334 research outputs found

    Kraken:Online and Elastic Resource Reservations for Cloud Datacenters

    Get PDF

    Performance-oriented service management in clouds

    Get PDF
    Cloud computing has provided the convenience for many IT-related and traditional industries to use feature-rich services to process complex requests. Various services are deployed in the cloud and they interact with each other to deliver the required results. How to effectively manage these services, the number of which is ever increasing, within the cloud has unavoidably become a critical issue for both tenants and service providers of the cloud. In this thesis, we develop the novel resource provision frameworks to determine resources provision for interactive services. Next, we propose the algorithms for mapping Virtual Machines (VMs) to Physical Machines (PMs) under different constraints, aiming to achieve the desired Quality-of-Services (QoS) while optimizing the provisions in both computing resources and communication bandwidth. Finally, job scheduling may become a performance bottleneck itself in such a large scale cloud. In order to address this issue, the distributed job scheduling framework has been proposed in the literature. However, such distributed job scheduling may cause resource conflict among distributed job schedulers due to the fact that individual job schedulers make their job scheduling decisions independently. In this thesis, we investigate the methods for reducing resource conflict. We apply the game theoretical methodology to capture the behaviour of the distributed schedulers in the cloud. The frameworks and methods developed in this thesis have been evaluated with a simulated workload, a large-scale workload trace and a real cloud testbed

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ā€ŽThe move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network

    Network flow optimization for distributed clouds

    Get PDF
    Internet applications, which rely on large-scale networked environments such as data centers for their back-end support, are often geo-distributed and typically have stringent performance constraints. The interconnecting networks, within and across data centers, are critical in determining these applications' performance. Data centers can be viewed as composed of three layers: physical infrastructure consisting of servers, switches, and links, control platforms that manage the underlying resources, and applications that run on the infrastructure. This dissertation shows that network flow optimization can improve performance of distributed applications in the cloud by designing high-throughput schemes spanning all three layers. At the physical infrastructure layer, we devise a framework for measuring and understanding throughput of network topologies. We develop a heuristic for estimating the worst-case performance of any topology and propose a systematic methodology for comparing performance of networks built with different equipment. At the control layer, we put forward a source-routed data center fabric which can achieve near-optimal throughput performance by leveraging a large number of available paths while using limited memory in switches. At the application layer, we show that current Application Network Interfaces (ANIs), abstractions that translate an application's performance goals to actionable network objectives, fail to capture the requirements of many emerging applications. We put forward a novel ANI that can capture application intent more effectively and quantify performance gains achievable with it. We also tackle resource optimization in the inter-data center context of cellular providers. In this emerging environment, a large amount of resources are geographically fragmented across thousands of micro data centers, each with a limited share of resources, necessitating cross-application optimization to satisfy diverse performance requirements and improve network and server utilization. Our solution, Patronus, employs hierarchical optimization for handling multiple performance requirements and temporally partitioned scheduling for scalability

    RETRACTED: Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    This article has been retracted by the publisher. This article has been retracted at the request of The International Arab Journal of Information Technology (IAJIT) report because of misconduct and plagiarism. The document and its content have been removed from the Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, and reasonable effort should be made to remove all references to this article

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ā€ŽThe move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network
    • ā€¦
    corecore