1,191 research outputs found

    The mixed metric dimension of flower snarks and wheels

    Full text link
    New graph invariant, which is called mixed metric dimension, has been recently introduced. In this paper, exact results of mixed metric dimension on two special classes of graphs are found: flower snarks JnJ_n and wheels WnW_n. It is proved that mixed metric dimension for J5J_5 is equal to 5, while for higher dimensions it is constant and equal to 4. For WnW_n, its mixed metric dimension is not constant, but it is equal to nn when n4n\geq 4, while it is equal to 4, for n=3n=3

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Zero forcing and power domination for graph products

    Get PDF
    The power domination number arose from the monitoring of electrical networks, and methods for its determination have the associated application. The zero forcing number arose in the study of maximum nullity among symmetric matrices described by a graph (and also in control of quantum systems and in graph search algorithms). There has been considerable effort devoted to the determination of the power domination number, the zero forcing number, and maximum nullity for specific families of graphs. In this paper we exploit the natural relationship between power domination and zero forcing to obtain results for the power domination number of tensor products and the zero forcing number of lexicographic products of graphs. In addition, we establish a general lower bound for the power domination number of a graph based on the maximum nullity of the matrices described by the graph. We also establish results for the zero forcing number and maximum nullity of tensor products and Cartesian products of certain graphs

    Solving the multistage PMU placement problem by integer programming and equivalent network design model

    Get PDF
    Recently, phasor measurement units (PMUs) are becoming widely used to measure the electrical waves on a power grid to determine the health of the system. Because of high expense for PMUs, it is important to place minimized number of PMUs on power grids without losing the function of maintaining system observability. In practice, with a budget limitation at each time point, the PMUs are placed in a multistage framework spanning in a long-term period, and the proposed multistage PMU placement problem is to find the placement strategies. Within each stage for some time point, the PMUs should be placed to maximize the observability and the complete observability should be ensured in the planned last stage. In this paper, the multistage PMU placement problem is formulated by a mixed integer program (MIP) with consideration of the zero-injection bus property in power systems. To improve the computational efficiency, another MIP, based on the equivalent network flow model for the PMU placement problem, is proposed. Numerical experiments on several test cases are performed to compare the two MIPs.12 month embargo; published online: 13 June 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Automatic Aircraft Navigation Using Star Metric Dimension Theory in Fire Protected Forest Areas

    Get PDF
    The purpose of this research is to determine the navigation of an unmanned aircraft automatically using theory of the metric dimension of stars in a forest fire area. The research will also be expanded by determining the star metric dimensions on other unique graphs and graphs resulting from amalgamation operations. The methods used in this research are pattern recognition and axiomatic deductive methods. The pattern detection method is to look for patterns to construct differentiated sets on the metric dimension (dim) so that the coordinate values are minimum and different. Meanwhile, axiomatic deductive is a research method that uses deductive proof principles that apply in mathematical logic by using existing axioms or theorems to solve a problem. Then the method is used to determine the stars' metric dimensions
    corecore