # value|value > value|value > value|

value < value | value < value | true | false

Numerical constraints over free variables are defined is libgic through the inclusion of free variables denoted by
$fVariable in the definition ofvalue below — the symbo$ differentiates a free variable from a regular variable. Rag
variables are read-only values which form the behavioun®htodel, whereas free variables are instantiated duregddel
checking process to the values for which the temporal logip@rty holds. In our current implementation free varialdes
defined to have integer domains initialised@o— oo) and describe protein concentrations, numbers of moleamdsime.
Constraints over free variables, which involve equalitgfjuality and relational operators, restrict the domaitheffree
variable, such that withX € [0 — c0), $X > 5 sets$X to be[6 — oo). If there is a constraint over free variables involving
real numbers, then the real numbers are cast to integergeNadso that disjunction, conjunction, negation and iggdion
of constraints over free variables are allowed. Finallg, thlues considered in this logic are integers and real ntspaed
the four basic arithmetic operations over these values:

value ::= wvalue + value | value — value | value * value | value /value | $fVariable| Variable| function | Int | Real

wherelnt is any integer number arfi@ealis any real number. In our biochemical pathway analysis vime®ariableto
be the time dependant value of the concentration of any binatal species in the model, either integers for molecielesls
or real numbers for concentrations, and we define a speciabla calledimeto stand for the values of state time. State time
values are the simulation time points such that we can, famgle, express properties relative to simulation time.sT#i
especially useful for expressing a property before or a&fene event, such as introducing a drug into a cell. We praviee
ability to define anyunctionreturning a real or integer value, and in our current systenhave chosen to implement the two
functions,max(variable)andd(variable) The functionmaxoperates over all the values of a species to return the maximu
of the species’ value in the simulation run, thus the peaksgfexies can be expressétt:otein = max(Protein). We also
define a functiord which returns the derivative of the concentration of thecggseat each time point, thus increasing and
decreasing species value can be expres&dti;otein) > 0 andd(Protein) < 0 respectively.

PLTLc enhances LTLc by the inclusion of a probability operaind filter construct, and the probabilistic interpretati
of the domains for the free variables. The top-level detininof PLTLc is:

¥ n= Pag[ @] Pa[ #{SP}]



whereg is an LTLc expressionSP is a State Proposition containing an AP, or any boolean coation of APs using
{V, A, -, —1}, containingno free variables without a loss of expressivity. Note thatsheare and curly brackets are part
of PLTLc. Given thatd € {>, >, <, <}, P, is any inequality comparison of the probability of the prdpédiolding true,
for exampleP>( 5. We also permit the expressidrL- returning the value of the probability of the property halglitrue.

We disallow equality testing of the probability—, because of the representation of real values and the semaftheir
equality.

We define filters similar to those used in PCTL and CSL. Thisnitsrspecifications to refer to the state or states that
the property is checked from, rather than default to thésairstate. Hence, for a property of the fok S P}, ¢ is checked
from the first state that P is satisfied. In PLTLc this is equivalent to the formtaSP)U(SP A ¢), however the filter
abbreviation is introduced to increase readability andatibility with branching-time logics.

Semantics The semantics of PLTLc is defined over a finite set of finite p#though the system’s state space — in our case,
stochastic or deterministic simulations, or time serigs decorded in wet lab experiments.

First, let a pathr be a finite sequence of states describing the behaviour adcdmical systemz = sg, s1, ..., S,
(n < o0) and7® be the subsequence ofstarting from state;, i < n, thusn? = s;, 5,1, ..., 5,,. The semantics of checking
¢ or p{SP} as appropriate is described in the standard way in Table ¢h Bath in the set of paths can be evaluated to a
boolean value as to whethgrr ¢{SP} holds in the path. When all paths are evaluated, the numbesefalues in the set
over the size of the set yields the overall probability of id Lc property. Hence for a stochastic model, where the ket o
paths is typically> 1, the probability is in the rang® — 1] and calculated through Monte Carlo approximation, wheseas
continuous model has a probability of eittieor 1.

TEX¢ iff 7! = o

T = Go iff forall k >0, 7% = ¢

Tk Fé iff there exists & > 0, 7% |= ¢

T = tUP? iff there exists & > 0, 7% |= ¢? and for allj, 0 < j < k, 7/ |= ¢!

7 = ¢! Ro? iff for all k& > 0, 7% |= ¢2 or there exists g, such that for alk, 0 < k < j, 7% |= ¢?
andn’ = ¢!

T = ¢l Vv ¢? iff 7 = ¢! orm = ¢?

7 = ¢l A @2 iff 7 = ¢! andr = ¢?

T = ¢ iff m = ¢

T ¢l — ¢? iff 7 = ¢” orm = ¢!

7 = ¢{SP} iff the smallesti such thatr* |= SP, alsor” = ¢

s ): AP iff S0 |: AP

skE AP iff s satisfies the atomic propositioA,P.

Table 1. The standard semantics of checking ¢ or ¢{SP} against a finite path.

Finally, the two PLTLc functions we have chosen to implememax(variable)and d(variable)are defined as follows.
max(variable)calculates the first statg, .. in the finite pathr for which the value of/ariableis maximal and returns this
value.d(variable)calculates for each statg in the finite pathr the derivative of the value ofariable between state; and
si;+1. Inthe case of the final state in the finite pathwhich contains no next state, the derivative is equal to #revative of
the previous state,, ;.

The choice of simulator and simulation parameters usedrgpate the finite path can affect the semantics of the PLTLc
property and the correctness of the result. For example éxédperator refers to the next time step in the simulatoxdver
in a fixed time-step ODE solver, adaptive time-step ODE sadwel exact Gillespie simulator these refer to a fixed, vayyin
and random amount of time in the future respectively. We destrate this problem in an example in Section 4.2.

Probabilistic Domains  Each path in the set of paths is also evaluated to a domairidityaDy ., 4(spy C N™ for n free
variables in the PLTLc propert$,fVary,$fVars,...$fVar,. The domain of validity is defined such that for all valuason
v of then free variables, where € Dy ,, 415py, the propertyp or ¢{SP} as appropriate holds true for the path. Thus
each path has an associated domain of validity, with pathdtieg in a boolean value of true having a non-empty doméin o
validity, i.e. for these paths there must be valuations efvdriables for which the property holds.

After the set of domains of validity is evaluated from the s&paths, a probabilistic domain for each of thefree
variables in the PLTLc property is calculated. A probahbitislomain associates with each integer value in the donmain t



probability of the property holding true for that value. liet PLTLc property evaluates to a probabilitythen the maximum
probability of any value in the probabilistic domainspissuch that a property with O probability has probabilisticrchins
with O probability for all values. The probabilistic domaih free variable$ fV ar; is calculated by iterating through each
integer value in the domaih. A count is performed on the set of domains of validity for thember of domains which
contain at least one valuatierwith v($fVar;) = I. This number over the size of the set is the probability ofvédee in
the probabilistic domain & fVar;.

In the case that the system is described by a stochastic ntbdgbrobabilistic domains are calculated through Monte
Carlo approximation — the number of occurrences of a valua feee variable in each domain of validity in the set over the
size of the set. In the case of a continuous model where th@gihe set is 1, the probabilistic domain contains prolitasi
0 and 1 and can equally be represented by a probabilisticidama regular domain.

Monotone Properties Properties expressed in a logic can be categorised as nmanifitthey satisfy the following con-
dition; if the property is satisfied in any path through tha&testspace, then it is satisfied in any extension of the path [17
A subset of PLTLc called Essentially Positive Fragment (E&presses only monotone properties, consisting of PLTLc
without the Globally operator and disallowing any negatidpath formulas.

Our approach to model checking incorporates two approximsit We approximate the truth value of a path by operating
over a finite sequence of states. We also approximate thalpilii of the property through sampling a finite number atfiza
(a subset of the model’s behaviour). When assessing a manptoperty against a set of paths, the probability value can
only increase if those paths were extended in time. Henaariiggn the Monte Carlo (sampling) approximation, monotone
properties permit an estimate of the lower bound in the tipr@ximation made. We find that monotone properties are
useful in our biochemical pathway analysis and in fact alphoperties considered in our results section are monotone

Relation to Branching-TimeLogics PLTLc differs in several ways from probabilistic branchitigne logics such as PCTL
and CSL which operate on discrete-time and continuous-Maekov chains (DTMC, CTMC) respectively. PLTLc is a
linear-time logic and operates in-turn on paths througtsthte space, thus it is not possible to compute probabiktieny
desired state. This means we cannot have probability apsrambedded within the expression. In our approach to PLTLc
checking, the Markov chain is never constructed which higlpsfficiency (and even feasibility for coping with infinistate
spaces).

Furthermore, PCTL and CSL define a filter construct which gearthe initial state from which the property is checked.
PRISM’s implementation of CSL’s filters chooses the firstestaxicographically from the set of states the filter sagsfi
This is an arbitrary decision by PRISM, and the user is natifithere is more than one state satisfying the filter. PLTlsoa
defines filters, however in a linear-time setting, and chedise first state chronologically (in simulation time) in kaath
which satisfies the filter. The filter state which is chosenhteck the property from may be different between paths. Thus,
with no extra effort, we calculate the probability of the peoty from many initial filter states weighted by the proligpof
their occurrence (through Monte Carlo).

Finally, PCTL and CSL can check for steady state behaviourgusxact analysis. PLTLc approximates steady state
behaviour analysis through model checking long paths aimg) tise time value to check late in the path, however this oann
prove the existence of steady state behaviour.

3. Model Checking

Model Checking Algorithm We have implemented a computational system in Java callettévidarlo Model Checker
for PLTLc properties MC2(PLTLc) to evaluate PLTLc propesti This is an offline model checker, decoupled from the
simulator used to generate the paths allowing any quamétsimulator to be connected or even recorded traces frarntelve
experiments.

Model checking of a PLTLc property returns two results; tiverall probability of the property holding true, and the
probabilistic domains of any free variables, each of whiekalibe the probability of the property holding true for amajue
of the free variable. For the time being, we only implementstmaints between a free variables and value in MC2(PLTLc),
for example$ X > $Y would be disallowed.

The trace-basedd-constraint-LTL formula instantiatiomlgorithm from [9] is applied to every path in the set of paths
The PLTLc property is parsed resulting in a parse tree wilfi t@des as the Atomic Propositions and the root node as full
property. This algorithm labels each statein the pathr with the domain of validity according to the current nodetie t
parse tree, traversed using a depth-first traversal. &gastith the APs, if the AP does not contain any free variatdeses;
is labelled with the domain of validity) 4 p (s;) = N if the AP is true in that state, otherwise labelled with p (s;) = 0.

If the AP contains a free variable, then the state is labddlethe half-space di for which the constraint is true. Next we



explain the temporal operators, for example the Finallyrafpe F'¢. Starting at the last state, the statas labelled with
the domain of validityD py (s;) = Drg (si+1) U Dy (s;). Lastly, we explain the boolean connectives, for exampéethd
operatorp; A ¢o. The states; is labelled with the domain of validitY 4, ng, (si) = De, (si) N Dy, (s;). The full details of
this algorithm and the associated strong completenessetimeare described in [9].

If a filter is present in the PLTLc property then trivially tfiest states ; which satisfies the filter's State Propositip§iP }
is found. Each path satisfies the property if the first sigter sy if a filter is present, has a non-empty domain of validity
for the root node of the parse tree, i.e. there are valueseofré®e variables for which the entire PLTLc expression (root
node) is true. This domain of validity is added to an overetlaf domains of validity, used later to compute the prolistil
domains. After all paths in the set are evaluated, the piibityatperator calculates the probability based on thetfoacof
paths which satisfy the property over the size of the sehdfgrobability operator contains an inequality, then thegjuality
is evaluated returning a boolean value, or else the prabatélue is returned.

The probabilistic domain of each free variable in the propés calculated from the set of domains of validity. The
probability of each integer valugin a probabilistic domain of a free variable is calculatedum. The probability is the
number of domains of validity in the set which contain a vébhraof the free variable with valué over the size of the set.
Probabilistic domains contain integer values fr@m— oo) and so the stopping condition is when every subsequent value
tending to infinity has a constant probability.

Model Checking of Continuous Behaviour Model checking of deterministic simulations in this paperperformed
through an integration of MC2(PLTLc) in the ODE-based Bigble simulator [4]. A feature of the integration of MC2(PLd)L

in BioNessie is property checking over parameter scans.rampater in the model definition (kinetic rate or initial sjgsc
concentration) can take a sequence of values (value ramggtersize). ODE simulation is then performed with the para
eter set to each value in the sequence. The MC2(PLTLc) iatiegrcan be used to check the PLTLc property against each
of these simulation outputs, where the overall probabdityhe property is the fraction of parameter values whiclultéa
simulations which satisfy the property over of the numbepafameter values. Note that even though the system is deter-
ministic, there is a range of behaviours from the parametan such that the overall probability of the property hajdirue

is within in the rang€0, 1]. This feature can be used to efficiently find a desired belawdba model, assess the role of a
reaction/species or assess the probabilistic domain eeaveiriable in a parameter range (e.g. the distribution ak palues

of a species when a parameter is varied).

Model Checking of Stochastic Behaviour MC2(PLTLc) can operate on output from any stochastic sitogl&ither with
discrete values such as Gillespie’s algorithm [12] or camtius values such as Stochastic Differential Equation€EE63D

In this paper we use an efficient implementation of Gille'spa#gorithm called Gillespie2 [11]. We have modified this
implementation to become an exact Gillespie simulator Aecdutput has been restricted to only the values of speciés an
molecular events of interest to the property being checked.

However, to handle model checking of a set of large simubatiotput files, such as a set of Gillespie simulations with
many molecules, we carry out simulation and analysis oveustar of computers, performing model checking of single
simulation runs on each node in the cluster.

Concentration Levels Calderet al.[5] and later Gilberet al.[10] assess properties in terms of discrete concentragicaid

as shown in Figure 1. The range of the continuous ODE coratémts is split evenly into N equivalence classes, defining
the N+1 levels 0, 1, .... N. In the following characterisatiaof the granularity we always give the highest level number,
hence 4 levels defines levels at 0, 1, ... 4. We have taken &asiagiproach, however we additionally define a distinction
between molecules and levels. Molecules refer to the gaaityibf the system (the number of tokens in the simulatior a
levels refer to the granularity of model checking (the cartiction values at which to check the property). Essegtiale
number of levels relates to the granularity of the analysith a higher number of levels checking at smaller increment
in the molecular range. Of course, we cannot assess a pyageathigher number of levels than number of molecules in
simulation. In this paper we have used the same number d§lasehe number of molecules with a maximum of 500 levels,
producing sufficiently smooth and detailed graphs of theltes It is advisable for the sake of efficiency that the ratio
levels to molecules is reduced for higher system granidarit

4. Results
4.1. Two Reaction Model

As an initial illustrative example and to calibrate our miocleecker, we have constructed a simple reaction model com-
prising two mono-molecular reactions of the form:
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Figure 1. The abstraction from a concentration range of 0 mMo I to 0.4 mMol to 4 and 8 concentration
levels.
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where the initial concentration of the reactants, A and Qlaten M ol and there are initially no products B and D. The
values 0.01 and 0.1 above the arrows denote the rates ofahtares, inm Mol - s~1. In the deterministic world, the rate
values are the values of the ODE rates. In (stochastic) $pikesimulation the rate of a reaction over the sum of alkrate
the system is the probability of that molecular event odnggrhence reactionl — D occurs with probabilityd.01/0.11.

The time interval until this molecular event occurs is sadditom an exponential distribution with lambda equal toghm
of all rates of the enabled reactions.

We assess the probability of the reactanequalling for the first time the produd? at some value represented by the
placeholderX, written in PLTLc as:

P_y[(A= X){A = D}]

‘Experiments’ replace the placehold&rwith a range of values to produce a set of properties whers instantiated to
each value in the range. Each property in the experimenssassée¢he probability thad = D for the first time at a different
value, such that there is the same number of properties ass/al the range. The number of values in the range is eqoivale
to the number of levels, which we define previously as theildetthe analysis.

We first assess how close the approximate results of MC2(BLate to exact results provided by analytical approaches,
for example PRISM. The deterministic model involving camitations inmM ol is converted to a stochastic model with
10 molecules. The property is assessed in an experimentivigiplaced by values, 1, ...,10. A comparison of PRISM’s
exact results and MC2(PLTLc)’s approximate results (wiginaulation time of 100s, sufficient to captude= D) is shown
in Figure 2. From this figure it is clear that considering tlieeg inaccuracies in determining the rate constants, 100,00
simulation runs matches exact results and 1,000 simulatios provides sufficient approximation. The mean squanediser
between the exact results and approximated results for11000 and 10,000 simulation runs are 0.0134, 0.0036 and.0.00
respectively.

Continuing with sufficient approximation using 1,000 siation runs, the property is assessed with models up to 10,000
molecules. To exploit PLTLc fully, the placeholder X is rapkéd with a free variableX:

P_y[(A =$X){A = D}]

The constraintA = $X now sets the free variableX to the value at whictd = D for the first time. Considered over
the set of 1,000 simulation outputs, the probabilistic dioned $.X, evaluated through a single property, contains the same
information as an experiment containing, in the worst caseur example, 10,000 properties to be checked. The property
has probability 1, stating that in all simulatiods= D at some point, and the probabilistic domain$df has the values at
which A = D for the first time with the associated probability. We obsettvat as the number of molecules in the model
increases, the most probable value predicted in the pritabdomain of$ X tends towards the intersection dfand D in
ODE simulation at around 8.3 M ol. This is shown in Figure 3.

Table 2 shows the model checking time in MC2(PLTLc) (appmadie) with the constraint and experiment approaches and



the model checking time in PRISM (exact) with the experimaguiroach. The gain in efficiency when using constraints is
clear, and the exact approach quickly becomes infeasillesystems containing more than one placeholder, freeblaga
result in an even greater improvement of efficiency. Theiefiicy gain forn variables and. levels isO(L"). Furthermore,
the experiment approach requirgriori knowledge of the value range of the variables allowed in toeen

Molecules| Approximate | Approximate Exact
Constraint | Experiment | Experiment
Approach Approach Approach
10 33 seconds| 35seconds| 2seconds
100 37 seconds | 54 seconds| 20 minutes
1,000 1 minute 8 minutes N/A
10,000 8.5 minutes 13 hours N/A

ximate constraint, approximate ex-
ion model. In the experiment approach,
or MC2(PLTLc) are the combination of
isted are for a current standard work-
ust constructis  (#molecules + 1)2. N/IA
ingle query exceeded 24 hours.

Table 2. A comparison of the model checking times of the appro
periment and exact experiment approaches with the two react

the same number of levels as molecules is used. Times listed f
1,000 simulations at 100s and model checking, and all times |
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Figure 2. A comparison of exact PRISM results and approximat
10,000 simulation runs. This is the probability of the prope

it is clear that 10,000 simulation runs approximates the exa
simulation runs delivers sufficient accuracy.

4.2. Mitogen Activated Protein Kinase (MAPK) Signalling Pathway

We perform model checking of a model of the mitogen-activgumtein kinase (MAPK) cascade published in [20]. This
is the core of the ubiquitous ERK/MAPK pathway that can, fearaple, convey cell division and differentiation signals
from the cell membrane to the nucleus. The description optitbway starts at the RasGTP complex which acts as a kinase
to phosphorylate Raf, which phosphorylates MAPK/ERK Km&8lEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). The response of the cell to the igiguial is dependent on the activity of activated ERK (ERKPP)
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Figure 3. The probabilistic domain of variable X compared to the deterministic result. From top-
left to bottom-right; 10, 100, 1,000, 10,000 molecules. The  most probable value for [A] = [D] tends
towards the deterministic answer as the number of molecules increases. Note that in these graphs
the deterministic behaviour is cut off and actually rises to a probability of 1.

The Petri net in Figure 4 describes the typical modular stinecfor such a signalling cascade. The Petri net can be read
as continuous or stochastic and in the following illust@tixamples we recast the continuous and stochastic piepdm
Gilbertet al.[10] to PLTLc and perform model checking using MC2(PLTLc).

Properties C1, C2 & C3 We have performed the continuous queries C1, C2 and C3 (S#e Jpusing the BioNessie
simulator up to simulation time 400s and our MC2(PLTLc) mocteecker. As the set of simulations contains only one
simulation which is the average behaviour of the model (datastic simulation), the resulting probability value ether

1 or 0 is converted to a boolean value true or false througtptbbability operatotP~, . The original analysis in [10]
was performed through Biocham and its inbuilt LTL model dtexc A comparison of our results to the original results are
summarised in Table 3.

PLTLc Query BioNessie & | Biocham
MC2(PLTLc)
Cl | P51[((MEKPP < 0.001) A (ERKPP < 0.0002))U(Raf-P > 0.06)] true true
C2 | Ps1[((Raf-P > 0.06) A (ERKPP < 0.0002)) — ((Raf-P > 0.06) A false true
(ERKPP < 0.0002))U(MEKPP > 0.004)]
C3 | Psy[((Raf-P > 0.06) A (MEKPP > 0.004)) — ((Raf-P > 0.06) A true true
(MEKPP > 0.004))U(ERK PP > 0.0005)]

Table 3. The results for the replication of C1, C2 and C3 queri  es [10] in PLTLc, showing a discrepancy
in C2 with the original (Biocham) results.

The difference in the results is due to the different ODE exdwsed in BioNessie and Biocham. We found that due to the
adaptive time steps used in Biocham’s ODE solver, no stébenration is outputted for an important time period which is
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Figure 4. The Petri net for the ERK/MAPK pathway model [20] wi  th initial marking for the 4 level
version.

a counter-example to the C2 query, shown in Figure 5. The fixeel step and sufficient granularity of time points used in
BioNessie provided state information which was a countanr®le to this query, thus resulting in a false value. Thinis
example of where the simulator choice affects the modellchgaesult.

Property S1 The first stochastic property S1 is defined as: “What is theadibity of the concentration of RafP increasing,
when starting in the first encountered state where the Is\atéady at L?” This is written in CSL and PLTLc as:

P_+[(RafP = L)U(RafP > L){RafP = L}]

This query was checked using MC2(PLTLc) with 1,000 Gillespimulation runs up to simulation time 300s at 4 and
8 molecules. In this case we have had to use MC2(PLTLc) in aer@xent approach for the placeholder L. As the filter
relativises the property to the placeholder L, each prgpeithe experiment has a different filter state — a free végiabnnot
perform this relativising. The original results using PRI&t 8 concentration levels contrasted with our reproduesdits
are shown in Figure 7. Importantly, the time taken to perfboth the simulation and model checking was significantlg les
in our method. Furthermore, unlike in the original papeeg, time efficiency of our approach means that we do not have to
impose time bounds on temporal operators as done in thenatigaper.

We extend the analysis of the stochastic properties S1 aial [$2] to higher numbers of molecules. First this acts as a
platform to demonstrate the computational efficiency ofapproach. However more than this, such system granukasite
required to accurately check some behaviours. For exanmpbeder to check increases in MEKPP and ERKPP in a similar
manner to S1 and S2 we would need 50 and 200 molecules reshgcEurthermore, to check these properties, we would
need two and three placeholders respectively.

We have extended this analysis up to 4,000 molecules shotigime 6 and observe that when increasing the number of
molecules, the behaviour of the pathway tends towards ttezrdistic behaviour. The deterministic behaviour stdtet
the protein RafP will always increase (property probapili} until it reaches its maximum concentration value of abu
0.1182m M ol. With increasing molecules, the maximum possible numbenacules in the stochastic behaviour of RafP
tends towards the deterministic maximum (vertical linelne Btochastic behaviour is seen to tend towards a prolyabilit
0.5 between its maximum and minimum value, due to the stédich@ature where there is always a possibility of the protein
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Figure 5. The output of Biocham simulation showing that it do es not output a state in the time period
where ERKPP (bottom) > 0.0002 before MEKPP (top) > 0.004, which is a counter example to C2.

decreasing or increasing.

Property S2 The second stochastic property S2 is defined as: “What is timapility that, given the initial concentrations
of RafP, MEKPP and ERKPP being zero, the concentration oPRisks above some level L while the concentrations of
MEKPP and ERKPP remain at zero, i.e. RafP is the first spegie=aict?” This is written in CSL and PLTLc as:

P_s[((MEKPP = 0)A(ERKPP = 0))U(RafP > L){(MEKPP = 0)A(ERKPP = 0)A(RafP = 0)}]

To perform this analysis, we use the same simulation tim8gBand number of runs (1,000) as per S1. In this case we
can use a constraint approach where we replace the plaeetioldth a free variable L:

P [((MEKPP = 0)A(ERKPP =0))U(RafP > $L){(MEKPP = 0)A(ERKPP = 0)A(RafP =0)}]

For a single simulations, this sets the free variable $L #orthtural numbers which RafP is greater than while MEKPP
and ERKPP are 0. Over the 1,000 simulations, the probabitisimain of$ L contains for each value the probability that
RafP is greater than it while MEKPP and ERKPP are 0. The remtizh of the original results at 8 molecules is shown
in Figure 7. Similar to S1, we have extended model checkingpuig000 molecules shown in Figure 8 and note that the
stochastic behaviour again begins to approximate the metistic behaviour. In the deterministic behaviour, ontytltze
initial state of the system are RafP, MEKPP and ERKPP all,Zezace a probability of 1 at this state and probability of O
elsewhere. With increasing molecules, the stochasticvieinabecomes less curved and more step-like, tending tisitaie
vertical line in the deterministic behaviour.

From Figure 7 it can be seen that there is a large differentvedea the original results and the reproduced results using
PLTLc. This is due to the discussed difference in filter imnpémtation, where we assess many initial states and CSL in
PRISM assesses only one initial state.

We observe a similar gain in efficiency for property S2 whengithe constraint approach as reported for the two reaction
model in Section 4.1.

4.3. Oscillation Example

We have also performed model checking on a parameter scdre afontinuous oscillating Kholodenko model of the
MAPK pathway [19]. This model of the MAPK pathway is smallbah the Levchenko model, comprising 8 species and
10 reactions. We vary the strength of the negative feedhabkbition) in the model, said to account for the oscillator
behaviour, and note the effect on oscillations. The patised to check for oscillatory behaviour is written in PLTL as

Ps1[F(d(Protein) > 0 A F(d(Protein) < 0A ...)))]
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Figure 6. Model checking for property S1 using a larger numbe r of molecules. From top-left to
bottom-right; 4, 40, 400 and 4,000. This shows a progression towards the deterministic behaviour as
the number of molecules increases.

This pattern can be used to check for a varying number of pea&scillatory behaviour. Note that such use requires
knowledge of the expected start orientation of oscillaiemscillations start upwards or downwards. The resultstfecking
for various number of peaks in a simulation time of 5,000slevhiarying the strength of negative feedback between 1
and 30nMols~! in steps of 1 are summarised in Figure 9.

There are differences between our approach to oscillatection and the approaches of CTL and CSL. We can only
ever check for oscillating behaviour in the simulated tireeigd whereas exact approaches can guarantee oscillatevef.
Furthermore, we base detection through a numerical appreging the derivative pattern. This means we can only charck f
oscillations when the derivatives are trustworthy, howéwehe stochastic world the derivatives would be the déines of
the noise rather than the signal. Various measures werédeoed to overcome this; Fourier transforms, curve fittimgjse
reduction. However, oscillation detection in the stocitagbrld remains a challenge in this approach.

5. Related Work

Two approaches can be distinguished in probabilistic modetking; exact and approximative. Exact methods provide
- if they are applicable - a higher accuracy, however usualtih much higher costs than approximative methods. Exact
methods construct the (discrete or continuous) Markovrghs they require finite state spaces, i.e. bounded moduwls, a
to apply them to complex dynamics is still a challenge. Exaethods are for instance used in PRISM [21] for PCTL/CSL
model checking, and in LiQuor [7] for automata-based LTL wlathecking.

Approximative model checking of CSL using discrete evenmusation of probabilistic models has been proposed in
[25] and implemented in the tool Ymer [24]. Unlike our offlimeodel checking approach, they follow an inline (on-the-
fly) approach by generating the simulation runs as long adeteé decide time-bounded properties and as many runs
as necessary to pass an acceptance sampling test. Theadetimie bound on the temporal operators brings about the
termination of the generation of sample executions. In @ur@ach, the time bound is specified as parameter to the-stand
alone stochastic simulation algorithm.

While the inline approach allows the adjustment of the leragid number of simulation runs according to the given
property to be checked, it prohibits the reuse of estaldisi@nd-alone simulators, including deterministic onesreédver,
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Figure 7. The original results from PRISM [10] at 8 levels con  trasted with the reproduced results
using MC2(PLTLc) for properties S1 and S2.

our decoupled approach permits the validation of a syrth®tlogical system by checking time series data recorded in
biochemical experiments against the behaviour of the masksd for the design of the system.

Ymer supports nested CSL queries, whereby the total nunilveqoired samples grows rapidly with the level of nesting.
To solve this problem, a combination of exact and statistézdnniques is proposed. On the contrary, we introduce e dted
linear-time logic which seems to be more suited to the amabfsets of independent simulation runs, i.e. in a non-tinang
time scenario. So, PLTLc could be considered as a lineag-tiaunterpart to CSL, and can easily be used to formalize the
visual evaluation of diagrams as generated by deterngrsstichastic simulation runs or by recording experimetitaé
series.

Approximative model checking of PLTL and PCTL by distribdifeath sampling is also applied in the tool APMC [18].
APMC takes PRISM’s modelling language as its input languaget requires bounded models aagbriori knowledge of
the boundedness degree.

MC2 [13] performs approximative LTL model checking by randavalks on the Bchi automaton, so it requires finite
state spaces to follow the automata-based LTL model che@proach.

None of these probabilistic model checkers supports thstcaint approach, which has been proven to be extremely
powerful to replace the much more expensive experimenioagpr

Finally, approximative LTL model checkers are also avddab Simpathica [2] and Biocham [9], however both support
only the analysis of deterministic simulation runs.

6. Summary

We have defined a Probabilistic Linear-time Temporal Logithwumerical constraints (PLTLc) and developed a Monte
Carlo Model Checker for PLTLc properties MC2(PLTLc). Wititreasing system granularities and variables in the prgper
model checking experiments quickly become intractable. défine probabilistic domains for free variables in a propert
which can replace model checking experiments (comprisirggset of properties) with a single property. We have illatstd
the increase in efficiency with our approach through theyaigbf a biochemical system, specifically a model of an intra
cellular signalling pathway. MC2(PLTLc) utilises a gerlegexhnique for model checking of dynamic systems. It accept
any quantitative time-series output from a simulation dualksystem behaviour. Our work contributes to the emerfigid
of synthetic biology by proposing a rigourous approach far $tructured formal engineering of biological systemsisTh
method can be applied to perform checking over the behavimiumodels or indeed over behaviours of a biological system,
permitting verification of a system which is being consteacaccording to the model.

The MC2(PLTLc) tool, together with the sample models in thégper, simulation outputs, PLTLc queries and analysis
results are available at:

www. brc. dcs. gl a. ac. uk/ sof t war e/ nt2.
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