
c© 2019 Sangeetha Abdu Jyothi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/238434258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NETWORK FLOW OPTIMIZATION FOR DISTRIBUTED CLOUDS

BY

SANGEETHA ABDU JYOTHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Associate Professor Brighten Godfrey, Chair
Associate Professor Matthew Caesar
Professor Klara Nahrstedt
Professor Jennifer Rexford, Princeton University
Professor Rayadurgam Srikant

ABSTRACT

Internet applications, which rely on large-scale networked environments such as data cen-

ters for their back-end support, are often geo-distributed and typically have stringent perfor-

mance constraints. The interconnecting networks, within and across data centers, are critical

in determining these applications’ performance. Data centers can be viewed as composed

of three layers: physical infrastructure consisting of servers, switches, and links, control

platforms that manage the underlying resources, and applications that run on the infras-

tructure. This dissertation shows that network flow optimization can improve performance

of distributed applications in the cloud by designing high-throughput schemes spanning all

three layers.

At the physical infrastructure layer, we devise a framework for measuring and understand-

ing throughput of network topologies. We develop a heuristic for estimating the worst-case

performance of any topology and propose a systematic methodology for comparing perfor-

mance of networks built with different equipment. At the control layer, we put forward a

source-routed data center fabric which can achieve near-optimal throughput performance by

leveraging a large number of available paths while using limited memory in switches. At the

application layer, we show that current Application Network Interfaces (ANIs), abstractions

that translate an application’s performance goals to actionable network objectives, fail to

capture the requirements of many emerging applications. We put forward a novel ANI that

can capture application intent more effectively and quantify performance gains achievable

with it.

We also tackle resource optimization in the inter-data center context of cellular providers.

In this emerging environment, a large amount of resources are geographically fragmented

across thousands of micro data centers, each with a limited share of resources, necessitat-

ing cross-application optimization to satisfy diverse performance requirements and improve

network and server utilization. Our solution, Patronus, employs hierarchical optimization

for handling multiple performance requirements and temporally partitioned scheduling for

scalability.

ii

To my family and friends

iii

ACKNOWLEDGMENTS

I am extremely grateful to my advisor, Brighten Godfrey, for his guidance and support

throughout my Ph.D. I learned several invaluable skills from him including finding the right

problems, distilling a problem to its essence, and presenting ideas in a clear and concise

manner. Many a time I have walked into his office feeling dejected about research progress,

but I always left with an optimistic spirit, buoyed by his positivity and his ability in getting

to the core of a problem by asking the right questions. I believe that his steady support and

generosity also played a key role in preserving my love for research while going through the

vagaries of graduate school. Brighten has been a truly inspiring role model as a researcher,

teacher, mentor, and as a person. Thanks for this privilege, Brighten.

I would like to thank my dissertation committee members, Matthew Caesar, Klara Nahrst-

edt, Jennifer Rexford, and Rayadurgam Srikant, for providing valuable feedback that helped

in shaping this dissertation. During my Ph.D., I also had the privilege to work with several

amazing researchers. Aditya Akella helped in honing the Patronus project with his invalu-

able insights and feedback. I am also thankful to him for his guidance during the job search.

I would like to express my sincere gratitude to Ishai Menache who took me as an intern

during the early phase of my Ph.D., guided me through completion of an exciting project,

and continues to look out for my career ever since. I am immensely grateful for his unwaver-

ing support, guidance, and friendship. Ankit Singla has been a great mentor, collaborator,

and friend beginning from my early days at the University of Illinois, Urbana-Champaign

(UIUC). His guidance proved to be crucial for the completion of my first project at UIUC.

I am thankful to my amazing collaborators who contributed to various parts of this thesis.

Ankit Singla and Alexandra Kolla helped in shaping the work on measuring and under-

standing throughput (Chapter 2). Mo Dong provided valuable help for developing source

routed data center fabric (Chapter 3). In addition to guidance from Aditya Akella, Patronus

(Chapter 4) has benefited from experiments done by an enthusiastic undergrad I mentored,

Ruiyang Chen. Finally, I am indebted to Sayed Hadi Hashemi for introducing me to the

area of machine learning systems. A random conversation in a hallway led to a series of work

on accelerating distributed deep learning with network scheduling. CadentFlow (Chapter

5), in collaboration with Hadi and Roy Campbell, is a part of this line of work. I am also

thankful to Carlo Curino, Subru Krishnan, and their team for their mentoring and support

during my Microsoft internship. The hands-on experience I gained with this team working

on a large-scale system has helped me tremendously in my other projects.

iv

I would like to thank Indranil Gupta for helping with every phase of the job search and for

serving on my preliminary examination committee. I am grateful to Tianyin Xu for sharing

in detail his recent experiences on the market and for patiently correcting multiple versions

of my job talk. Special thanks to Darko Marinov for running the Pilot series of talks which

proved very helpful. I would also like to express my gratitude to Matus Telgarsky for being

a great friend, sharing a realistic view of the academic world, and helping with the interview

process.

I would like to extend my gratitude to Roch Guerin and Boon Thau Loo at the Univer-

sity of Pennsylvania who guided me during my Masters thesis and faculty members at the

National Institute of Technology, Calicut, my undergrad alma mater, for their continuing

support and encouragement.

I am thankful to the National Science Foundation and Facebook for funding my work.

Special thanks to all administrative staff who served in the Computer Science Department

over the past six years, for helping with every difficulty in a timely manner.

Conversations with my colleagues in the networking and systems lab have greatly helped

my work, thanks for an intellectually stimulating and fun work environment, and a pleasant

grad school experience — Rachit Agarwal, Jason Croft, Mo Dong, Fred Douglas, Soudeh

Ghorbani, Mainak Ghosh, Vipul Harsh, Chi-Yao Hong, Virajith Jalaparti, Nathan Jay,

Faria Kalim, Ahmed Khurshid, Qingxi Li, Bingzhe Liu, Chia-Chi Lin, Tong Meng, Santhosh

Prabhu, Ankit Singla, Rashid Tahir, Ashish Vulimiri, Anduo Wang, Wenxuan Zhou.

During the past six years, Champaign has been a home away from home because of my

amazing friends. Thank you, Anand, Anjali, Aswin, Bhargava, Faria, Hadi, Jacob, Kaushik,

Kavya, Kiran, Kishor, Krishna, Mahesh, Mainak, Maneesha, Manu, Pavithra, Prasanna,

Rachana, Sahand, Sandeep, Sandhya, Santhosh, Sarath, Shalmoli, Sinduja, Sooraj, Sridhar,

Subhro, Sushma, Virajith, and Vivek — for potlucks, escape rooms, roadtrips, game nights,

and all the wonderful times we spent together. A special thanks for your kindness and

support during my lows. Although miles away, I am also grateful for nearly decade-long

unwavering friendship of Nidhin, Sananda, and Vaidyanathan.

Most importantly, I would like to thank my family for their unconditional love and support.

My parents, Abdu T. K. and Jyothi K. C., have always sacrificed their own needs to provide

me with a platform to succeed. I owe everything to their love, commitment to my happiness,

and encouragement towards my pursuits while bearing with my stubbornness. I am also

immensely inspired by their dedication to both family and work. Finally, my brother, Akash,

has had a profound influence on my intellectual and personal growth with his calm and

thoughtful demeanor, and his deep insights during our long conversations. Thanks for being

the yin to my yang. I dedicate this dissertation to my family and friends.

v

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 INTRODUCTION . 1

Chapter 2 MEASURING AND UNDERSTANDING THROUGHPUT 5
2.1 Measuring Throughput . 5
2.2 Towards a Worst-case Throughput Metric 8
2.3 Evaluation . 13

Chapter 3 SOURCE-ROUTED DATA CENTER FABRIC 22
3.1 Related Work on Data Center Control Schemes 23
3.2 The Case for a Source Routed Fabric . 25
3.3 Possible Implementations . 26
3.4 Experimental Analysis of Source-Routed Fabric 28

Chapter 4 CONTROLLING THOUSANDS OF MICRO DATA CENTERS 34
4.1 Related Domains . 36
4.2 Features of WAND . 38
4.3 WAND API . 40
4.4 WAND Control Plane . 45
4.5 Experiments . 51

Chapter 5 INTENT-AWARE APPLICATION NETWORK INTERFACE 64
5.1 Understanding the Environment . 65
5.2 Intent-Aware ANI . 68
5.3 Experiments . 69

Chapter 6 FUTURE WORK . 76

Chapter 7 BIBLIOGRAPHY . 79

Appendix A PROOF OF THEOREM 2.1 . 92

Appendix B PROOF OF THEOREM 2.2 . 96

Appendix C MEASURING CUTS . 97

vi

LIST OF TABLES

2.1 Relative throughput at the largest size tested under different TMs 17

3.1 Forwarding table size comparison . 30

4.1 Comparison of features — WAND and other infrastructure 39
4.2 WAND API fields . 42
4.3 ILP Notation . 47

C.1 Estimated sparsest cuts: Do they match throughput, and which estimators
produced those cuts? . 98

vii

LIST OF FIGURES

2.1 Bisection bandwidth fails to find the true bottleneck. 6
2.2 Sparsest cut vs. Throughput . 7
2.3 Throughput resulting from different traffic matrices in three topologies: hyper-

cube, random graphs and fat trees . 9
2.4 Naive throughput vs Actual throughput . 12
2.5 Throughput vs. cut. (Comparison is valid for individual networks, not across

networks, since they have different numbers of nodes and degree distributions.) . . 15
2.6 Comparison of throughput under different traffic matrices normalized with re-

spect to theoretical lower bound . 16
2.7 Comparison of TMs on topologies . 19
2.8 Comparison of topologies with TM-H([1]) . 20
2.9 Comparison of topologies with TM-F([1]) . 20

3.1 Fat trees A2A TM . 28
3.2 Fat trees Random Matching TM . 28
3.3 Fat trees Random Matching TM with 10% of flows with 10× demand 29
3.4 Forwarding table size for fat trees . 32

4.1 Coefficient of Variation (CV) of traffic load based on a real-world DNS dataset

evaluated at different scales — MDC-level, area-level, and the entire country. . . . 41
4.2 Sample traffic: Cellular dataset . 52
4.3 Sample traffic: DNS dataset . 53
4.4 Traffic Characteristics: Cellular dataset . 53
4.5 Traffic Characteristics: DNS dataset . 54
4.6 DC Size Distribution: Cellular dataset . 54
4.7 DC Size Distribution: Simulation Environment 55
4.8 Comparison of Patronus optimization, random placement, and nearest-DC place-

ment on VPN (Highest priority). 55
4.9 Eviction Tolerance vs. Latency (latency based on geodesic distance) 56
4.10 Geodesic distance-based latency for distributed video processing based on DC

placement (3rd priority class) . 56
4.11 DNS dataset Prediction Error. With regional balancing of load, impact of error

mitigated. 57
4.12 Scheduling delay as a function of number of variables (in millions). 57
4.13 Coefficient of Variation of penalty (resources scheduled in cloud due to lack of

edge resource) . 58
4.14 Performance monitoring overhead at various monitoring intervals: CPU utilization 61
4.15 Performance monitoring overhead at various monitoring intervals: Disk I/O . . . 61

viii

5.1 Importance of understanding application intent: (a) Coflow with two compo-

nent flows. f1 and f2 (size 500Mb each) share a 1Gbps bottleneck link. (b)

Computation model at C has 3 operations, c1, c2, and c3 with dependencies

between flows and computations as shown. Each computation operation takes

0.5s to execute. Completion times with (c) coflow completion time-optimized

transfers and (d) intent-based optimization for transfers. 65
5.2 (a,c) Coflow and CadentFlow optimizations plotted relative to TCP. Lower it-

eration time is better. (b,d) CCT flexibility shows the window of flexible time

available for scheduling with respect to minimum Coflow Completion Time for

deadline-based CadentFlow. 72
5.3 Inference workload (16 workers, 16 Parameter Servers) 73
5.4 (a) 12 servers of rack 1 connected to switch S2 runs application instance A1.

12 servers of rack 2 connected to switch S3 runs instance A2. Out of 12 servers

in rack 3, 4 servers belong to A1 and 4 to A2. (b) Performance improvement

achievable with efficient overlap of multiple jobs in a shared network environ-

ment with deadline-based CadentFlow. 74

ix

Chapter 1: INTRODUCTION

Data centers are critical in providing back-end support for most Internet applications

today. Applications running in these large-scale networked environments range from data-

intensive [2, 3, 4] to user-facing online services (web browsing, real-time streaming appli-

cations, etc.). These applications often have stringent performance requirements in terms

of latency, throughput, etc. When components of such applications are distributed within

and across multiple clouds/data centers, their performance is determined by the underlying

infrastructure. In particular, the interconnecting network within and across data centers

directly impacts the application performance.

In order to design high-throughput solutions for intra- and inter-data center networks,

first, it is necessary to understand roadblocks in achieving high performance at various

layers in these networks. The data center infrastructure can be viewed as composed of three

layers: (a) the physical infrastructure composed of servers, switches, and links, (b) control

platforms that manage the underlying physical resources, and (c) applications that run on

the infrastructure. Each layer presents unique challenges.

At the physical layer, network throughput is limited by the carrying capacity of the in-

terconnect: the network topology and link speeds. In this layer, the challenge revolves

around understanding the throughput limits of a given topology including traffic patterns

that trigger bad performance. At the control layer, the control schemes are responsible for

narrowing the gap between the optimal achievable throughput on a given interconnect and

the actual throughput. The challenge at this layer can be mapped to leveraging the large

number of available paths while using minimal memory overhead at switches and processing

overhead across the network. At the application layer, the key hurdle is translating higher

level application performance goals to actionable network objectives which can be handled

by a network controller.

This dissertation shows that network flow optimization can optimize performance of dis-

tributed applications in the cloud by designing high-throughput schemes spanning all three

layers, within and across data centers. First, at the physical layer, we study the limits

of achievable throughput in networks. Second, for efficient intra-data center control, we

propose a source-routed data center fabric. Third, for inter-data center control, we design

Patronus which provides scalable resource optimization across geo-distributed micro data

centers. Fourth, at the application layer, we develop a new Application Network Interface

(ANI) for effectively translating high-level application performance objectives to actionable

network objectives.

1

At the physical layer, we gain an in-depth understanding of the fundamental limits of

network throughput [5]. We analyze whether commonly-used cut-based metrics, such as

bisection bandwidth and sparsest cut, solve the problem of estimating worst-case throughput.

We show that they do not, both theoretically and using a simple example of a highly-

structured network of small size. Since cut metrics do not achieve our goal, we develop a

heuristic to measure worst-case throughput. We also build a framework to perform a head-

to-head benchmark of a wide range of topologies across a variety of workloads [6], revealing

insights into the performance of topologies with scaling, robustness of performance across

Traffic Matrices (TMs), and the effect of scattered workload placement.

At the control layer in the intra-data center environment, we propose an efficient solu-

tion for a network fabric, where complex application-sensitive functions are factored out,

leaving the network itself to provide a simple, robust high-performance data delivery ab-

straction. This requires performing route optimization, in real time and across a diverse

choice of paths. A large variety of techniques have been proposed to provide path diver-

sity for network fabrics. But, running up against the constraint of forwarding table size,

these proposals are topology-dependent, complex, and still only provide limited path choice

which can impact performance. We propose a simple approach to realize the vision of a

flexible, high-performance fabric: the network should expose every possible path, allowing a

controller or edge device maximum choice. To this end, we observe that source routing can

be encoded and processed compactly into a single field, even in large networks. We show

that, in addition to the expected decrease in required forwarding table size, source routing

supports optimal throughput performance.

In the emerging area of geo-distributed micro data centers, this dissertation focuses on

control of thousands of data centers and the interconnecting Wide Area Network (WAN) for

improving application performance. This environment is composed of multiple constrained

and expensive entities: (a) wide area links with limited bandwidth and (b) micro data cen-

ters with a few racks of servers. In order to meet the goals of geo-distributed applications

while simultaneously utilizing resources efficiently, we need an efficient resource management

scheme. However, this is difficult for several reasons. First, the combination of scale and

geographic spread has not been addressed by prior large-scale systems. Second, the environ-

ment needs to support a motley set of applications with diverse requirements. This includes

long-running streaming applications (e.g., cellular Virtualized Network Functions (VNFs),

other middlebox service chains), batch analytics (e.g., cellular log analytics, Hadoop jobs)

and Lambda-like short-lived jobs (e.g., elastic web servers). To meet the requirements of

such geo-distributed high-performance applications, resource allocation on distributed Micro

Data Centers (MDCs) and the interconnecting WAN will need to be coordinated. Third,

2

the smaller size of MDCs and the potential for demand bursts mean that resource availabil-

ity in any particular MDC will be more dynamic and variable than in a hyperscale DC. In

other words, MDCs enjoy limited benefits of statistical multiplexing. Thus, this environ-

ment is characterized by its scale, geographic spread, diversity of applications, and limited

resources at MDCs. While one or two of these challenges have been addressed in existing

large-scale systems [7, 8, 9, 10, 11], the combination of all characteristics calls for novel re-

source management techniques in WAND. We design Patronus for efficient resource control

of geo-distributed micro data centers interconnected by a WAN.

At the application layer, we show that state-of-the-art application network interface (ANI),

the abstraction that translates an application’s performance intent to network objectives

which can be achieved by a network controller, fail to capture the requirements of many

emerging applications. ANIs and the flexibility they offer have evolved over time. The

earliest congestion control and traffic engineering schemes focused on simple proxies for ap-

plication performance at packet level — throughput and per-packet delay and jitter. Rate

Control Protocol [12] made a step towards application-level performance goals with flow

as the ANI and emphasis on Flow Completion Time (FCT) or the time of arrival of the

last packet. Another significant leap towards an ANI that captures the requirements of

distributed applications was the coflow [13]. Inspired by cloud applications such as MapRe-

duce, coflow considers a set of parallel flows within an application as a single entity where

the FCT of the last flow determines the performance. This enables scheduling schemes to

borrow bandwidth from lighter flows in the coflow to speed up the heavier flows, thereby

improving application deadlines. We observe that even the coflow abstraction is insufficient

to support requirements of today’s sophisticated applications. Applications such as dis-

tributed deep learning and interactive analytics have a complex interplay of communication

and computation at the participating nodes. In this scenario, not all flows within a coflow

are equivalent from the perspective of the application. Depending on the nature of com-

putation, the application may benefit by finishing some flows sooner than others within a

coflow. We quantify the performance loss accrued by current application network interfaces

and put forward a novel interface that can capture application intent more effectively.

Thesis Roadmap

Chapter 2 presents the work on physical infrastructure level analysis of measuring and under-

standing throughput of network topologies. Results in this chapter appeared in [5]. Chapter

3 includes the proposal on a source-routed data center fabric that can achieve near-optimal

throughput performance using minimal memory at network switches. These results were

presented in [14]. Chapter 4 presents the control challenges in the emerging environment

3

of geo-distributed micro data centers and our solution for resource management in this en-

vironment, Patronus. Chapter 5 explores the shortcomings of current Application Network

Interfaces (ANIs), quantifies the performance loss due to the inability of state-of-the-art

ANIs, and puts forward a new ANI, CadentFlow.

4

Chapter 2: MEASURING AND UNDERSTANDING THROUGHPUT

In data center and high performance computing environments, an increase in throughput

demand among compute elements has reinvigorated research on network topology. Although

a large number of network topologies have been proposed in the past few years to achieve

high capacity [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], a systematic methodology for

measuring and comparing throughput performance of topologies has been conspicuously

absent. In this work, we analyze current approaches used in measuring throughput and

build a framework for throughput measurement and comparison across topologies.

2.1 MEASURING THROUGHPUT

The metric of interest is end-to-end throughput supported by a network in a fluid-flow

model with optimal routing (not considering higher-level design like routing protocols and

congestion control).

2.1.1 Defining Throughput

A network is a graph G = (V,E) with capacities c(u, v) for every edge (u, v) ∈ EG.

Among the nodes V are servers, which send and receive traffic flows, connected through

non-terminal nodes called switches. Each server is connected to one switch, and each

switch is connected to zero or more servers, and other switches. Unless otherwise specified,

for switch-to-switch edges (u, v), we set c(u, v) = 1, while server-to-switch links have infinite

capacity. This allows us to stress-test the network topology itself, rather than the servers.

A traffic matrix (TM) T defines the traffic demand: for any two servers v and w,

T (v, w) is an amount of requested flow from v to w. We assume without loss of generality

that the traffic matrix is normalized so that it conforms to the “hose model”: each server

sends at most 1 unit of traffic and receives at most 1 unit of traffic (∀v,
∑

w T (v, w) ≤ 1 and∑
w T (w, v) ≤ 1).

The throughput of a network G with TM T is the maximum value t for which T · t is fea-

sible in G. That is, we seek the maximum t for which there exists a feasible multicommodity

flow that routes flow T (v, w) · t through the network from each v to each w, subject to the

link capacity and the flow conservation constraints. This can be formulated in a standard

way as a linear program (omitted for brevity) and is thus computable in polynomial time. If

the nonzero traffic demands T (v, w) are equal, this is equivalent to the maximum concurrent

5

1
3n nodes2

3n nodes

min. bisection sparsest cut

Figure 2.1: Bisection bandwidth fails to find the true bottleneck.

flow problem [27]: maximizing the minimum throughput of any requested end-to-end flow.

2.1.2 Cuts: a weak substitute for worst-case throughput

Cuts are generally used as proxies to estimate throughput. Since any cut in the graph

upper-bounds the flow across the cut, if we find the minimum cut, we can bound the worst-

case performance. Two commonly used cut metrics are:

(a) Bisection bandwidth: It is a widely used to provide an evaluation of a topology’s

performance independent of a specific TM. It is the capacity of the worst-case cut that

divides the network into two equal halves ([28], p. 974).

(b) Sparsest cut: The sparsity of a cut is the ratio of its capacity to the net weight of

flows that traverse the cut, where the flows depend on a particular TM. Sparsest cut refers

to the minimum sparsity in the network. The special case of uniform sparsest cut assumes

the all-to-all TM.

Cuts provide an upper-bound on worst-case network performance, are simple to state, and

can sometimes be calculated with a formula. However, they have several limitations.

(1) Bisection bandwidth does not always capture the worst-case cut: The insistence

on splitting the network in half means that bisection bandwidth may not uncover the true

bottleneck. In the graph G of Figure 2.1, any bisection must split off at least 1
6
n of the nodes

in the large clique, and each of these have Θ(n) neighbors, meaning that BB(G) = Θ(n2)

while the graph actually has a bottleneck consisting of just a single link!

(2) Sparsest cut and bisection bandwidth are not actually TM-independent, con-

trary to the original goal of evaluating a topology independent of traffic. Bisection bandwidth

6

hypercube
T

h
ro

u
gh

pu
t

Sparsest Cut

cut > O(log n) * throughput
(Impossible)

Graph A expanders

Graph B

Throughput >
cut

(Impossible)

th
ro

ugh
put=

cu
t

Figure 2.2: Sparsest cut vs. Throughput

and the uniform sparsest cut correspond to the worst cuts for the complete (all-to-all) TM,

so they have a hidden implicit assumption of this particular TM.

(3) Even for a specific TM, computing cuts is NP-hard, and it is believed that there

is no efficient constant factor approximation algorithm [29, 30]. In contrast, throughput is

computable in polynomial time for any specified TM.

(4) Cuts are only a loose upper-bound for worst-case throughput. This may be

counter-intuitive if our intuition is guided by the well-known max-flow min-cut theorem

which states that in a network with a single flow, the maximum achievable flow is equal

to the minimum capacity over all cuts separating the source and the destination [31, 32].

However, this no longer holds when there are more than two flows in the network, i.e., multi-

commodity flow : the maximum flow (throughput) can be an O(log n) factor lower than the

sparsest cut [33]. Hence, cuts do not directly capture the maximum flow.

Figure 2.2 depicts this relationship between cuts and throughput. Here we focus on

sparsest cut.1 The flow (throughput) in the network cannot exceed the upper bound imposed

by the worst-case cut. On the other hand, the cut cannot be more than a factor O(log n)

greater than the flow [33]. Thus, any graph and an associated TM can be represented by a

unique point in the region bounded by these limits.

While this distinction is well-established [33], we strengthen the point by showing that it

can lead to incorrect decisions when evaluating networks. Specifically, we will exhibit a pair

of graphs A and B such that, as shown in Figure 2.2, A has higher throughput but B has

1We pick one for simplicity, and sparsest cut has an advantage in robustness. Bisection bandwidth is
forced to cut the network in equal halves, so it can miss more constrained bottlenecks that cut a smaller
fraction of the network.

7

higher sparsest cut. If sparsest cut is the metric used to choose a network, graph B will

be wrongly assessed to have better performance than graph A, while in fact it has a factor

Ω(
√

log n) worse performance!

Graph A is a clustered random graph adapted from previous work [34] with n nodes and

degree 2d. A is composed of two equal-sized clusters with n/2 nodes each. Each node in

a cluster is connected by degree α to nodes inside its cluster, and degree β to nodes in the

other cluster, such that α + β = 2d. A is sampled uniformly at random from the space of

all graphs satisfying these constraints. We can pick α and β such that β = Θ(α
logn

). Then,

as per [34] (Lemma 3), the throughput of A (denoted TA) and its sparsest cut (denoted ΦA)

are both Θ(1
n logn

).

Let graph G be any 2d-regular expander on N = n
dp

nodes, where d is a constant and p

is a parameter we shall adjust later. Graph B is constructed by replacing each edge of G

with a path of length p. It is easy to see that B has n nodes. We prove in Appendix A, the

following theorem.

Theorem 2.1: TB = O(1
nplogn

) and ΦB = Ω(1
np

)

In the above, setting p = 1 corresponds to the ‘expanders’ point in Figure 2.2: both A and

B have the same throughput (within constant factors), but the B’s cut is larger by O(log n).

Increasing p creates an asymptotic separation in both the cut and the throughput such that

ΦA < ΦB, while TA > TB.

Intuition. The reason that throughput may be smaller than sparsest cut is that in addition

to being limited by bottlenecks, the network is limited by the total volume of “work” it has

to accomplish within its total link capacity. That is, if the TM has equal-weight flows,

Throughput per flow ≤ Total link capacity

of flows · Avg path length

where the total capacity is
∑

(i,j)∈E c(i, j) and the average path length is computed over the

flows in the TM. This “volumetric” upper bound may be tighter than a cut-based bound.

2.2 TOWARDS A WORST-CASE THROUGHPUT METRIC

Having exhausted cut-based metrics, we return to the original metric of throughput. We

can evaluate network topologies directly in terms of throughput (via LP optimization soft-

ware) for specific TMs. The key, of course, is how to choose the TM. Our evaluation can

include a variety of synthetic and real-world TMs, but we also want to evaluate topologies’

robustness to unexpected TMs.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8 9

A
bs

ol
ut

e
T

hr
ou

gh
pu

t

Hypercube degree

All to All
Random Matching - 10
Random Matching - 2
Random Matching - 1

Kodialam TM
Longest Matching

Lower bound

��

����

����

����

����

��

�� �� �� �� �� �� ��

�
��
��
��
��
�
��
��
��
��
�

�������������������

����������
��������������������
�������������������
�������������������

�����������
����������������
�����������

��

����

����

����

����

��

����

�� �� �� �� �� �� ��� ��� ���

�
��
��
��
��
�
��
��
��
��
�

���������������

����������
���������������
�����������

����������������
�����������

Figure 2.3: Throughput resulting from different traffic matrices in three topologies: hypercube,
random graphs and fat trees

9

If we can find a worst-case TM, this would fulfill our goal. However, computing a worst-

case TM is an unsolved, computationally non-trivial problem [35].2 Here, we offer an efficient

heuristic to find a near-worst-case TM which can be used to benchmark topologies.

We begin with the complete or all-to-all TM TA2A which for all v, w has TA2A(v, w) = 1
n
.

We observe that TA2A is within 2× of the worst case TM. This fact is simple and known to

some researchers, but at the same time, we have not seen it in the literature, so we give the

statement here and proof in Appendix B.

Theorem 2.2: Let G be any graph. If TA2A is feasible in G with throughput t, then any

hose model traffic matrix is feasible in G with throughput ≥ t/2.

Can we get closer to the worst case TM? In our experience, TMs with a smaller number

of “elephant” flows are more difficult to route than TMs with a large number of small flows,

like TA2A. This suggests a random matching TM in which we have only one outgoing

flow and one incoming flow per server, chosen uniform-randomly among servers.

Can we get even closer to the worst-case TM? Intuitively, the all-to-all and random

matching TMs will tend to find sparse cuts, but only have average-length paths. Drawing

on the intuition that throughput decreases with average flow path length, we seek to produce

traffic matrices that force the use of long paths. To do this, given a network G, we compute

all-pairs shortest paths and create a complete bipartite graph H, whose nodes represent all

sources and destinations in G, and for which the weight of edge v → w is the length of

the shortest v → w path in G. We then find the maximum weight matching in H. The

resulting matching corresponds to the pairing of servers which maximizes average flow path

length, assuming flow is routed on shortest paths between each pair. We call this a longest

matching TM, and it will serve as our heuristic for a near-worst-case traffic.

Kodialam et al. [36] proposed another heuristic to find a near-worst-case TM: maximizing

the average path length of a flow. This Kodialam TM is similar to the longest matching

but may have many flows attached to each source and destination. This TM was used in [36]

to evaluate oblivious routing algorithms, but there was no evaluation of how close it is to

the worst case, so our evaluation here is new.

Figure 2.3 shows the resulting throughput of these TMs in three topologies: hypercubes,

random regular graphs, and fat trees [15]. In all cases, A2A traffic has the highest through-

put; throughput decreases or does not change as we move to a random matching TM with

10 servers per switch, and progressively decreases as the number of servers per switch is

decreased to 1 under random matching, and finally to the Kodialam TM and the longest

2Our problem corresponds to the separation problem of the minimum-cost robust network design in [35].
This problem is shown to be hard for the single-source hose model. However, the complexity is unknown for
the hose model with multiple sources which is the scenario we consider.

10

matching TM. We also plot the lower bound given by Theorem 2.2: TA2A/2. Compari-

son across topologies is not relevant here since the topologies are not built with the same

“equipment” (node degree, number of servers, etc.)

We chose these three topologies to illustrate cases when our approach is most helpful,

somewhat helpful, and least helpful at finding near-worst-case TMs. In the hypercube, the

longest matching TM is extremely close to the worst-case performance. To see why, note

that the longest paths have length d in a d-dimensional hypercube, twice as long as the

mean path length; and the hypercube has n · d uni-directional links. The total flow in the

network will thus be (# flows · average flow path length) = n · d. Thus, all links will be

perfectly utilized if the flow can be routed, which empirically it is. In the random graph,

there is less variation in end-to-end path length, but across our experiments the longest

matching is always within 1.5× of the provable lower bound (and may be even closer to the

true lower bound, since Theorem 2.2 may not be tight). In the fat tree, which is here built

as a three-level non-blocking topology, there is essentially no variation in path length since

asymptotically nearly all paths go three hops up to the core switches and three hops down

to the destination. Here, our TMs are no worse than all-to-all, and the simple TA2A/2 lower

bound is off by a factor of 2 from the true worst case (which is throughput of 1 as this is a

non-blocking topology).

The longest matching and Kodialam TMs are identical in hypercubes and fat trees. On

random graphs, they yield slightly different TMs, with longest matching yielding marginally

better results at larger sizes. In addition, longest matching has a significant practical ad-

vantage: it produces far fewer end-to-end flows than the Kodialam TM. Since the memory

requirements of computing throughput of a given TM (via the multicommodity flow LP)

depends on the number of flows, longest matching requires less memory and compute time.

For example, in random graphs on a 32 GB machine using the Gurobi optimization package,

the Kodialam TM can be computed up to 128 nodes while the longest matching scales to

1,024, while being computed roughly 6× faster. Hence, we choose longest matching as our

representative near-worst-case traffic matrix.

Contrary to our findings, Yuan et al. concludes in [37] that fat trees perform better

than or similar to Jellyfish under HPC workloads. We evaluate throughput with paths

restrictions as proposed under the LLSKR scheme in [37] and find that their conclusions

are flawed. We further observe that the erroneous results stem from the inaccuracy in

throughput computation. The value of flow on a sub-path in [37] is determined by the

bottleneck link. This naive approach yields a feasible flow, but not a maximum flow in

the network. The maximum flow may have larger flow values on some sub-paths compared

to others. Note that this property of maximum flow (unequal distribution of flows across

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A
bs

ol
ut

e
T

hr
ou

gh
pu

t

Comparison 1:
[Yuan]

Comparison 2:
Opt. throughput

Comparison 3:
Opt. throughput,
same equipment

Fat tree Jellyfish

Figure 2.4: Naive throughput vs Actual throughput

different subpaths) holds irrespective of the objective - be it improving the minimum or

average. Hence, maximum flow need to be computed as a solution to the LP associated

with multi-commodity flow problem irrespective of the objective. Another issue with the

comparison in [37] is the larger number of servers added to Jellyfish compared to Fat tree.

In Figure 2.4, we observe that fat tree with 80 switches and 128 servers and corresponding

Random Regular Graph (RRG) used in the paper with 80 switches and 160 servers haw

similar throughput under naive throughput computation. However, when the number of

servers are reduced to 128, the performance improves by 20%. However, the throughput is

38% higher in RRG compared to fat trees when the number of servers are the same and the

maximum flow is computed.

2.2.1 Summary and Implications

Directly evaluating throughput with particular TMs using LP optimization is both more

accurate and more tractable than cut-based metrics. In choosing a TM to evaluate, both

“average case” and near-worst-case TMs are reasonable choices. Our evaluation will employ

multiple synthetic TMs and measurements from real-world applications. For near-worst-case

traffic, we developed a practical heuristic, the longest matching TM, that often succeeds in

substantially worsening the TM compared with A2A.

Note that measuring throughput directly (rather than via cuts) is not in itself a novel idea:

numerous papers have evaluated particular topologies on particular TMs. Our contribution

12

is to provide a rigorous analysis of why cuts do not always predict throughput; a way

to generate a near-worst-case TM for any given topology; and an experimental evaluation

benchmarking a large number of proposed topologies on a variety of TMs.

2.3 EVALUATION

In this section, we present our experimental methodology and detailed analysis of our

framework. We attempt to answer the following questions: Are cut-metrics indeed worse

predictors of performance? When measuring throughput directly, how close do we come to

worst-case traffic?

2.3.1 Methodology

Before delving into the experiments, we explain the methods used for computing through-

put. We also elaborate on the traffic workloads and topologies used in the experiments.

Computing throughput: Throughput is computed as a solution to a linear program whose

objective is to maximize the minimum flow across all flow demands. We use the Gurobi [38]

linear program solver. Throughput depends on the traffic workload provided to the network.

Traffic workload: We evaluate two main categories of workloads: (a) real-world mea-

sured TMs from Facebook clusters and (b) synthetic TMs, which can be uniform weight or

non-uniform weight. Synthetic workloads belong to three main families: all-to-all, random

matching and longest matching (near-worst-case). In addition, we need to specify where

the traffic endpoints (sources and destinations, i.e., servers) are attached. In structured

networks with restrictions on server-locations (fat-tree, BCube, DCell), servers are added

at the locations prescribed by the models. For example, in fat-trees, servers are attached

only to the lowest layer. For all other networks, we add servers to each switch. Note that

our traffic matrices effectively encode switch-to-switch traffic, so the particular number of

servers doesn’t matter.

Topologies: Our evaluation uses 10 families of computer networks. Topology families

evaluated are: BCube [17], DCell [19], Dragonfly [39], Fat Tree [40], Flattened butterfly [41],

Hypercubes [42], HyperX [43], Jellyfish [23], Long Hop [44] and Slim Fly [45]. For evaluating

the cut-based metrics in a wider variety of environments, we consider 66 non-computer

networks – food webs, social networks, and more [46].

13

2.3.2 Do cuts predict worst-case throughput?

In this section, we experimentally evaluate whether cut-based metrics predict throughput.

We generate multiple networks from each of our topology families (with varying parameters

such as size and node degree), compute throughput with the longest matching TM, and find

sparse cuts using heuristics with the same longest matching TM. We show that:

• In several networks, bisection bandwidth cannot predict throughput accurately. For a

majority of large networks, our best estimate of sparsest-cut differs from the computed

worst-case throughput by a large factor.

• Even in a well-structured network of small size (where brute force is feasible), sparsest-

cut can be higher than worst-case throughput.

Since brute-force computation of cuts is possible only on small networks (up to 20 nodes),

we evaluate bisection bandwidth and sparsest cut on networks of feasible size (115 networks

total – 100 Jellyfish networks and 15 networks from 7 families of topologies). Of the 8 topol-

ogy families tested, we found that bisection bandwidth accurately predicted throughput in

only 5 of the families while sparsest cut gives the correct value in 7. The average error (dif-

ference between cut and throughput) is 7.6% for bisection bandwidth and 6.2% for sparsest

cut (in networks where they differ from throughput). Maximum error observed was 56.3%

for bisection bandwidth and 6.2% for sparsest cut.

Although sparsest cut does a better job at estimating throughput at smaller sizes, we

have found that in a 5-ary 3-stage flattened butterfly with only 25 switches and 125 servers,

the throughput is less than the sparsest cut (and the bisection bandwidth). Specifically,

the absolute throughput in the network is 0.565 whereas the sparsest-cut is 0.6. This shows

that even in small networks, throughput can be different from the worst-case cut. While

the differences are not large in the small networks where brute force computation is feasible,

note that since cuts and flows are separated by an Θ(log n) factor, we should expect them

to grow.

Sparsest cut being the more accurate cut metric, we extend the sparsest cut estimation to

larger networks. Here we have to use heuristics to compute sparsest cut, but we compute all

of an extensive set of heuristics (limited brute-force, selective brute-force involving one or

two nodes in a subset, eigenvector-based optimization, etc.) and use the term sparse cut

to refer to the sparsest cut that was found by any of the heuristics. Sparse cuts differ from

throughput substantially, with up to a 3× discrepancy as shown in Figure 2.5. In only a small

number of cases, the cut equals throughput. The difference between cut and throughput is

pronounced. For example, Figure 2.5(b) shows that although HyperX networks of different

14

 0

 5

 10

 15

 20

 0 5 10 15 20

T
h
ro

u
g
h
p
u
t

Sparsest Cut

BCube
DCell

Dragonfly
Fat Tree

Flattened BF
Hypercube

HyperX
Jellyfish

Long Hop
Slim Fly

Natural networks

(a) Throughput vs. cut for all graphs

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

T
h
ro

u
g

h
p

u
t

Sparsest Cut

(b) Throughput vs. cut for selected graphs (zoomed version of (a))

Figure 2.5: Throughput vs. cut. (Comparison is valid for individual networks, not across networks,
since they have different numbers of nodes and degree distributions.)

sizes have approximately same flow value (y axis), they differ widely in sparsest cut (x

axis). This shows that estimation of worst-case throughput performance of networks using

cut-based metrics can lead to erroneous results.

2.3.3 Does longest matching approach the true worst case?

We compare representative samples from each family of topology under four types of TM:

all to all (A2A), random matching with 5 servers per switch, random matching with 1 server

per switch, and longest matching. Figure 2.6 shows the throughput values normalized so that

15

 1

 1.2

 1.4

 1.6

 1.8

 2

BCube
DCell

DragonFly
FatTree

FlattenedBF

Hypercube
HyperX

Jellyfi
sh

LongHop
SlimFly

T
h
ro

u
g
h
p
u
t

Topology

A2A RM(5) RM(1) LM

Figure 2.6: Comparison of throughput under different traffic matrices normalized with respect to
theoretical lower bound

the theoretical lower bound on throughput is 1, and therefore A2A’s throughput is 2. For

all networks, TA2A ≥ TRM(5) ≥ TRM(1) ≥ TLM ≥ 1, i.e., all-to-all is consistently the easiest

TM in this set, followed by random matchings, longest matching, and the theoretical lower

bound. (As in Figure 2.5, throughput comparisons are valid across TMs for a particular

network, not across networks since the number of links and servers varies across networks.)

Our longest matching TM is successful in matching the lower bound for BCube, Hyper-

cube, HyperX, and (nearly) Dragonfly. In all other families except fat trees, the traffic under

longest matching is significantly closer to the lower bound than with the other TMs. In fat

trees, throughput under A2A and longest matching are equal. This is not a shortcoming

of the metric, rather it’s the lower bound which is loose here: in fat trees, it can be easily

verified that the flow out of each top-of-rack switch is the same under all symmetric TMs

(i.e., with equal-weight flows and the same number of flows into and out of each top-of-rack

switch).

In short, these results show that (1) the heuristic for near-worst-case traffic, the longest

matching TM, is a significantly more difficult TM than A2A and RM and often approaches

the lower bound; and (2) throughput measurement using longest matching is a more accurate

estimate of worst-case throughput performance than cut-based approximations, in addition

to being substantially easier to compute.

16

Topology family All-To-All
Random
Matching

Longest matching

BCube (2-ary) 73% 90% 51%

DCell (5-ary) 93% 97% 79%

Dragonfly 95% 76% 72%

Fat tree 65% 73% 89%

Flattened BF (2-ary) 59% 71% 47%

Hypercube 72% 84% 51%

Table 2.1: Relative throughput at the largest size tested under different TMs

2.3.4 Topology evaluation

In this section, we present the results of our topology evaluation with synthetic and real-

world workloads, and our near-worst-case TM.

But first, there is one more piece of the puzzle to allow comparison of networks. Networks

may be built with different equipment – with a wide variation in number of switches and

links. The raw throughput value does not account for this difference in hardware resources,

and most proposed topologies can only be built with particular discrete numbers of servers,

switches, and links, which inconveniently do not match.

Fortunately, uniform-random graphs as in [23] can be constructed for any size and degree

distribution. Hence, random graphs serve as a convenient benchmark for easy comparison of

network topologies. Our high-level approach to evaluating a network is to: (i) compute the

network’s throughput; (ii) build a random graph with precisely the same equipment, i.e., the

same number of nodes each with the same number of links as the corresponding node in the

original graph, (iii) compute the throughput of this same-equipment random graph under

the same TM; (iv) normalize the network’s throughput with the random graph’s throughput

for comparison against other networks. This normalized value is referred to as relative

throughput. Unless otherwise stated, each data-point is an average across 10 iterations,

and all error bars are 95% two-sided confidence intervals. Minimal variations lead to narrow

error bars in networks of size greater than 100.

Synthetic Workloads: We evaluate the performance of 10 types of computer networks

under uniform-weight synthetic workloads. Performance non-uniform weight synthetic work-

loads can be found in [47].

We evaluate three traffic matrices with equal weight across flows: all to all, random

matching with one server, and longest matching. Figures 2.7 shows the results, divided

among two figures for visual clarity. Most topologies are in the left, while the figures on the

right show Jellyfish, Slim Fly, Long Hop, and HyperX.

17

Overall, performance varies substantially, by around 1.6× with A2A traffic and more than

2× with longest matching. Furthermore, for the networks of Figure 2.7, which topology

“wins” depends on the TM. For example, Dragonfly has high relative throughput under A2A

but under the longest matching TM, fat trees achieve the highest throughput at the largest

scale. However, in all TMs, Jellyfish achieves highest performance (relative throughput = 1

by definition), with longest matching at the largest scale (1000+ servers). In comparison with

random graphs, performance degrades for most networks with increasing size. The relative

performance of the largest network tested in each family in the first set in Figure 2.7 is given

in Table 2.1. HyperX [43] has irregular performance across scale due to choices of underlying

topology. Given a switch radix, number of servers and desired bisection bandwidth, HyperX

attempts to find the least cost topology constructed from the building blocks – hypercube

and flattened butterfly

Real-world workloads: Roy et al. [1] presents relative traffic demands measured during a

period of 24 hours in two 64-rack clusters operated by Facebook. The first TM corresponds

to a Hadoop cluster and has nearly equal weights. The second TM from a frontend cluster

is more non-uniform, with relatively heavy traffic at the cache servers and lighter traffic at

the web servers. Since the raw data is not publicly available, we processed the paper’s plot

images to retrieve the approximate weights for inter-rack traffic demand with an accuracy

of 10i in the interval [10i, 10i+1) (from data presented in color-coded log scale). Since our

throughput computation rescales the TM anyway, relative weights are sufficient. Given the

scale factor, the real throughput can be obtained by multiplying the computed throughput

with the scale factor.

We test our slate of topologies with the Hadoop cluster TM (TM-H) and the frontend

cluster TM (TM-F) and the results are presented in Figures 2.8 and 2.9 respectively. When

a topology family does not have a candidate with 64 ToRs, the TM is downsampled to the

nearest valid size (denoted as Sampled points in the plot).

We also consider modifying these TMs by shuffling the order of ToRs in the TM (de-

noted as Shuffled points in the plot). Under the nearly uniform TM-H, shuffling does not

affect throughput performance significantly (Figure 2.8). However, under TM-F with skewed

weights, shuffling can give significant improvement in performance. In all networks except

Jellyfish, Long Hop, Slim Fly and fat trees, randomizing the flows, which in turn spreads the

large flows across the network, can improve the performance significantly when the traffic

matrix is non-uniform. Note that relative performance here may not match that in Figure 2.7

since the networks have different numbers of servers and even ToRs (due to downsampling

required for several topologies). However, we observe that the relative performance between

18

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

BCube
DCell

Dragonfly

Fat tree
Flattened BF

Hypercube

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

HyperX
Jellyfish

Long Hop
Slim Fly

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

(a) All to All TM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

(b) Random Matching TM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 100 1000 10000

R
el

. T
hr

ou
gh

pu
t

Number of servers

(c) Longest Matching TM

Figure 2.7: Comparison of TMs on topologies

topologies remains consistent across both the traffic matrices.

Summary

In this chapter, we have experimentally shown that:

• Cuts (as estimated using the best of a variety of heuristics) differ significantly from

worst-case throughput in the majority of networks.

• Our longest matching TM approaches the theoretical lower bound in all topology

families. They are significantly more difficult to route than all-to-all and random

19

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

BCube
DCell

Drago
nFly

FatTree
Flatte

nedBF
Hypercube

HyperX
JellyfishLongHop

SlimFlyN
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Topology

Sampled Shuffled

Figure 2.8: Comparison of topologies with TM-H([1])

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

BCube
DCell

Drago
nFly

FatTree
Flatte

nedBF
Hypercube

HyperX
JellyfishLongHop

SlimFlyN
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Topology

Sampled Shuffled

Figure 2.9: Comparison of topologies with TM-F([1])

matching TMs.

• At large sizes, Jellyfish, Long Hop and Slim Fly networks provide the best throughput

performance.

• Designing high throughput networks based on proxies for throughput may not yield

the expected results (demonstrated with bisection bandwidth in HyperX).

• All networks except fat trees have graceful degradation in throughput under non-

20

uniform TMs when the fraction of large flows increases. Poor performance of fat trees

is due to heavy load at the ToRs.

• Randomizing the placement of heavy flows could improve the performance for throughput-

intensive applications.

21

Chapter 3: SOURCE-ROUTED DATA CENTER FABRIC

Data center network architecture is moving towards a network fabric abstraction with the

core of the network only providing simple forwarding functionality and complex functions

delegated to the edge. This decoupling of forwarding from other network functions provides

us with the opportunity to rethink the design of fabric towards a more flexible and efficient

forwarding core [48]. How does the fabric achieve high performance? The key is traffic

engineering: the network controller or distributed agents must select paths and load-balance

between them to adapt to dynamic traffic patterns. This is a difficult technical problem due

to the scale, dynamics, and high performance requirements of modern data centers. Since

modifying network-wide switch forwarding entries is slow [49], the most common approach

is two-stage: first a set of paths are proactively encoded into the data plane, and then the

“edge” of the network load-balances among these in real time. Here the edge may be a

server, a hypervisor, or a top-of-rack (ToR) switch; and the edge may optimize its path

choice autonomously or as instructed by a central controller.

Encoding the paths into the data plane turns out to be non-trivial. A key constraint

is the limited capacity of switch forwarding tables, ranging from roughly 2,000 (in some

commodity OpenFlow gear) to 200,000 (for very simple exact-match MAC tables). To

encode a diverse set of paths between each source-destination pair, a range of designs have

proliferated [50, 51, 52, 53, 54, 18, 55, 16, 56]. These designs are (variously) topology-

dependent, utilize large numbers of forwarding table rules, complex, and yet still limit the

selection of paths. For example, CONGA [50] allows a sender to specify the path only up to

a spine or top-level switch. Planck [51] and Shadow MACs [57] severely limits throughput

for certain traffic patterns and topologies. XPath [53] performs a complex compression to

encode a large number of paths; it can use more than 100k forwarding rules and still is not

guaranteed to provide all paths.

Our goal is to make the case that the fabric should provide a simple abstraction: The

ability to use any physical path. This enables flexibility in the sense that any available

resource can be used without constraints. Furthermore, we argue that the right architecture

to achieve a flexible fabric is source routing: the sender at the edge specifies a switch-

level path through the network, and switches simply match on identifiers referring to their

outgoing ports. In a sense, this approach takes the fabric design to its purest form: the switch

is stripped down to the minimal functionality necessary for flexible high performance.

The most obvious benefit of this design is tiny forwarding tables (so small that it opens

the possibility of simpler switch hardware). But, as we will argue later, a source-routed

22

fabric is a broader architectural win: it improves achievable throughput, is more robust

to connectivity failures, localizes switch forwarding table configurations so they are not

dependent on network-wide topology, and essentially eliminates the need for careful updates

to forwarding state in fabric switches [49]. It also may improve monitoring and security via

path provenance, and ease data plane verification.

OpenFlow does not support IPv4 (loose or strict) source routing, and this would anyway

lead to large headers. Another method is to use a stack of MPLS labels, 4 bytes per hop with

pushing, swapping, and popping along the path. We show an even more compact method

is possible: using arbitrary bit masks in OpenFlow 1.3, paths of sufficient length can be

encoded in a single header field (with around 8-10 bits per hop). Perhaps surprisingly, we

can even avoid any packet header modification in the switching fabric.

We are not the first to suggest source routing techniques for the data center [58, 54]. In

contrast to that work, our contributions are to: (1) make the case for source routing as an

effective architecture for a flexible fabric, (2) describe a compact method for implementing

source routing within OpenFlow, and (3) quantify the improvements in forwarding table size

and achievable throughput and how they depend on the traffic matrix.

3.1 RELATED WORK ON DATA CENTER CONTROL SCHEMES

Several traffic engineering (TE) techniques have been proposed to improve the performance

of data centers. In this section, we elaborate on the state-of-the-art data center forwarding

techniques and their limitations.

The majority of the schemes have been tailored to Clos networks, commonly used in data

centers. In the discussion, we will refer to two families of topology. A leaf-spine topology

is a two-tier Clos network. The switches in the lower tier are called leaves and those in the

upper tier are called spines or core nodes. Each leaf is connected to every spine. A fat tree

is a multi-tier Clos network. In the construction of [15], which we assume throughout the

rest of the paper, a fat tree is a three-tier network which, when built using switches of k

ports, has 5
4
k2 switches and up to k3

4
hosts.

CONGA [50] is a traffic engineering scheme designed for leaf-spine topologies. Each

leaf keeps track of congestion on its paths and chooses the least-congested path for a newly

arriving flowlet. Tags in the VXLAN header are used to identify the next-hop spine node

as well as to carry congestion information. CONGA relies on source routing at the first hop

to allow the destination to keep track of the path used. However, spine nodes rely on the

destination leaf address in the packet for forwarding and hence, requires a forwarding table

which can accommodate the number of leaves in the network. The technique was evaluated

23

on two-level Clos networks in [50], and as the network grows to multiple levels it would

be increasingly difficult to encode all paths as the number of possible paths would grow

exponentially.

Shadow MACs [57] is a forwarding scheme for traffic engineering which uses multiple

spanning trees rooted at each destination. Each spanning tree has an associated “shadow”

MAC address which allows shifting between the trees through MAC rewriting. Thus, for each

destination address, only a limited number of paths are available. For example, Planck [51]

uses a shadow MAC scheme with four spanning trees per destination. In addition to the

overhead in MAC address rewriting, the limited path availability can impact throughput

performance.

XPath [53] relies on compression to fit a large number of paths into switches’ forwarding

tables. It uses a two-step process involving aggregation of paths into path sets and assign-

ment of IDs to each path set. Several optimizations reduce the computation for structured

networks, but computation time for random networks is still very high (several hours to

days). Hence, this is a computationally intensive and complex technique for achieving ex-

plicit path control in data centers. [59] also attempts to assign IDs to paths to facilitate

concise representation. MAC addresses are assigned as IDs to paths such that multiple paths

with that share a link can be aggregated.

A few data center TE schemes have used or proposed the use of source routing before.

FastPass [52] is a novel traffic engineering scheme where a centralized controller decides

the path as well as the time slot of transmission for each packet in the network. This TE

scheme is restricted to tiered networks which are rearrangeably non-blocking. The successful

implementation of this scheme would require an efficient source routing scheme. The paper

suggests the use of VLANs, IP-in-IP tunnelling or ECMP spoofing for the implementation of

source routing. In SlickFlow [54], packet headers contain a source route for a primary path

and an alternate path. Since the packet contains next hop information for both paths, packet

headers are larger. Moreover, the technique requires changes in the core of the network to

handle the new SlickFlow header. SecondNet [58] is a data center virtualization archi-

tecture which uses port-switching based source routing (PSSR) as the forwarding method,

implemented using MPLS. MPLS is one of the implementation options we discuss later.

Although source routing has been proposed for data center networks in the above papers,

an analysis of impact of source routing has been absent. While [60] makes an attempt in

this direction, the objective of the design was to reduce the controller load and optimize its

placement. Our paper contributes a performance analysis of the impact of source routing,

proposes compact implementations in OpenFlow, and makes the broad architectural case

for source routing as a fabric substrate.

24

3.2 THE CASE FOR A SOURCE ROUTED FABRIC

In this section, we discuss why a source-routed fabric is an architectural win over a tradi-

tional IP-based forwarding fabric.

Smaller forwarding tables: In basic source routing, each switch only needs to store one

rule for each outgoing port. For ease of implementation, we will propose schemes which

need slightly more: one rule per (hop number, outgoing port) pair. But even in that case,

the forwarding table grows linearly with the diameter of the network and is otherwise inde-

pendent of the number of switches. Thus, source routing can support all possible paths to

all destinations in the network while reducing the number of forwarding entries by several

orders of magnitude. In the future, this may enable simpler and cheaper switch hardware.

Higher throughput: Unlike IP-based forwarding fabric which encounters path constraints

due to forwarding table size restrictions, source routing can support any valid path in the

network. This allows us to utilize the full path diversity of the network to achieve higher

throughput.

Nearly-static forwarding tables: In source routing, a forwarding table entry at a node is

updated only during addition or deletion of a link directly connected to it. Thus, forwarding

table entries have only local dependencies. Hence, forwarding tables are unaffected by failures

or addition of nodes in the broader network, leading to reduced error and complexity. In

contrast, traditional forwarding has global dependenices.

Faster response to failures: Source routing allows routing via any available path. The

edge-based reaction to failure can happen more quickly than global routing protocol re-

convergence or reaction by a central controller.

Architectural solution for consistent update: Since source routing supports all feasible

paths in the network, switching paths is just a matter of changing a header field at the sender.

This essentially solves the consistent update problem of IP forwarding fabrics [61, 49] where

special care is needed because switching paths requires state changes at multiple switches in

the network.

Ease of verification: Formal data plane verification [62, 63, 64, 65, 66] of network policies is

an important aspect of operation in modern data center networks. For IP-based forwarding,

continuous modeling of all rules on all switches are needed because they run distributed

routing protocols that change over time. However, with source routing, the fabric’s packet

forwarding is stable and predictable. Hence, verification of encapsulation at edge routers is

sufficient.

25

3.3 POSSIBLE IMPLEMENTATIONS

We propose several possible implementations of source routing that are feasible in current

data centers. We do assume a centralized controller which has a global view of the network

and is capable of sending necessary information to the edge (edge router or hypervisor).

The implementation involves two major stages—how routes are selected at the edge, and

the encoding of the source route. We enumerate multiple techniques for each stage, which

have varying implications for switch hardware and traffic engineering scheme.

Source route encoding In source routing, the entire path is inserted in the packet header.

We need a mechanism that allows each intermediate router to read its next hop from the

encoding. Depending on the capabilities of switches in the network, one of the following

methods can be chosen for source routing in the core of the network. The methods are listed

in increasing order of packet overhead.

(a) Bit mask and TTL: OpenFlow 1.3 allows arbitrary bit masks which can match any

bits in a given field. These bits need not be adjacent or at the beginning of the field. This

feature can be used to reduce the overhead associated with path information in the packet

header. If the maximum degree (number of ports) of any switch in the network is 256, 8

bits are sufficient to uniquely identify a next hop. In such a network, a 32-bit field can hold

path information for 4-hop paths. If the largest switch has 64 ports, using a single IPv6

address field, we could accommodate 21-hop paths (b128/6c). This allows a very compact

representation of the route in the packet header.

At each switch, we need to identify the correct set of bits to be read. We propose to

rely on an existing hidden pointer in the packet. Time-To-Live (TTL) is an 8-bit field in

IP/MPLS headers that keeps track of the lifespan of a packet in the network. If we know the

TTL set by the source, the number of hops traversed by the packet can be easily deduced.

Thus, TTL can be used as a pointer which gives the location of the path corresponding to

the current hop. As a simple example, if the TTL is set to 255 at the source, the maximum

degree in the network is 16 (4 bits) and 3 hop paths are supported, a mask of xxxx1111xxxx

can be used when the current TTL is 253. Note that this technique can be used only if every

router in the network is guaranteed to perform TTL operations correctly.

(b) Bit mask and pointer: In networks where TTL functions are unavailable, an ad-

ditional pointer field can be used to locate the correct next-hop information. The pointer

field is initialized to 1 and incremented at each hop. In addition to bit-mask match rule,

each packet has to be matched against an additional rule which increments the value of the

pointer. This can be implemented in OpenFlow with appropriate matching on the combi-

26

nation of the pointer and route fields, with a rewrite action applied to the pointer.

(c) Bit mask on switch IDs: In contrast to all other schemes presented here, it is actually

possible to implement source routing without any header field rewrites. To accomplish this,

we specify the path as a list of globally-unique switch IDs. A path that passes through

a specific switch contains its own ID followed by the next-hop neighbor’s ID. Hence the

forwarding table contains match rules for each pair of adjacent locations in the path with

the first entry being the switch’s own ID and the second entry as any of its neighbors’ ID.

This technique does not require a pointer to the current location because it is implicit in

the position of a switch’s own ID in the path. Unlike the previous schemes, the number of

bits required per tag is not dependent on the largest degree, but on the number of switches

in the network.

(d) MPLS-based source routing: In networks that do not support OpenFlow 1.3 fea-

tures, Multi Protocol Label Switching [67] can be used instead of compact representation

and arbitrary bit masks. However, the default stack size of MPLS labels in most routers is

three. Although it can be increased to four or five, this also increases header overhead since

each label requires 4 bytes, so MPLS is more appropriate in networks with small diameter.

Route selection at the edge In a data center with virtual machines running client appli-

cations, security concerns preclude insertion of source routes at the client VM. Hence, the

route can be injected either at the hypervisor or at the edge router.

(a) Hypervisor: The hypervisor can be programmed to encapsulate packets received from

the attached VMs with the appropriate source route as well as decapsulate packets received

from the network. The relevant source route can either be directly obtained from the cen-

tralized controller or computed at the hypervisor based on network conditions. The network

state could be directly obtained from the controller or could be learned through any dis-

tributed algorithm that runs across hypervisors in the network. A suitable path computation

technique can be adopted depending on the traffic engineering scheme.

(b) Edge router: The source routes may also be inserted at the edge routers in the

network. The path computation needs to be done at the centralized controller, which pushes

instructions to the edge routers. The routing table at edge routers will be much larger

compared to the rest of the network, as they need to accommodate rules for source path

header encapsulation and decapsulation.

Note that this proposal is essentially agnostic to the traffic engineering scheme. We expect

that source routing will benefit traffic engineering schemes broadly, by providing more choice

in paths.

27

3.4 EXPERIMENTAL ANALYSIS OF SOURCE-ROUTED FABRIC

In this section, we analyze the impact of source routing and several past traffic engineering

schemes with respect to throughput performance. More results on the impact on forwarding

table size can be found in [14].

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

N
or

m
al

iz
ed

 t
hr

ou
gh

pu
t

ac
hi

ev
ed

Forwarding table entries at leaf

FT-6
FT-8

FT-10
FT-16
FT-20

FT-20 Source routing

Figure 3.1: Fat trees A2A TM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

N
or

m
al

iz
ed

 t
hr

ou
gh

pu
t

ac
hi

ev
ed

Forwarding table entries in leaf

FT-6
FT-8

FT-12
FT-16
FT-20

FT-20 Source routing

Planck

Figure 3.2: Fat trees Random Matching TM

(A) Methodology

In this section, we present results on evaluation of various Traffic Matrices on the com-

monly used fat tree topology. More results can be found in [14].

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

N
or

m
al

iz
ed

 t
hr

ou
gh

pu
t

ac
hi

ev
ed

Forwarding table entries at leaf

FT-6
FT-8

FT-12
FT-16
FT-20

FT-20 Source routing

Planck

Figure 3.3: Fat trees Random Matching TM with 10% of flows with 10× demand

Understanding the topologies: Leaf-spine topology with L leaves and S spine switches

has L ∗ (L − 1) source-destination leaf pairs, each of which can use any of the S (shortest)

spine paths, leading to a total of L ∗ (L − 1) ∗ S paths. The spine switch only has to

save information on each of the destination leaves leading to L entries. However, each leaf

switch has (L− 1)S entries for S paths to each of the other leaves in the traditional shortest

paths-based routing scheme.

In a fat tree constructed with degree K switches, there are K2/2 leaves in the lower layer.

The number of leaf pairs is K4/4. Connecting each pair of leaves, we can have K2/4 paths

(considering K/2 next-hops between each adjacent layers). Hence, the total number of valid

paths in the network is K6/16. At each leaf, we can have K2/2 outgoing flows to other

leaves each of which can use at most K2/4 paths. Hence, the total number of forwarding

table entries will be K4/8.

Traffic matrix for throughput comparison: We use Topobench [6] to evaluate through-

put performance of various schemes. Throughput is computed as a solution to a linear pro-

gram whose objective is to maximize the minimum flow across all demands. We extend

the framework to accommodate a constrained set of paths according to each forwarding

scheme. We evaluate three realistic traffic matrices (TMs): (a) All-to-all (A2A) TM with

a flow between every pair of switches, (b) Random Matching TM with one outgoing and

one incoming flow per switch, chosen uniform-randomly and (c) Random matching with

non-uniform traffic where the matching between servers is uniform-random, but 10% of the

flows have a demand 10× bigger than the rest of the flows. A flow is defined per leaf pair

29

Topology Total
paths

Forwarding table entries in a leaf switch

Traditional CONGA PLANCK Source
routing

Leaf-spine
(L leaves,
S spines)

L(L− 1)S (L− 1)S (L− 1)S 4(L− 1) 8S

Fat trees
(degree K)

K6/16 K4/8 - 2K2 8K

Leaf-spine
(256 leaves,
32 spines)

2088960 8160 8160 1020 256

Fat trees
(degree 20)

4 ∗ 106 2 ∗ 104 - 800 160

Table 3.1: Forwarding table size comparison

and is considered to be the aggregate traffic between hosts in these leaves.

A traffic pattern similar to all-to-all is generated by certain real-world applications (such as

the shuffle phase in MapReduce). Random matching is a more demanding traffic pattern [6]

since it has a single large flow exiting each leaf. This is somewhat similar to a situation that

could occur if an application is allocated all the machines in two racks and performs large

transfers between the two halves of the application (e.g. a shuffle). Non-uniform random

matching is a representative of the realistic scenario where a small fraction of flows dominate

in size, alongside other smaller demands spread throughout the network.

We compare the performance of traditional routing (all shortest paths through a router

saved in its routing table), CONGA, Planck and source routing. For source routing, we

assume that IPv6 address is used to carry the source route in a network with switch degree

at most 256. Hence, the source routing design used for evaluation supports paths of length

up to 16.

(B) Forwarding table size

Forwarding table size in switches is limited due to high cost and power consumption. A

typical size of forwarding tables in high-end data center switches today is 144K entries [68],

which may not be sufficient to accommodate all paths. The problem is aggravated in low

end switches with forwarding table size less than 7K [69]. We compare the requirements of

various data center forwarding schemes.

A leaf in the leaf-spine topology uses L · S entries under CONGA. Since Planck limits

the number of paths to 4 for each destination, the number of forwarding table entries at

each leaf is 4L in Planck. With source routing, we have a constant number of entries – 8S.

Although we have paths of length 16, a leaf can appear only at an odd position and a spine

30

can appear only at an even position in the path. Hence each switch has to check only half

of the locations. This property holds for all “level-based” networks with links only between

adjacent levels. A switch at an odd level can appear only at an odd hop in a path.

In a fat tree topology with degree K, a leaf switch in Planck has 2K2 paths. On the

other hand, source routing requires only 8K forwarding table entries to support paths up to

length 16 in fat tree with shortest path length 5. CONGA does not scale to accommodate

three level topologies. Note that it is possible to do hierarchical routing in fat trees with

small forwarding tables if control over the chosen path is not required. However, this can lead

to congestion and uneven utilization of the network. As we will see, for better utilization of

the network and efficient traffic engineering, it is necessary to have information on all paths

at the leaves.

A summary of the comparison is given in Table 3.1. The general trend in the growth

of forwarding table size in fat trees with increase in degree is given in Figure 3.4. We can

see that, without any optimizations, forwarding table requirements of traditional routing

with all shortest paths cannot be accommodated even in high-end switches for fat trees with

degree as small as 34. Planck, with a 4-path limit per destination, cannot support fat trees

of degree more than 60, built from low-end switches with 7K routing table size. On the other

hand, forwarding table requirements of source routing uses only a fraction of the memory

in low-end switches. Also, note that the source routing scheme used here can support any

paths of length up to 16. Traditional scheme and Planck require forwarding tables which

are much larger, while only supporting shortest paths (as shown in the Figure).

(C) Throughput Analysis

Due to the limited forwarding table size, data center switches can accommodate only a

limited number of paths at any point in time. This can affect the throughput performance

of applications. In this section, we analyze the impact of reducing the number of available

paths on maximum achievable throughput. Although several factors can contribute to re-

duction in throughput, particularly transport mechanisms, this evaluation focuses solely on

the limitation imposed by constraints on the available forwarding paths.

We evaluate three realistic traffic matrices (TMs): (a) All-to-all (A2A) (b) Random match-

ing and (c) Random matching with non-uniform traffic. Throughput is normalized with

respect to the maximum throughput achievable in the topology using the same TM with no

path constraints.

A fat tree built from degree K switches is denoted by FT-K. Figure 3.1 shows the variation

of normalized throughput in fat trees with all-to-all TM as a function of the number of

forwarding table entries at each leaf switch. Under the dense (A2A) TM, 2-3 paths per flow

31

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60

Fo
rw

ar
di

ng
 t

ab
le

 e
nt

ri
es

 a
t

le
af

Fat tree degree

144K

7K

All paths
PLANCK

Source routing

Figure 3.4: Forwarding table size for fat trees

is sufficient for good performance. However, the forwarding table entries grow exponentially

with size of the fat tree network.

Figure 3.2 shows normalized throughput in fat trees under the uniform random matching

TM. Limited paths are chosen randomly with additional constraints to use a diverse set

of links. In order to minimize overlap between paths, two feasible next hops are picked

randomly at each level and the one with fewer paths through it is chosen during the path

assignment phase. We observe that the number of forwarding table entries required to

maintain the same throughput performance increases dramatically compared to the A2A

TM. We also note that performance of Planck with 4 paths per destination degrades as the

swich degree (and network size) increases.

Normalized throughput in fat trees with random matching TM and 10% of the flows with

10× bandwidth demand is given in Figure 3.3. While each flow has equal priority with

the uniform traffic matrix, large demand flows are more significant with non-uniform traffic

matrix. With minimal overlap between the larger flows, the non-uniform TM can achieve

maximal throughput with slightly fewer paths. However, the basic trend remains consistent

across the uniform and non-uniform random matching TMs since the bottleneck under path

constraints is the number of paths itself.

The main take-away point is: A large number of paths between racks can be used

effectively. Generally, splitting a flow into a large number of components can affect its

performance; K2/4 paths per flow might seem hard to handle. However, we are considering

32

aggregate rack-to-rack traffic which is composed of traffic from (K/2)2 host pairs. When a

large number of hosts contribute towards the aggregate flow, the number of paths assigned

to each host-based flow can be limited. Hence, the paths made available by source routing

can be effectively used to improve throughput. Source routing also allows non-shortest paths

(useful in failure scenarios).

As data centers move towards network fabric-based architecture, there is an increasing

need for a flexible and scalable routing scheme at the core. Under our preliminary inves-

tigation, source routing appears to be a technique that fits the bill. With source routing,

the forwarding table can easily fit within the available memory of even low-end switches

due to its linear dependence on node degree and network diameter. Moreover, throughput

performance of the fabric will not be negatively impacted by limited availability in network

paths, when source routing allows the edges to pick any feasible path in the network. Due

to its flexibility and scalability, source routing is a suitable candidate for network fabric

architecture.

In order to strengthen this routing scheme further, we need to tackle a few issues. First,

this work has not dealt with response to switch and link failures. It is essential to build

an auxiliary mechanism to route around failures, either with additional information in the

header or through a network response mechanism. Second, in order to efficiently utilize the

multitude of paths made available by source routing, it is essential to have an efficient traffic

engineering scheme. Although a few of the existing schemes rely on several variations of

source routing, they are tightly coupled with certain topologies and the performance is far

from optimal. With source routing at the core of the design, it will be possible to use any

valid path in any topology leading to greater flexibility in the design and implementation of

traffic engineering schemes.

33

Chapter 4: CONTROLLING THOUSANDS OF MICRO DATA CENTERS

Micro data centers (MDCs) at the edge are emerging as prominent components in the

Internet infrastructure. Traditionally, MDCs were used for content caching and video per-

formance optimization in Content Delivery Networks [70] and for user load-balancing at en-

try/exit of content provider networks such as Google [11], Facebook [10], and Microsoft [9].

With the emergence of novel applications with stringent performance requirements, the role

of MDCs is expanding. MDCs providing limited compute resources very close to users are

increasingly used for supporting a variety of low-latency applications, often augmenting, and

sometimes replacing, the traditional hyperscale clouds.

An important use case for increased processing at the edge is the burgeoning Internet of

Things (IoT). IoT devices produce data in the form of video, voice, sensor information, etc.,

which needs to be analyzed and acted upon, often within tight delay constraints. Processing

and compressing data from such applications at the edge will also reduce the bandwidth

demand in the core. Availability of compute in close proximity is a must-have for offload-

ing Augmented and Virtual Reality (AR/VR) that operate at timescales comparable to the

sensitivity of human perception. Self-driving and connected cars will also increasingly rely

on these edge DCs [71, 72]. MDCs can also prove beneficial to other latency-sensitive ap-

plications with heavy compute requirements such as real-time video analytics and online

gaming.

Today, carrier networks are spearheading large-scale deployments of MDCs for supporting

Virtualized Network Functions (VNFs). Service providers like AT&T [73] and Verizon [74]

are converting traditional Central Offices (COs) with dedicated hardware to MDCs with

off-the-shelf servers. A single carrier operates a few thousand COs – AT&T has 4700 COs

in the US [75] – and with the advent of 5G, the number of MDC sites is expected to grow

further. In addition to the critical cellular services, these MDCs are also designed to support

emerging applications like those above [72].

Thus, Wide Area Networks (WANs) are morphing from a network of routers to an in-

terconnection between a multitude of geographically distributed micro data centers. We

refer to this emerging model as a WAN As a Network of Data centers (WAND). WAND is

indispensable to providing support for the emerging hyperconnected world with billions of

devices and geo-distributed applications.

In order to meet the goals of geo-distributed applications while simultaneously utilizing

resources efficiently, we need an efficient WAND resource management scheme. However,

this is difficult for several reasons. First, the combination of scale and geographic spread has

34

not been addressed by prior large-scale systems (Table 4.1). Second, the environment needs

to support a motley set of applications with diverse requirements. This includes long-running

streaming applications (e.g., cellular VNFs, other middlebox service chains), batch analytics

(e.g., cellular log analytics, Hadoop jobs) and Lambda-like short-lived jobs (e.g., elastic web

servers). To meet the requirements of such geo-distributed high-performance applications,

resource allocation on distributed MDCs and the interconnecting WAN will need to be

coordinated. Third, the smaller size of MDCs and the potential for demand bursts mean

that resource availability in any particular MDC will be more dynamic and variable than

in a hyperscale DC. In other words, MDCs enjoy limited benefits of statistical multiplexing.

Thus, WAND is characterized by its scale, geographic spread, diversity of applications, and

limited resources at MDCs. While one or two of these challenges have been addressed in

existing large-scale systems [7, 8, 9, 10, 11], the combination of all characteristics calls for

novel resource management techniques in WAND.

We design an autonomous WAND control system, Patronus, which enables high utilization

of the infrastructure while improving the performance of applications through (a) fast and

efficient resource allocation, and (b) intelligent adaptation during variations. The centralized

control plane of Patronus has several components. First, Patronus introduces a simple and

expressive API which can support representation of diverse requirements of WAND applica-

tions using WAND tags. Tags encode bounds on application requirements such as latency,

bandwidth, location preference, deadline, etc. Second, Patronus leverages predictability

of traffic and resource usage patterns inherent to the WAND environment/applications to

obtain a long-term perspective on resource availability and usage.

Third, Patronus provides fast and efficient resource allocation in the complex WAND

environment through division of labor across an instantaneous scheduler and a long-term

scheduler. The long-term scheduler relies on long-term predictions for packing of jobs across

time while complying with deadlines, fairness, etc. The instantaneous scheduler allocates

resources to a subset of tasks deemed active in the current instant by the long-term scheduler.

Both schedulers rely on hierarchical optimization for handling diverse application objectives

and a simple mechanism for converting WAND tags to constraints.

In this work, we make the following contributions:

• We identify control challenges in an emerging environment with geo-distributed MDCs

and performance-sensitive applications, which we call WAND (WAN as a Network of

Data Centers), and its differentiating features compared to other large-scale infrastruc-

ture.

• We design a simple and expressive WAND API for capturing the requirements of

35

diverse WAND applications.

• We design Patronus, a dynamic WAND controller providing scalability and high uti-

lization for the WAND provider and high performance for WAND user applications.

• Using realistic data, we evaluate trade-offs in performance and control overhead using

closed-loop control in WAND to meet the high-level goals of applications and operators.

• We show that Patronus can schedule resources across thousands of MDCs in seconds

while reducing peak resource usage by up to 47%.

4.1 RELATED DOMAINS

One may draw parallels between control of thousands of data centers and interconnecting

network in WAND and several well-studied control domains such as clusters, traditional

ISPs, private WANs, geo-distributed analytics, etc. Next, we argue why control solutions in

these domains cannot be borrowed easily for WAND (overview in Table 4.1).

Traditional ISPs: Traffic engineering is a well-studied problem in traditional ISP networks

with a single resource (geographically-distributed network). While the problem has been

tackled from different perspectives ranging from oblivious routing [76, 77] to traffic-adaptive

schemes [78, 79, 80, 81], these solutions do not apply to the WAND model. Extending

network traffic classes and prioritization to an environment with demands and performance

constraints on multiple resources (WAN network and DC resources like CPU, memory, etc.)

is a non-trivial challenge. Besides, the presence of new applications over which the service

provider has complete control (eg, background analytics jobs) will help the provider to drive

the network and DCs to high utilization. This was difficult in traditional ISPs which mostly

dealt with user-driven inelastic traffic. As ISPs move to SDN-based control, there are also

efforts to scale SDN with distributed controllers. Recursive SDN [82] proposed a hierarchical

solution for geo-distributed carrier networks. RSDN and other work [83, 84] in distributing

SDN control, however, only considers network control.

Private inter-data center WANs: Inter-DC private WAN solutions such as B4 [7] and

SWAN [8] optimize resources across multiple applications similar to WAND. However, private

WANs with a sparse network connecting tens of hyperscale data centers operate at a much

smaller scale (in terms of number of distinct sites) compared to the carrier environment

composed of thousands of micro data centers and interconnecting links. Moreover, the

proposed solutions only focus on the bandwidth requirements of the private WAN since the

DCs are hyperscale and relatively less constrained (or at least have more reliable statistical

36

multiplexing). In WAND, both DCs and the WAN are frequently constrained. Furthermore,

quickly adapting to traffic variations is more critical in WAND due to the limited capacity

of MDCs that cannot accommodate bursts.

Cluster schedulers: Cluster schedulers [85, 86, 87] are responsible for allocation of server

resources within hyperscale DCs. They consider demands over multiple types of resources

and strive to drive the cluster to high utilization, often with prioritization across applica-

tions. They deal with large scale, e.g., allocating at the machine or rack granularity across

many racks. However, the resources are highly localized (typically within a single DC) in

contrast with a geo-distributed WAND. Moreover, cluster schedulers are typically decoupled

from the network controllers which manage symmetric high-bisection bandwidth intra-DC

interconnect between servers. This separation of control may not work well in a WAND

environment which has an irregular topology and expensive WAN links.

Traffic-aware VM placement in data centers: Traffic-aware VM placement is a related

domain with joint server and network resource management within a DC. However, this

problem is NP-hard, while the WAND resource management can be tackled using a Linear

Program. In intra-DC environments, flexibility in VM placement translates to flexibility in

the location of source and destination of the flow [88]. This optimization problem can be

reduced to the Quadratic Assignment Problem (QAP) which is NP-hard. In the WAND

model, the source and the destination of the flow are fixed (typically at the end-user). We

have flexibility in choosing way-points, i.e., DCs. Thus, WAND resource management is a

resource-augmented Multi-Commodity Flow (MCF) problem with location restrictions. The

challenges in WAND are related to scalability and quick adaptation.

Application-specific solutions: There exist several solutions tailored to specific geo-

distributed applications.

(a) NFV solutions: Elastic Edge [89] is an application-agnostic framework which allo-

cates resources across NFVs. However, this solution is restricted to scheduling within a single

DC. PEPC [90] introduced a new architecture for the cellular core to solve state duplication

across EPC components and improved throughput at bottlenecked VNFs. KLEIN [91], an-

other cellular-specific solution, put forward a 3GPP-compliant solution for load-balancing

cellular traffic across MDCs. However, this does not take into account the presence of mul-

tiple applications with diverse performance needs in the DCs, or the constraints on the

interconnecting network between DCs.

(b) Geo-distributed analytics: Solutions for big data analytics across the wide area [92,

93] offer optimization for low-latency processing of queries, but do not deal with the difficult

problem of cross-application optimization.

37

(c) Multimedia Systems: Multimedia delivery systems often employ resource optimiza-

tion techniques spanning cloud to edge devices [94, 95, 96, 97, 98] to meet soft real-time

requirements of this application. These techniques often focus on the resource-contrained

mobile devices. MDCs in WAND offer greater flexibility.

WAND: Having established that existing resource management techniques cannot be di-

rectly extended to generic WAND, we give a brief overview of current domain-specific solu-

tions offered by provider networks.

(a) Carriers: AT&T [73] and Verizon [74] have published white papers on SDN/NFV

reference architectures and are building platforms with similar features such as network and

DC controllers, data monitoring, a policy module, an orchestration module, etc. In addition

to cellular traffic, cellular MDCs also intend to support other micro-services and applications

such as connected cars [72]. These platforms, however, are in the early stages of development

and do not currently offer solutions for resource management at the scale of thousands of

MDCs.

(b) Content Providers: Points of Presence (PoPs) of large content providers like Google [11],

Microsoft [9], and Facebook [10] also constitute a WAND. However, solutions in this domain

primarily focus on load-balancing traffic across edge locations. Currently, they do not offer

compute resources for other applications at the edge.

(c) CDNs: Content Delivery Networks cache objects at the edge to serve user requests

with minimal latency. CDNs are a sub-class of WAND where traffic is bandwidth-heavy,

and edge resources are mostly used for storage and delivery. Like content providers, they do

not typically support other user applications. Application-specific video delivery optimiza-

tion schemes [70] have been proposed for this environment.

4.2 FEATURES OF WAND

Next, we crystallize the key characteristics of the WAND environment. In WAND, (i)

WAN and DC components can be coordinated, (ii) MDCs are small to moderate in size but

large in number, (iii) demand includes network and DC components, (iv) some traffic may

be elastic, and (v) at individual MDCs, small scale means limited statistical multiplexing

and high demand variability.

A federated system: A WAND includes both a WAN and MDCs, whose operation may

be coordinated in a single system or may be composed of federated subsystems.

Scale: WAND comprises a network of a large number of data centers — typically hundreds

to a few thousands — which are individually small to moderate in size. CDNs have tens

38

Property
WAND

Tradi-
tional
ISPs

Private
Inter-
DC

WAN

Cluster
Sched-
ulers

Application-
specific

(e.g., geo-
distributed
analytics,

NFV
platforms,

etc.)

Infras-
tructure

Geographi-
cally
fragmented
resources

Yes Yes Yes Yes

Large scale Yes Yes Yes Yes

Cross-
application
optimization
for high
utilization

Yes Yes Yes

Applica-
tions

Demand over
multiple
resources

Yes Yes Yes

Location
constraints

Yes Yes

Table 4.1: Comparison of features — WAND and other infrastructure

to hundreds of locations. Carrier networks operate thousands of DCs. There are efforts

to install micro data centers at every base station, which will increase the scale to tens of

thousands [99].

Demands with multiple resource requirements: WAND applications use WAN band-

width as well as multiple resources within the DC, including compute, memory, and band-

width, among others. While this is true of applications outside of WAND as well, in a

WAND these resources may be coordinated in a single system. In addition, the particular

mix of resources needed is likely to evolve with new applications that employ MDCs: cellu-

lar control traffic adds load on NFVs at DCs, uses limited WAN throughput but is latency

sensitive; an IoT data-aggregation application may have high throughput to the edge DC,

high resource consumption in the DC and moderate throughput to remote hyperscale DCs.

Applications may also be categorized as single-user and multi-user applications. Cellular

VNFs are shared across users in a region. On the other hand, an enterprise VPN connection

will be composed of dedicated VMs and tunnels for a single enterprise.

39

Elasticity of traffic: Depending on the types of applications running on WAND, some

traffic may be elastic — a provider can control the rate and time of resource allocation in

DCs and WAN based on current resource availability. This can be used for low priority

traffic such as backups.

Limited statistical multiplexing: Edge DCs do not form a single large pool of compute.

Each DC is small, and therefore subject to more load variability due to less statistical

multiplexing. They are distributed geographically, hence they are non-interchangeable for

latency-sensitive applications. This may also lead to more variable utilization on individual

DCs during regional hotspots. Hence, efficient dynamic resource management is paramount.

We quantify the impact of limited statistical multiplexing in Figure 4.1. We use a real-

world dataset from a DNS provider comprising of DNS queries from across the US over a

single day tagged with origin zip code and timestamp (more details about the dataset in

§ 4.5.3 b). For measuring variability, we use the Coefficient of Variation, CV , defined as

the ratio of standard deviation to the mean. CV is a comparable measure for the extent of

variability for distributions with different means.

We divide the data with samples every minute into chunks of different lengths (15 min

and 60 min) and compute CV over each chunk at different geographic scales — per edge

location, per area1 and over the complete dataset (entire country). In Figure 4.1, we plot

the CDF of CV over all chunks in one day across all edges/areas. We observe that CV

is the highest when locations are considered independently and the lowest in the complete

dataset. When the timescale is increased from 15 min to 60 min, CV remains nearly the

same at larger scales while it increases more than 100× for DC-level traffic. This shows

that edges are subjected to higher variability compared to traditional clouds and therefore,

benefits accruable from statistical multiplexing are limited.

4.3 WAND API

Before delving into the design of a WAND API that helps applications specify their needs

to the WAND controller, we discuss common requirements of WAND applications.

4.3.1 Application requirements

Geo-distributed applications in WAND can be of two general types: (a) streaming with

real-time traffic or (b) batch analytics which processes offline data. Each has a variety of

1More details about area boundaries in § 4.5.3. Load in an area is the sum of loads across all edge
locations in that area

40

��

����

����

����

����

��

������ ����� ���� �� ���

�
�
��
��

�
��
��

�����������������������

��������
����������
����������

(a) 15-min samples

��

����

����

����

����

��

����� ���� �� ��� ���� ����� ������

�
�
��
��

�
��
��

�����������������������

��������
����������
����������

(b) 60-min samples

Figure 4.1: Coefficient of Variation (CV) of traffic load based on a real-world DNS dataset evalu-
ated at different scales — MDC-level, area-level, and the entire country.

performance requirements; we describe examples in order to understand how to build an

expressive WAND API.

Latency: When an application prefers an MDC at the edge over a distant hyperscale

cloud with cheaper resources, the main motivating factor is often latency. For user-facing

applications, the latency constraint is primarily related to end-to-end latency experienced

by users. Non-user facing applications may have latency requirements between different

41

Operation Description
create () Returns app id
setType (app id, app type) app type ∈ {streaming, batch}
setUserGroups (app id, list[
(user group idi, list[<tag i >)]])

user group idi may be IP prefix, tags are optional

setTasks (app id, list [(task idj, list[
<tag j >])])

each task may have one or more optional tags

setDependencies (app id, list[
(task idm, task idn , list[<tagmn >])]
)

each dependency may have one or more optional
tags

setConstraints (app id, list[(tag i,
constraint name, constraint type,
constraint value)])

constraint name ∈ { containers, latency, bandwidth,
affinity, deadline}
constraint type ∈ { min, max, sum}
For latency, value is time in milliseconds
For bandwidth, value is bandwidth in Mbps
For affinity, value is 0 for anti-affinity, 1 for affinity
For deadline, value is UNIX epoch time

UpdateConstraints (app id,
list[(tag i, constraint name,
constraint type, constraint change)])

constraint type ∈ { latency, bandwidth } and
Signed integer indicating change in
latency/bandwidth

setRedirectionOptions (app id,
redirect)

redirect ∈ {drop, edge, remote}

setApplicationPreferences (app id,
preference, value)

Extendable list of preference attributes. Current set:
preference ∈ {eviction tolerance, optional modules}
For eviction tolerance, value ∈ (0, 1]
For optional modules : value is list[(tagj, weightj)]

setMonitorInterval (app id,
interval)

monitoring interval in milliseconds

Table 4.2: WAND API fields

concurrent modules.

Bandwidth: An application running in an MDC may have bandwidth requirements to

users or between different internal components.

Deadlines: Deadlines are primarily associated with batch processing jobs. They denote the

final time before which the application expects an output. In applications with buffering

capability, this can also be the maximum time to fill the buffer. For example, in video feeds

to be processed the edge, the cameras may have limited storage capacity. In such cases,

when the analytics is not time-constrained, the video may be pulled by the edge MDC with

42

some time flexibility.

Intra-application dependencies: In traditional batch processing jobs, the application is

represented using a Directed Acyclic Graph (DAG) where the nodes are tasks and the edges

denote dependencies. The same notation may be used in WAND. However, in distributed an-

alytics, we may have additional constraints based on location of data and latency/bandwidth

constraints. Geo-distributed applications of streaming nature (NFV service chains, tradi-

tional stream processing, etc.) can also be represented using a graph. The key difference

between streaming and batch jobs is that in streaming all components need to be active

at the same time, whereas in batch jobs the tasks are executed sequentially in an order

determined by dependencies.

In addition to task-level dependencies, WAND applications may also have state-based

dependencies. For example, cellular customers directed to their home MDC does not incur

control overhead related with state transfer, whereas those redirected to an MDC farther

away will cause mobility-related overheads.

External dependencies: An application may have external dependencies on other jobs,

type of resources, etc. For example, an analytics job on cellular traffic will prefer to be colo-

cated with the cellular service chain. In addition to such affinity constraints, an application

may have anti-affinity constraints (two customers may prefer to not have their VPN provider

edges colocated).

Evictions: One of the fundamental characteristics a WAND has to deal with is limited

statistical multiplexing due to the small size of MDCs. This manifests as high load variability

and for medium- or low-priority applications, a risk of being evicted by a burst of load on

a high-priority application. Applications may have different preferences regarding this risk,

in at least two ways.

First, applications can differ in their tolerance for eviction, relative to the value they place

on having resources close to users. An opportunistic application may prefer to grab resources

at the edge whenever possible, if evictions are not especially costly (e.g., an opportunistic

web cache at the edge can serve requests at lower latency when nearby MDC resources

are available). On the other hand, a more conservative application might prefer to run in

an MDC only when the probability of eviction is low (e.g., a real-time application serving

self-driving cars).

Second, an application may wish to lessen the damage due to eviction by indicating which

of its constituent modules are less critical. A video analytics application which processes

CCTV feeds may have different levels of resource configuration [100] or a critical minimal

set of cameras which provide high coverage. Specifying such intra-application criticality can

43

increase the controller’s scheduling flexibility and thus increase the application’s chances of

being scheduled.

Grouping requirements: We define a set of users which share the same characteristics,

and therefore have a common set of requirements (latency, bandwidth, etc.), as a user

group. For example, in cellular environment, the set of users assigned to a specific HSS

may be one user group. Such grouping makes it more convenient for applications to specify

their needs.

4.3.2 Defining a WAND API

We devise an API that allows geo-distributed WAND applications to represent their di-

verse requirements. The key operations supported by the API are given in Table 4.2.

Both streaming and batch applications are represented using a DAG. In streaming the

dependencies denote the connections between tasks running concurrently. In batch applica-

tions, the dependencies denote the sequence of execution. A tag may be associated with a

node (task) or an edge (dependency) in the application graph. An application can use these

tags to denote its preferences such as bandwidth and latency requirements. A tag may be of

the type min, max or sum. When a tag specifies a min value, it is the minimum requirement

on that attribute required by the application (e.g., minimum bandwidth). When a tag is

specified as sum, the limit applies to sum of the attribute across all resources with the same

tag. For example, the end-to-end latency requirement of a service chain can be specified

using this type, with no constraints on individual dependencies.

The app id also acts as the tag for the entire application. Hence, to represent external

dependencies, an application may use the app id of the external application in the SetCon-

straints() function. A specific task of an external application can be represented using the

format app id:tag. In order to represent location constraints, the infrastructure provider can

provide location tags, either at per-MDC level or at a regional-level.

Our WAND API also supports an extendable list of application preferences. Current

supported preferences are eviction tolerance, which specifies an approximate acceptable

probability of eviction of a resource allocated to the application; and optional modules,

which specifies constituent tasks within the application that it prefers to be evicted first,

rather than evicting the entire application.

Currently, Patronus supports linear constraints only since the schedulers rely on specialized

Linear Programs. However, this is sufficient to handle the requirements of most WAND

applications we considered.

44

4.4 WAND CONTROL PLANE

We design an automated control system, Patronus, to achieve high efficiency in the WAND

environment. Patronus is a centralized controller managing resources across distributed

MDCs and the interconnecting WAN. Patronus is designed for a private WAND infrastruc-

ture, such as that operated by cellular providers, with a variety of streaming and batch

applications over which the infrastructure provider has some control and visibility. We do

not currently consider external workloads, and hence adversarial traffic. Automated control

in Patronus is realized with a sense-control-actuate loop composed of three main components:

the prediction module, the resource allocation module, and the monitoring module.

4.4.1 Prediction Module

The prediction module is responsible for accurately estimating the requirements of ap-

plications. Depending on the information made available by applications, the prediction

may involve several phases. For all applications, the prediction module estimates the re-

source needs for future instances based on history. The prediction module is also responsible

for estimating user traffic patterns, such as diurnal behavior, across time to facilitate long-

term resource planning. For blackbox applications where the dependencies and requirements

are not explicitly known, the prediction module also estimates these dependencies between

modules.

4.4.2 Resource Allocation Module

The resource allocation module is responsible for efficiently allocating resources across

WAND applications, both streaming and batch jobs with a wide range of requirements. The

scheduling involves two phases: long-term scheduling and instantaneous scheduling. The

long-term scheduler maintains a long-term plan of the entire WAND system. It is responsi-

ble for handling complex requirements such as deadlines, location constraints, fairness, etc.

At the beginning of each scheduling interval, the long-term scheduler shares the subset of

tasks and the predicted loads to the instantaneous scheduler for immediate scheduling. The

unallocated tasks are returned to the long-term scheduler for future scheduling or offloading

to remote data centers. This separation allows Patronus to have fast and simple instan-

taneous scheduling, while conforming to complex application requirements across longer

timescales.

The pre-processing phase in resource allocation involves the conversion of application

45

details obtained from the API to a concise set of actionable requirements easily parsable

by the schedulers. The min, max and sum values associated with tags provide bounds on

latency and bandwidth for tasks/dependencies. Latency bounds also determine a subset of

DCs where the task may be scheduled.

Before we delve into the schedulers, we discuss hierarchical optimization and the conver-

sion of application requirements to constraints which form the core of both long-term and

instantaneous schedulers.

Hierarchical optimization

Patronus employs incremental multi-objective optimization for scheduling diverse applica-

tions with a wide range of requirements. Unlike traditional Linear Programming (LP) with

a single objective, this technique supports multiple objectives within the same optimiza-

tion. This allows the WAND controller to allocate resources of different types across diverse

applications in a single optimization with priorities on applications/resources/locations de-

termined by the operator.

Objectives: In the multi-objective optimization, each objective has four tunable parame-

ters: priority (P), weight (W), absolute tolerance (α) and relative tolerance (ρ). The LP

solver repeats the optimization n times in the order of priorities, where n is the number

of priority classes. When multiple objectives belong to the same priority class, the weight

denotes the relative weight of each objective within the class. In this case, the aggregate

objective of the priority class with multiple sub-objectives is given by the weighted sum. The

absolute tolerance of an objective represents the absolute value of degradation in the optimal

value tolerated while optimizing lower priority classes. The relative tolerance, ρ ∈ [0, inf],

denotes the degradation tolerable as a multiplicative factor of the optimal value.

A simple example with two objectives on DC utilization for a single application with a

single task — nearest MDC assignment and load balancing at DCs is given below. The

highest priority objective (higher P value) minimizes the fraction of traffic allocated to each

DC weighted by the distance from each user-group to the MDC. This is the nearest-MDC

objective. Allowing 50% tolerance on this optimal value, the next round of optimization min-

imizes K, the difference in utilization between all pairs of MDCs. In short, this optimization

supports nearest-MDC assignment with load-balancing across MDCs up to a certain limit

of deviation from nearest MDC distance. For this example, the LP is:

46

Symbol Description
M The set of MDCs
E The set of WAN links
Cm Capacity of MDC m (#containers)
Bl Capacity of link l (Gbps)
Na
k Number of containers consumed by task k of app a per unit traffic

Ga The set of user-groups, g, of app a
Da,g
m Distance from user-group g of app a to MDC m

uag(t) Traffic at t for user-group g of app a
fa,gm (t) Traffic from user-group g of app a assigned to MDC m at t

Table 4.3: ILP Notation

Obj0: P=2, W=1, α=0, ρ=0.5

Minimize
∑

m∈M,g∈Ga

Da,g
m ∗ fa,gm (4.1)

Obj1: P=1, W=1, α=0, ρ=0

Minimize K (4.2)

Subject to:

∀m ∈M : Na
1 ∗ fa,gm ≤ Cm (4.3)

∀m1,m2 ∈M : Na
1 ∗ fa,gm1

−Na
1 ∗ fa,gm2

≤ K (4.4)

∀g ∈ Ga :
∑
m∈M

fa,gm = uag (4.5)

Thus, hierarchical optimization allows combining multiple objectives within and across

applications in Patronus with varying levels of tolerance determined by the operator. This

technique forms the core of both long-term and instantaneous schedulers.

Long-Term Scheduler

Long-term scheduling in WAND offers two benefits: (i) Analysis of historical traffic pat-

terns provides the long-term scheduler with an approximate estimate of resource usage far

ahead in time. Most user-facing applications in WAND have diurnal traffic patterns with

predictable patterns across days. (ii) For deadline-bound jobs, it allows planning resource

47

allocation ahead of time to meet the deadline. The WAND environment may host a large

number of opportunistic and flexible jobs which are not time-critical. Analyzing the complete

set of such jobs and their extent of flexibility during instantaneous resource optimization will

increase the complexity of the scheduler considerably. In order to speed up instantaneous al-

location and ensure fairness/cost-sharing across time, scheduling of flexible jobs are handled

through long-term resource planning.

In this phase, we also mitigate the impact of limited statistical multiplexing at individ-

ual MDCs. While each individual MDC in WAND suffers from high variability due to its

small size, a pool of MDCs in a region enjoys less variability when aggregated resources are

considered (as shown in Figure 4.1). In addition to identifying the most suitable MDC for a

task, the long-term planner also identifies areas for backup scheduling. This loose allocation

of tasks to of a group of MDCs during the long-term planning phase also helps avoid the

need for a global search for an alternative allocation during instantaneous scheduling when

the primary choice MDC is unavailable. Thus, long-term planning reduces the number of

active low-priority tasks and their possible locations to be considered during a given instant

while ensuring that the deadlines and other constraints are met in longer timescales.

The long-term scheduler can operate in two modes: (i) fast mode, (ii) replan mode. When

a new job arrives at the long-term scheduler, first, the fast mode is initiated. The aggregate

load at all DCs for all previously allocated jobs is used to determine the available capacity

and an attempt is made to place the job. If its requirements (latency/bandwidth/deadline

etc.) are met with allocation at preferred MDCs, the allocation is finalized. If the fast mode

fails, a replan is invoked over applications at or below the priority class of the new job. In

this phase, the resources are shared fairly across multiple jobs belonging to the same class. If

the new job is not completely accommodated at the MDCs, parts of it may be scheduled on

a regional or remote clouds in this phase. The long-term scheduler may also invoke replan of

the schedule if long-term resource predictions change significantly relative to prior estimates.

The long-term scheduler is also responsible for providing inputs to instantaneous schedul-

ing at each scheduling interval. It provides a limited set of feasible locations for each task

based on traffic estimates. It also includes a set of optional tasks to ensure work-conservation

during under-estimation of traffic.

Instantaneous Scheduler

The instantaneous resource allocation module is responsible for per-instance scheduling

of application components determined to be scheduled by the long-term scheduler. This

includes (a) a subset of batch tasks, (b) loads on active streaming applications, and (c)

48

optional tasks which are not critical in the current instance but may be scheduled if resources

are available. These application components may belong to different priority classes and may

have different objectives. For highest priority applications guaranteed to be accommodated

by an MDC (such as cellular traffic which is guaranteed to have a utilization below a low

threshold, say 50%), optimization is not invoked unless there is a failure in the system.

The instantaneous scheduler also relies on hierarchical optimization, but typically it has

fewer objectives than the long-term planning mode. This is possible because deadlines, fair-

ness, and the complete set of preferences are not handled by the instantaneous scheduler

(long-term scheduler shares a critical subset). Even within the same class, the long-term

planner will include relative priorities that determine which task is to be eliminated if suffi-

cient capacity is not available. Such tasks are determined by long-term fairness estimates.

Other Optimization Features

We discuss two features in the context of WAND optimization: eviction tolerance of

WAND applications and geo-distributed fairness objectives employed by WAND provider.

Eviction Tolerance: Lower priority applications in WAND will be evicted when load of

applications in higher priority classes spikes high enough that the MDC becomes overloaded.

Therefore, being allocated resources in MDCs near users comes with some risk. We allow

applications to control this tradeoff through the eviction tolerance parameter in the WAND

API. During resource allocation, this high-level application requirement is incorporated in

the optimization based on statistical analysis.

The goal of the eviction tolerance, θ, is to represent the maximum eviction probability

per unit-time tolerable by the application (θ ∈ [0, 1]). However, evictions are not perfectly

predictable. When considering scheduling an application in an MDC, Patronus attempts to

predict eviction probability based on three factors: (i) mean load (M) of applications with

priority ≥ c, (ii) variability of their load (V), and (iii) resource requirements (R) of app a.

Mean and variability are computed over a period of length equal to the length of the task

being scheduled. i.e., if a task is 5 min long, the mean and variability of historical data from

past 5 min is estimated. Variability is measured as Coefficient of Variation.

The application with demand R is evicted when the higher priority load exceeds C − R
where C is the capacity of the MDC. Assuming that the variability of this load follows a

normal distribution (with mean M and coefficient of variation V), the probability of eviction

at an instant is P (L > C − R) = 1 − P (L < C − R) = 1 − Φ(C−R−M
MV

), where Φ is the

cumulative probability of a standard normal distribution, X ∼ N(0, 1), Φ(x) = P (X < x).

Note that all the terms in the probability expression are constants that can be determined

49

apriori based on historical data. An MDC is considered a candidate for placement only if

this estimated probability of eviction for the app is smaller than the application’s eviction

tolerance (θ). This is an approximate heuristic since the distribution of load may not be per-

fectly normal. However, the application can still adjust its eviction probability by increasing

or decreasing θ.

Fairness: The second optimization feature is the fairness objective for geo-distributed ap-

plications. The distributed nature of the applications and the underlying infrastructure

calls for new notion of fairness. Defining fairness in WAND can be challenging for two

main reasons: (i) WAND is a multi-resource environment with requirements on multiple

resources, and (ii) in with most applications composed of geo-distributed components, it is

difficult to define a domain of fairness. Does each application get a fair-share at each MDC?

Can underallocation for an app in one MDC be compensated by overallocation at another

location?

Patronus employs a simple notion of fairness. Since DCs are the bottleneck in current

cellular WANDs, we use fair-share allocation across DC resources for applications. However,

instead of fair-sharing at each individual DC, the fairness domain is areas (collective group

of neighboring MDCs). The choice of area as the domain for determining fairness is justified

by the behavior of applications in WAND and the structure of the underlying topology.

Streaming applications such as cellular VNFs are capable of load-balancing across adjacent

DCs. When a single edge is overloaded, the application can obtain its fair-share through a

neighbor.

4.4.3 Monitoring Module

Monitoring of applications serves two purposes: (i) enable quick reaction to changes in

application behavior and (ii) provide input for prediction and long-term planning. The mon-

itor interval can be explicitly set by an application through the WAND API or determined

by the provider during runtime based on the extent of variability. We develop a simple

tunable monitoring module in Patronus which can run alongside applications in WAND. We

assume that this monitored information is made available centrally to the resource allocation

module. The prediction module that relies on the output of monitoring may be co-located

in the same MDC or centralized.

50

4.5 EXPERIMENTS

4.5.1 Implementation

We implement Patronus as a stand-alone control system with pluggable modules for each

component. The current implementation of various modules is described below.

Resource allocation module: Both the instantaneous and long-term schedulers are Java

applications with an integrated Gurobi [38] environment for solving the Linear Programs

associated with resource allocation. Both schedulers take as input application requirements

as JSON files containing task-level/user-group level requirements and dependencies.

The long-term scheduler holds a plan which contains estimated allocations for all appli-

cations across time. We store a plan for 1 day in 1 minute time-slots. The instantaneous

prediction runs every minute. These parameters are tunable. When a new application ar-

rives in the system, it is initially placed in this plan by the long-term scheduler. At each

allocation interval, the long-term scheduler sends the list of currently active tasks to the

instantaneous scheduler for actual placement. The schedulers convert requirements to linear

objectives and constraints in a hierarchical linear program and solve the multi-objective LP

using Gurobi. The output from the instantaneous scheduler is the set of allocated tasks,

their location and the amount of resources allocated. Currently, the schedulers consider

resources at the scale of VMs/containers within data centers.

4.5.2 Evaluation

In this section, we evaluate scalability and efficiency of the Patronus system.

4.5.3 Methodology

The first step of evaluation is the development of a realistic test environment. We use

real-world traffic datasets and publicly available infrastructure information to generate a

realistic WAND topology.

Workloads

We integrate several real-world workloads to generate the topology and the traffic in

WAND.

(a) Cellular dataset: The cellular dataset is obtained from a large cellular provider in

China and consists of utilization information at 50 virtualized DCs over a period of 5 days.

51

��

��

���

���

���

���

���

�� ��� ��� ��� ��� ���� ����

�
���
��
��
��
��
��
�

������������

�������� ������� �������� �������

Figure 4.2: Sample traffic: Cellular dataset

At each DC, it provides information on (a) the mean and the maximum CPU utilization per

server, and (b) total data sent and received from the DC. The utilization values are monitored

every 10s by the cellular provider. The dataset contains the mean and the maximum at 15

min intervals over this data. The utilization at two locations are plotted in Figure 4.2. In

Figure 4.4, we plot the CDF of mean and maximum CPU utilization across all 50 locations

on all days. We observe that the utilization is approximately between 10% and 30%. The

distribution of normalized DC sizes (# servers) is plotted in Figure 4.6). The number of

servers range from < 10 to hundreds. The largest DC has more than 1000 servers.

(b) DNS dataset: This dataset contains DNS queries received by a single DNS provider

at locations across the globe over a period of 24 hours (508GB of compressed data). Entries

include the timestamp (at microsecond granularity) and the origin zipcode of each DNS

request. From this global dataset, we filter requests originating in the continental US, which

include 17,440 origin zipcodes with more than 20 billion queries in the 24-hour period. The

number of queries are aggregated at minute-scale and load at two zipcodes are plotted in

Figure 4.3. The CDF distributions of minimum and mean with respect to the maximum load

are shown in Figure 4.5. We observe that the DNS queries have higher variability compared

with the cellular dataset. The maximum load at a DC can be more than 10× the mean in

certain cases.

(c) Video camera dataset: Video processing at the edge is a most prominent application

that will benefit from WAND deployments. The number of security cameras in the US in 2016

52

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

N
o
rm

a
liz

e
d
 L

o
a
d

Time (hours)

New York Chicago

Figure 4.3: Sample traffic: DNS dataset

��

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ���

�
�
�

���������������

�������
����

Figure 4.4: Traffic Characteristics: Cellular dataset

53

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
��
��
��
��
���
�
��

������������

���������

����������

Figure 4.5: Traffic Characteristics: DNS dataset

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
�

������������������

Figure 4.6: DC Size Distribution: Cellular dataset

54

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
�

������������������

Figure 4.7: DC Size Distribution: Simulation Environment

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
�
��
��
��
��
��
���
��
��
�
�
��

������������������

�������������
�����������������������������

���������������������
�����������������������������

Figure 4.8: Comparison of Patronus optimization, random placement, and nearest-DC placement
on VPN (Highest priority).

55

��
����
����
����
����
����
����
����
����
����

��

�� ���� �� ���� �� ���� ��

��
��
���
��
�
��
��
��
��

������������

Figure 4.9: Eviction Tolerance vs. Latency (latency based on geodesic distance)

��

����

����

����

����

��

�� �� �� �� �� �� ��

�
�
�

������������

����������
��������

Figure 4.10: Geodesic distance-based latency for distributed video processing based on DC place-
ment (3rd priority class)

56

��

����

����

����

����

��

���� ��� �� ��� ���� ����

�
�
�

��������������������

��������������
�����������������

Figure 4.11: DNS dataset Prediction Error. With regional balancing of load, impact of error
mitigated.

��

���

����

�����

�� ���� �� ���� �� ���� �� ���� ��

��
��
��
���
��
�
��
��

�
��
�

�������������������

Figure 4.12: Scheduling delay as a function of number of variables (in millions).

57

��

����

����

����

����

��

���� ���� ���� ���� ���� ���� ��

�
�
�

�����������������������

�������������
�����������

Figure 4.13: Coefficient of Variation of penalty (resources scheduled in cloud due to lack of edge
resource)

is estimated to be 62 million [101]. We use the locations of red-light and speeding cameras

in the US available in a public GPS forum. This dataset includes 4932 cameras across the

continental US. While these cameras take snapshot pictures during traffic violations, we use

this as a realistic proxy for video camera locations.

(d) Big data analytics: We use publicly available TPC-DS microbenchmarks [102] with

synthetic location constraints to simulate batch analytics workloads in WAND. We use traces

of 16 TPC-DS queries originally run on 20 machines.

Generating the Test Environment

We run the Patronus controller on a Dell PowerEdge R440 machine with 32 cores and

128GB RAM.

(a) Topology: We generate a realistic WAND topology based on publicly available in-

formation on cellular infrastructure. The locations of MDCs are determined using Central

Office (CO) information of a large cellular provider in the US [103]. We obtain 1864 Central

Office locations associated with the 17440 zip codes in the DNS dataset.

Each MDC is assigned a capacity which is proportional to the population associated

with that zip code (2016 population [104]). The distribution of data center sizes is shown

in Figure 4.7. We note the MDC sizes based on population in the US and the real size

distribution in China (Figure 4.6) follow similar distributions. The number of servers in the

58

US simulation environment ranges from 2 to 2200. In line with regional offices of cellular

providers, we also add 15 regional DCs (publicly available locations of colocation centers of

the same cellular provider in the US) with capacity proportional to the sum of MDCs that

are closest to it.

The core topology of the same cellular provider is obtained from the Intertubes dataset [105]

and has 116 nodes and 151 links. Each DC is connected to its closest core node. Conversa-

tions with cellular operator reveal that currently cellular MDCs follow a hub-and-spoke-like

model with MDCs connecting to the core. With 5G, MDCs are expected to have more

interconnections among them. Currently, we do not consider such interconnections in our

test environment. The bandwidth of the outgoing link of an MDC is set proportional to its

capacity.

(b) Workload: The cellular data for the test environment is obtained by applying the

percentage of utilization from a randomly chosen DC in the Chinese dataset to the DC.

These mapping are done a priori to obtain the timeseries for a day. VPN/other high-

priority applications of cellular provider is generated synthetically. We generate 100 such

applications, each with a random number of sites between 3 and 15 with a randomly chosen

load at each location. These are streaming applications where all sites are concurrently

active.

The scaling factors for datasets are determined proportional to their loads in such a way

that the load (as number of containers) is neither too low nor too high at most DCs. For

the DNS dataset, the load in containers is proportional to the number of requests. For the

camera dataset, the number of containers is proportional to the cameras assigned to a DC.

4.5.4 Results

We evaluate the ability of Patronus controller to utilize the resources efficiently and meet

the application requirements.

Efficiency of Hierarchical optimization

VPN and other applications which belong to the highest priority class are slightly more

flexible than the cellular traffic. We assume that the cellular traffic need to be processed at

the nearest MDC (when resources are available) while the VPN allocation may be at any

MDC within 1ms from the origin of the traffic. Hence, to determine long-term placement

for non-cellular high priority applications, we run a two-level hierarchical optimization at

the peak period of cellular load.

The optimization has 2 objectives. The highest priority objective is shortest path alloca-

59

tion of cellular traffic. In Figure 4.8, we observe that shortest path allocation on cellular

traffic load results in a maximum edge DC utilization of 50%. For the VPN traffic, we evalu-

ate several techniques. Minimizing the maximum load of DCs with latency-based placement

constraints in Patronus can accommodate all the non-cellular applications while maintaining

the maximum utilization at 53.6%. On the other hand, placing the VPN load at the closest

MDC to the origin or at a randomly chosen MDC within the prescribed radius (1ms) leads

to high utilization in some DCs. Note that jointly optimizing the cellular and VPN loads

may result in some cellular traffic being redirected to non-shortest DCs. Hence, multi-level

optimization may be essential even within the same priority class.

Eviction Tolerance/Latency Trade-off

The trade-off between eviction tolerance (4.4.2) and latency at a single MDC in third priority

class is given in Figure 4.9 (first priority is cellular and VPN applications, second priority is

DNS workload). We consider the video analytics application load in third priority class at a

single MDC. Eviction tolerance is computed based on the mean and standard deviation of

total traffic in the higher priority classes for an interval of 15min. The figure shows mean

latency over a period of 19 hours at each data point. When the eviction tolerance is the

highest at 1.0, the latency is 0.15ms. As the eviction tolerance decreases, the latency of the

application increases. At eviction tolerance value of 0.7, the latency increases 10× to 1.5ms.

When the application is very conservative (θ < 0.1), the latency increases to approximately

3ms.

Latency of applications

We measure the latency perceived by the video analytics dataset in priority class 3 (Fig-

ure 4.10). We compare Patronus optimization with nearest-MDC placement. In both sce-

narios, when an MDC is not available, the task is placed on the nearest regional DC. We

observe that the tail latency is more than 2× lower in Patronus. Note that the latency is

computed based on geodesic distance here. With additional infrastructure overhead, the

differences will be more pronounced since Patronus places tasks at the edge at a higher rate.

Prediction Efficiency

We evaluate the predictability of the two real-world datasets. In the sparse cellular dataset,

we use statistical measures. We consider two scenarios: (a) past hour on the same day, or

(b) Time of Day (ToD) in past n days. When the prediction is defined as the maximum

observed load, ToD of 4 days is a better predictor. Over a day, prediction based on recent

history can lead to under-prediction up to 6.5% and over-allocation up to 8% while ToD

prediction limits the errors to 3.1% and 6% respectively. Hence, we use ToD demand of 4

days with a 5% over-allocation to meet the demand.

60

��

��

���

���

���

���

���

����� ���� �� ���

�
���
��
��
��
��
��
�

�����������������������

Figure 4.14: Performance monitoring overhead at various monitoring intervals: CPU utilization

��
���
���
���
���

����
����
����
����
����

����� ���� �� ���

�
��
��
���

�
��
��
��

�����������������������

Figure 4.15: Performance monitoring overhead at various monitoring intervals: Disk I/O

In the DNS dataset, the error in prediction using NN is given in Figure 4.11. In the dataset

with samples every minute, data from past 10 min is used to predict the expected load as

number of DNS requests in the current instance. The error is high due to high variability in

the workload (shown in Figure 4.5). However, if the application can effectively load-balance

across MDCs in an area, the error reduces considerably. This shows that applications with

high load variability can benefit significantly from load-balancing at the edge.

Scalability

We test the scalability of both hierarchical and long-term schedulers in Patronus resource

allocation module. Since both the schedulers rely on hierarchical optimization, we plot

the scalability in terms of number of variables (Figure 4.12). The scheduling latency was

61

measured with 4 optimization objective priority levels in the optimizer.

The number of variables depends on a variety of factors: number of MDCs and links,

number of applications, number of tasks in batch jobs, number of user-groups in streaming

jobs, number of timeslots, etc. Even with millions of variables, the scheduling latency is

in seconds. Note that the number of variables in hierarchical optimization is 2-3 orders of

magnitude smaller in instantaneous scheduler compared to the long-term scheduler. For

example, if we consider 1000 DCs and 100 applications with a components in every DC,

we have approximately 0.1 million variables. In hierarchical optimization, not all of them

may be active at the same time, reducing the complexity even further. In this range, the

optimization takes seconds. The corresponding long-term scheduler with a one-day plan has

0.1 million ∗1440 variables.

Fairness

We compare the fairness achieved with Patronus fairness scheme compared with a scheme

where no fairness is enforced (arbitrary sharing of resources across applications in the same

class determined by the LP solver). We assume that for batch applications, when the edge

resources are unavailable, they can run in the cloud, but this is expensive. We define the

penalty as the amount of resources allocated on cloud when edge resources are not available.

In Figure 4.13, we observe that the coefficient of variation of penalty across applications (a

heuristic for unfairness) is reduced with fair-sharing in Patronus.

Performance monitoring

We measure the overhead associated with monitoring using a lightweight Linux module

which measures applications’ usage of CPU, memory, network, and disk. The CPU and disk

utilization of the monitoring module at various monitoring intervals are given in Figure 4.14

and 4.15 respectively. The overhead is negligible (< 0.5% in CPU and 9Kbps in IO) when

monitoring interval is 1s.

To summarize, we make the following contributions in the inter-data center context:

• We identify control challenges in an emerging dynamic environment of interconnected

Micro Data Centers which we refer to as WAND (WAN As A Network of Data Centers).

• We build Patronus, an automated control system, for efficient resource management

in WAND.

• We address the scalability challenge by partitioning the scheduling problem into two

temporally: instantaneous scheduling handling immediate allocation and long-term

scheduling for meeting critical application requirements across time.

62

• We show that Patronus is scalable, resource-efficient with balanced load across MDCs,

and capable of meeting stringent application requirements.

63

Chapter 5: INTENT-AWARE APPLICATION NETWORK INTERFACE

To achieve peak application performance, it is necessary to translate the application’s

high-level performance needs, or intent, to network-level requirements that are actionable

for a network controller. This intent is expressed to the controller through a representation

that we refer to as the Application Network Interface (ANI). The expressiveness of the ANI

can affect application performance significantly.

ANIs and the flexibility they offer have evolved over time. The earliest congestion con-

trol and traffic engineering schemes focused on simple proxies for application performance

at packet level — throughput and per-packet delay and jitter. Rate Control Protocol [12]

made a step towards application-level performance goals with flow as the ANI and emphasis

on Flow Completion Time (FCT) or the time of arrival of the last packet. Another signif-

icant leap towards an ANI that captures the requirements of distributed applications was

the coflow [13]. Inspired by cloud applications such as MapReduce, coflow considers a set of

parallel flows within an application as a single entity where the FCT of the last flow deter-

mines the performance. This enables scheduling schemes to borrow bandwidth from lighter

flows in the coflow to speed up the heavier flows, thereby improving application deadlines.

We observe that even the coflow abstraction is insufficient to support requirements of

today’s sophisticated applications. Applications such as distributed deep learning and in-

teractive analytics have a complex interplay of communication and computation at the par-

ticipating nodes. In this scenario, not all flows within a coflow are equivalent from the

perspective of the application. Depending on the nature of computation, the application

may benefit by finishing some flows sooner than others within a coflow. For example, mul-

tiple parameters are exchanged between the parameter servers and a worker in distributed

deep learning. These parameters are consumed at different times based on the underlying

computational model in frameworks such as TensorFlow. Hence, the iteration time can be

improved significantly when the relative priorities of flows (parameter transfers) are made

known to the network controller. Different applications may have other dependencies that

require metrics such as relative weights or deadlines. More importantly, an application may

have an explicit optimization objective different from minimizing the completion time that

cannot be conveyed through current ANIs.

In this paper, we argue that it is an opportune moment for narrowing the gap between

application intent and its network representation through a more expressive ANI for cloud

applications. The stringent performance needs of cloud applications coupled with the oppor-

tunity to extract fine-grained application characteristics using sophisticated learning tech-

64

A

B

C

(a)

f1

f2

(b)

Network

Compute

Coflow-Optimized Performance-Optimized

f1

f2

c1 c2 c3

f1 f2

c1 c2 c3

(c) (d)

0 1 1.5 2 2.5 0 0.5 1.51 2

c1

c3

f2

f1

c2

Figure 5.1: Importance of understanding application intent: (a) Coflow with two component
flows. f1 and f2 (size 500Mb each) share a 1Gbps bottleneck link. (b) Computation model at
C has 3 operations, c1, c2, and c3 with dependencies between flows and computations as shown.
Each computation operation takes 0.5s to execute. Completion times with (c) coflow completion
time-optimized transfers and (d) intent-based optimization for transfers.

niques inspire us to rethink cloud ANI design. First, we analyze several cloud applications

to understand communication patterns that are not captured by current ANIs. Second, we

quantify the performance benefits achievable with a more expressive ANI in a popular appli-

cation, distributed deep learning. We show that iteration time in deep learning training can

be improved by up to 25% using additional information made available through CadentFlow.

In a shared network environment, the improvements increase further up to 46%. Finally, we

put forward an application intent-aware ANI and discuss its implication for cloud systems

design.

We introduce CadentFlow, an ANI whose semantics include component flows of an ap-

plication with associated per-flow metrics, and an optimization objective for capturing the

application intent. A more expressive abstraction opens several research directions. (i) Ex-

traction of CadentFlow attributes such as per-flow metrics and the optimization objective

requires analysis of applications’ models or learning-based inference. (ii) Redesign of net-

work controllers with novel scheduling algorithms that can leverage the richer semantics of

CadentFlow to provide performance guarantees compliant with the application intent. (iii)

In-network implementation of intent-aware scheduling schemes paves the way for exploring

the flexibility of programmable switches to implement application objectives.

5.1 UNDERSTANDING THE ENVIRONMENT

In this section, we demonstrate the need for rethinking ANI in the cloud environment

where multiple applications share the network. First, we illustrate shortcomings of state-

of-the-art ANIs. Second, we examine distributed applications that can benefit from an

65

improved ANI.

5.1.1 The application perspective

Large-scale computations in data center environments involve multiple concurrent flows

with such data transfers accounting for more than 50% of the job completion time [106].

The coflow abstraction [13] was introduced to consider the correlated flows as a single entity,

thereby enabling collective optimization on the set of interdependent flows. However, as

cloud applications evolve this ANI may be insufficient.

For example, not all transfers may be of equal importance to the computation in the suc-

ceeding stage of an application. The data in a single stage maybe consumed in a particular

order, may require weighting according to application needs, or some chunks may have tighter

deadlines. In this case, the application will benefit when flows are prioritized/weighted based

on its intent. For example, consider the simple coflow in Figure 5.1a with two components

flows of equal size: f1 and f2. The computation at node C involves 3 tasks with dependencies

as shown in Figure 5.1b. Since the first stage of computation depends on f1, the applica-

tion performance can be improved by prioritizing packets belonging to f1. The application

completion time with coflow optimization, in this case, is 2.5s while the optimal time is 2s.

While this simple example can be solved by splitting the single coflow into two (f1 only,

f2 only) and adding dependency between them (similar to multi-stage DAG scheduling in

Aalo [107]), this approach cannot be generalized for several reasons. First, coflow dependen-

cies cannot be determined apriori in certain systems (e.g., graph processing systems operat-

ing on time-evolving graphs). Second, some applications may prefer weighting across flows

instead of strict ordering enforced by a DAG of coflows (e.g., stream processing systems).

Third, coflow completion time (CCT) is a proxy for application performance, job completion

time. As we show in § 5.3.2, a lower CCT may not always correlate with better job com-

pletion time. Finally, in multi-application environments, significant performance benefits

can be achieved with deadlines (§ 5.3.2), a benefit not achievable with a DAG of coflows.

Moreover, an application may have other explicit objectives and finer-grained preferences

that are not captured by flow/coflow completion time.

While prior work has considered inter-flow relationships [13, 108, 107, 106, 109, 110] and

deadlines [111, 112] in the cloud environment, the set of objectives handled by the network

controller has been limited, often to a single objective across all applications. Inter-coflow

scheduling schemes [108, 107, 106], even those which are information-agnostic [113, 110],

primarily focus on a single objective, minimization of mean CCT. Prior solutions lack an

expressive API that supports complex objectives of advanced data flow systems.

66

It is also worth noting that application level order enforcement alone at the edge is not

sufficient since flows originating at multiple nodes often need to be coordinated.

5.1.2 Which applications will benefit?

We analyze different families of advanced data flow systems to understand their require-

ments.

Distributed Deep Learning: This workload has iterative computation involving multiple

workers and Parameter Servers (PSs). The parameters, updated at the end of each iteration,

are acted upon by the worker nodes at different time instances determined by the underlying

computational model in frameworks such as TensorFlow [114] and PyTorch [115]. In this

case, the iteration time can be improved by prioritizing parameter transfers in the order in

which they are consumed.

Partition-Aggregation: In online services including Web page delivery and search query

responses, the requests from users are partitioned across multiple workers in the back-end.

The results are aggregated by the front-end server/proxy and sent back to the user. Many

services begin sending a response before the complete response is available at the server. In

this scenario, the application may benefit by prioritizing those flows which are critical to the

response. For example, a web proxy waiting for components in a web page can choose to

delay fetching a large image. While application-level solutions exist [116, 117], a controller

with visibility into multiple such applications can further improve performance across them

(similar to § 5.3.2).

Graph Processing Systems: In graph processing systems [118, 119, 120], the graph is par-

titioned across multiple nodes which process vertices in a sequence and exchange the results

of computation after each iteration. In this scenario, when a node receives information from

multiple neighbors, those flows whose information will be processed first may be accelerated

to improve the iteration time. In systems which handle time-evolving graphs [121, 122],

these priorities may change over time.

Interactive Analytics: Big data systems analyzing real-time low-latency queries (e.g.,

Naiad [123]) incorporate explicit application deadlines on each stage of the data flow. This

provides opportunity for accelerating/slowing down the network transfers based on deadlines.

In stream processing systems [124, 125, 126] with load balancing across parallel components,

the end-to-end performance may be improved by weighting the flows according to application

preferences.

Teleimmersion: In teleimmersion systems with multiple cameras, there are multiple flows/stream

67

bundles with co-dependencies. In this environment, prioritization of flows directly affects

the immersion experience of users[127, 128, 129, 130, 131].

Batch Processing Systems: MapReduce [2] framework and others which use it as a

building block [132] have hard barriers between stages. In this case, the coflow abstraction

would suffice to capture application requirements. In batch processing systems without hard

barriers (e.g., MapReduce Online [133]), the application performance may be improved by

prioritizing flows which are more important to the next stage of computation.

Thus, in a variety of scenarios, intent-awareness helps in prioritizing/accelerating those

flows which are critical to the application. The coflow abstraction is sufficient when the

application has hard barriers after each stage. However, several common distributed appli-

cations have more complex workflows, inspiring us to rethink the network interface for cloud

applications.

5.2 INTENT-AWARE ANI

In this section, we identify the critical components necessary for an intent-driven ANI

and put forward CadentFlow. Analyzing a wide range of cloud applications, we identify two

essential features missing in state-of-art ANIs.

Missing pieces in current ANIs: The first missing piece in today’s ANIs is a means

for explicitly conveying application’s intent. For instance, the only application-level metric

currently supported by coflows is the minimization of coflow completion time. However,

applications may have other performance objectives such as maximizing an application-

specific utility in terms of per-flow completion time and bandwidth. Hence, we argue that

the optimization objective should be an explicit part of the ANI.

The second deficiency in state-of-the-art ANIs is the inability to represent complex de-

pendencies across flows (beyond membership in a set defined by coflows). Dependencies

across coflows have been considered with inter-coflow DAGS [107, 134]. However, in prac-

tice, dependencies may take several forms. For example, an application may require weighted

splitting of bandwidth among its component flows or may have deadlines per flow.

Defining CadentFlow: Having identified the key missing pieces in an expressive ANI, we

put forward CadentFlow, an ANI with an application-level objective and per-flow metrics,

for effectively capturing intent.

A CadentFlow is a set of correlated flows between a collection of machines with an

application-level optimization objective denoted by Γ and a set of tagged flows. Each com-

ponent flow, fi, has an associated list of tags, where each tag is a tuple with metric type

68

and metric value. Ti = (ti1,mi1), .., (tik,mik). A CadentFlow, CF , can be represented as:

CF = {{(fi, Ti), (f2, T2),, (fn, Tn)},Γ}. We propose weights, deadlines, and priorities

as preliminary candidate metrics for denoting the inter-dependencies between flows. As

applications and their requirements evolve, more metrics may be added to this set.

CadentFlow Representation of Applications: We present CadentFlow representations

of applications discussed in § 5.1.2. (i) Distributed deep learning: There are two possible rep-

resentations for DNN training. (a) Frameworks such as TensorFlow provide application-level

DAG with inter-dependencies between communication and computation. This information

can be used to determine priorities of flows, and the objective will be minimizing comple-

tion time of last flow, subject to scheduling based on priorities. (b) Since, DNN training

is an iterative process, we can estimate the time required by computation operations in a

given system. Combining this information with the DAG, deadlines can be estimated for

individual flows. This provides additional scheduling flexibility. The objective is minimizing

maximum delay subject to deadlines for all flows. This representation improves flexibility

by allowing delayed scheduling of flows with flexible deadlines (as shown in § 5.4(b)).

(ii) Partition-Aggregation: In Web page delivery, priorities can be set based on rendering

preferences. The objective is minimizing completion time subject to prioritized transfers.

(iii) Graph processing systems: Weights used as metrics for load-balancing, objective is

minimize completion time subject to weighted transfers. (iv) Naiad (interactive analytics):

Deadlines used as metrics. Objective is minimization of sum of delays with respect to

deadline. (v) Batch processing with soft barriers : Adaptive priorities based on application

progress used as metrics. Objective is minimization of completion time.

5.3 EXPERIMENTS

We quantify benefits achievable with intent-awareness in CadentFlow using distributed

deep learning as a representative application.

5.3.1 Methodology

Workload: We test deep learning workloads using TensorFlow under two scenarios: DNN

training and inference. In the training workload, during each iteration workers (each with an

identical copy of the model) send updates on parameters to the Parameter Servers (PS). PS

aggregates the changes and returns the updated parameter to all workers. In the inference

workload, inference agents read the parameters from the servers and run the inference.

69

This captures the online inference scenario where agents (separate from the workers and

Parameter Servers) read the latest version of parameters during reinforcement learning and

serve inference queries.

The TensorFlow model is a DAG composed of dependencies between two types of op-

erations (ops): computation and communication ops (parameter transfers). Note that in

training and inference, not all parameters are consumed at the same time (e.g., parameters

of layer 1 are used before layer 2). We test 11 popular Neural network models 1 (includ-

ing AlexNet [135], Inception-v1 [136], Inception-v3 [137], ResNet [138], and VGG [139]) on

TensorFlow 1.8 with Parameter Servers using the standard batch size for each model.

Estimating metrics: We evaluate the workloads under two scenarios: CadentFlow with

(a) priorities as flow metrics and (b) deadlines as flow metrics. The TensorFlow model with

computation-network dependencies is readily available through an API. We analyze this

DAG to estimate priorities in (a). While (a) is relatively easy, for (b), we add tracing to the

TensorFlow system. We collect the runtime information on Standard NC6 virtual machines

(6 cores, 56 GB RAM, 1 X Nvidia K80 GPU with 12GB RAM) in Azure. We estimate the

time taken by computation ops by running the same model 10 times on a single machine

and taking the mean.

Deadlines are derived using the traces. Recall that training has two phases: (a) forward

pass where latest parameters are read from PS and loss function is computed, and (b)

backpropagation phase where parameters are updated and sent to PS. Thus, we have two

CadentFlows in one iteration. In the forward pass, all flows are assigned the same estimated

start time at 0 (all parameters are ready for transfer at PS). The deadline of a parameter

is computed as the total computation time before the read operation of that parameter.

Thus, the deadline for a parameter flow depends on its position in the DAG, i.e., the total

computation time of its dependencies. In the second CadentFlow, the estimated start time

is computed as the total computation time before the parameter is ready to be sent to the

PS. All flows share the same deadline determined by the end of computation. The inference

workload only has forward pass and hence a single CadentFlow with deadline estimation

similar to training forward pass.

Note that the model at all workers is identical. The deadline estimation does not take

into account available bandwidth. The deadlines represent the preferences of the application

and the flexibility available between flows from the computation perspective.

Control Schemes: In our experiments, we test 3 schemes: (i) TCP simulated with max-min

fair sharing across flows sharing a link, (ii) Coflow scheduling using Minimum Allocation for

1https://github.com/tensorflow/models/tree/master/research/slim

70

Desired Duration (MADD) used in Varys [108] where lighter flows are allocated a lower band-

width in such a manner that all flows in a coflow finish at the same time, (iii) intent-aware

CadentFlow scheduling where flows are transferred based on the optimal order/deadline

determined from the TensorFlow model. For a fair comparison, we assume that the base-

line TCP connection transfers the parameters in the best possible order from a given node.

However, TCP cannot enforce inter-flow priorities across multiple TCP connections from

different Parameter Servers to the worker.

We simulate various schemes with multiple configurations (1 to 16 PS/workers) where each

host has 1/10 Gbps NIC. For Coflow and CadentFlow scheduling, we assume a centralized

controller with global view which can make globally optimal decisions and enforce them at

the edge. We evaluate performance benefits achievable with a single active application as

well as multiple applications in the network.

Application Simulation: We measure two metrics on the distributed deep learning appli-

cation: the iteration time and the CCT flexibility ratio. The iteration time is the time

taken by one complete iteration composed of computation time (empirically estimated) and

communication time (evaluated using the three control schemes). In the training workload,

this includes the computation in forward pass, backpropagation phase, and two CadentFlows

(from the PS to worker before forward pass and from workers to PS after the backpropaga-

tion). In the inference workload this is composed of one CadentFlow for fetching parameters

from the servers and the inference computation. We assume that all the workers have iden-

tical computation time, i. e., no stragglers.

We introduce the metric, CCT flexibility ratio, to measure the available flexibility in

flow scheduling when deadlines are used as the CadentFlow metric. The application intent-

based deadlines maybe be more flexible than the minimum achievable Coflow Completion

Time. This provides the network controller with the opportunity to delay some flows without

affecting the application performance. We measure this flexibility in scheduling using CCT

flexibility ratio. This metric is defined as the ratio of maximum deadline acceptable to

the application (the latest deadline) and the minimum CCT achievable with the available

network.

5.3.2 Results

We present results on training and inference workloads across the three control schemes

in an environment with 10Gbps network. The conclusions were also verified with 1Gbps.

Single Application To understand the differences between control schemes, we first con-

71

�
��
��

��
��
�

�
���
��

��

��
��
��
��
��
��

��
��
��
��
��
��

�
��

���
�
��
��
�

�
��
�
��
��
��
��
�

�
��
�
��
��
��
��
�

�
��
�
��
��
��
��

�
��
�
��
��
��
��
�

�
�
�
��
�

�
��
�

��
�

��
�

��
�

�

��
��
��
��
�
���
�

��
��
��
��
�
��
�
�
��

����� ���� ���������� ����

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� ���� ���� ���� ��

���������������
������������������

(a) Iteration time: 8 W, 8 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���������������� �� ��������

���������������������
����������������������������

(b) CCT flexibility: 8 W, 8 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� ���� ���� ���� ��

���������������
������������������

(c) Iteration time: 16 W, 16 PS

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���������������� �� ��������

���������������������
����������������������������

(d) CCT flexibility: 16 W, 16 PS

Figure 5.2: (a,c) Coflow and CadentFlow optimizations plotted relative to TCP. Lower iteration
time is better. (b,d) CCT flexibility shows the window of flexible time available for scheduling with
respect to minimum Coflow Completion Time for deadline-based CadentFlow.

72

�
��
��

��
��
�

�
���
��

��

��
��
��
��
��
��

��
��
��
��
��
��

�
��

���
�
��
��
�

�
��
�
��
��
��
��
�

�
��
�
��
��
��
��
�

�
��
�
��
��
��
��

�
��
�
��
��
��
��
�

�
�
�
��
�

�
��
�

��
�

��
�

��
�

�

��
��
��
��
�
���
�

��
��
��
��
�
��
�
�
��

����� ���� ���������� ����

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� �� ���� ��

���������������
������������������

����������

��������

������������

������������

������������

�������������

�������������

������������

�������������

������

�� ���� �� ���� �� ����

���������������������
����������������������������

Figure 5.3: Inference workload (16 workers, 16 Parameter Servers)

duct experiments with a single active application in the network. The iteration time of

coflow optimized scheme based on MADD and the CadentFlow optimized scheme are com-

pared with the TCP baseline in Figures 5.2 (a,c) and 5.3 (a). A lower iteration time implies

better performance. The iteration time results are the same with both priority-based and

deadline-based CadentFlow optimization, with a maximum reduction in iteration time of

25% (ResNet-v1-200 with 8 W, 8 PS). We observe that Coflow scheduling can result in

worse performance than TCP in some cases. For example, the iteration time on CifarNet is

11% higher with coflow optimization compared to TCP in a system with 8 workers and 8

PS. This is due to the coflow scheduling mechanism that delays smaller transfers to accel-

erate large transfers. This results in larger delays for smaller parameters that have higher

priorities. Note that the CCT is same for both Coflow and CadentFlow optimizations in this

scenario. However, application iteration time is lower for CadentFlow optimization. Also,

73

S3

A1

(12)

S4

A2

(12)

A1(4)
+

A2 (4)

12 *
10Gbps

6 * 10Gbps S1

S2

(a) Network setting

��
����
����
����
����

��
����
����

��
��
��
���
�

��
���
��
�

���
��
���
��
��

���
��
���
��
��

��
���
��
��
���

��
��
��
���
��
��

��
��
��
���
��
��

��
��
��
���
��
�

��
��
��
���
��
��

��
��
��

��
��
��
��
��
���
��

�
��
��
��
��
��
��

�
��
��
��

�
�
��
��
��
��
�
� ����������

���
���������������

(b) Performance improvement

Figure 5.4: (a) 12 servers of rack 1 connected to switch S2 runs application instance A1. 12 servers
of rack 2 connected to switch S3 runs instance A2. Out of 12 servers in rack 3, 4 servers belong to
A1 and 4 to A2. (b) Performance improvement achievable with efficient overlap of multiple jobs in
a shared network environment with deadline-based CadentFlow.

CadentFlow optimization performs at least as good as TCP in all tested scenarios.

With deadline-based Cadentflow, we can also obtain CCT flexibility (ability to delay flows

until deadline without affecting iteration time) as seen in Figures 5.2 (b,d) and 5.3 (b). In

some models, we obtain both improvement in iteration time and high CCT flexibility (e.g.,

Inception-v3 with 20% lower iteration time and 9.5% of added flexibility in coflow completion

times). The flexibility depends on the ratio of time taken by computation and communication

in various models. There is high flexibility when the models are computation-heavy, giving

74

opportunity to delay transfers.

In the inference workload (Figure 5.3), coflow optimization leads to significant performance

degradation (up to 68.5% increase in iteration time compared to TCP in ResNet-v1-101).

However, CadentFlow performance is comparable to that of TCP with significant flexibility

in flow scheduling across many networks.

Multiple Applications With deadline-based CadentFlow, we demonstrate benefits of CCT

flexibility by running two applications in a shared network (Figure 5.4(b)). We test two in-

stances of the same DNN model across three racks, where one rack is dedicated to each

application (12 servers) and one rack is shared (4 nodes each in a rack per application).

The fair-share for each application in the shared link S1-S4 is 30 Gbps while the band-

width requirement is 40GBps. CCT flexibility allows us to schedule flows in a manner that

maximizes 40GBps allocation to each application instance. In Figure 5.4(b), we compare

the three control schemes in this multi-app environment with respect to the iteration time

with CadentFlow scheduling when only a single app is active. We observe that CadentFlow

scheduling has the best performance across all models due to the flexibility provided by dead-

lines. Coflow scheduling can result in up to 46.3% higher iteration time (as in ResNet-v2-50)

since deadline information is not available for flexible allocation. Since deadline informa-

tion is necessary for accruing these benefits, even a DAG of coflows cannot provide this

performance improvement.

In summary, we make the following observations:

• Flow-level metrics (priorities/deadlines) in CadentFlow allow optimizing the applica-

tion performance by up to 25%.

• Deadline-based CadentFlow can improve network-wide performance by up to 46% by

providing increased flexibility.

• Coflow optimization can hurt application performance when there are complex depen-

dencies. In such cases, falling back on TCP should be preferred.

75

Chapter 6: FUTURE WORK

This thesis presented foundational results on improving throughput across different layers

of data center infrastructure. This work paves way for solving several challenges in the

future.

• Randomization of task placement: Our results on understanding physical layer

throughput shows that randomization of traffic at the rack level using realistic traffic

matrices can improve throughput performance. Can we leverage this result to pro-

vide better task placement in data centers while taking into account other practical

restrictions on task placement such as data locality?

• Resilient Source Routing: In order to strengthen the source routing control scheme

further in the intra-data center environment, we need to tackle a few issues. Our

solution has not dealt with response to switch and link failures. It is essential to build

an auxiliary mechanism to route around failures, either with additional information in

the header or through a network response mechanism.

• Managing thousands of controllers in WAND: Patronus assumes centralized

control with global view. While our instantaneous scheduler can respond in seconds,

several edge applications require response time of milliseconds. Even with a logically

centralized controller, each MDC will require a local controller for detecting and re-

sponding to immediate local changes. Besides, the arbitrary interconnecting network

topology calls for close inter-operation of network and server controllers. Realtime

adaptation and self-organization with thousands of such controllers demand careful

analysis of robustness and correctness. Several questions remain unanswered. How

can we leverage the DCs’ compute resources, which are considerable in the aggregate,

to partition the optimization/control problem into local, distributed actions at thou-

sands of sites along with some global guidance? In the data plane, what mechanisms

are necessary to enable dynamic steering of traffic through a combination of MDCs

and WAN?

• Characterizing WAND service: Cloud providers offer VMs with capabilities spec-

ified in terms of CPU, GPU, network, storage etc. In a WAND, defining the unit of

service is cumbersome. A WAND provider will typically have macro- and micro-data

centers with different compute capabilities and latency profiles between them. The

cost and performance using the same amount of resource may vary widely depending

76

on the size and location of the DCs and within the same DC across time due to limited

statistical multiplexing. If WAND environment evolves towards resource offerings sim-

ilar to cloud, service characterization should provide users with (a) cost of resources

across multiple MDCs accessible to the user (which may vary with time), and (b)

sufficient information to derive approximate latency performance in these MDCs with

time. Alternatively, if the environment moves towards a serverless model, we need

APIs that allow the user to specify their diverse needs (resource, bandwidth, latency

constraints/location dependencies etc.) and novel control design which can translate

these into resource allocations in a highly dynamic environment.

• Interaction of multiple WANDs: In future, applications may be spread across

MDCs operated by multiple WAND providers. A multi-WAND environment adds fur-

ther complexity to existing cloud-related problems such as migration, security, compli-

ance etc. Multi-WAND deployment of applications may take various forms: across two

carrier WANDs, across a the edge of a carrier and hyperscale DCs of content provider,

in a WAND where the MDCs are operated by one provider and WAN by another,

among others. In this environment, we need to ensure that interaction between var-

ious resource management schemes in different WANDs do not result in undesirable

end-to-end performance for applications. How can we design WAND control schemes

that can coordinate with external entities and make robust decisions using partial

information?

• Extracting the application intent for CadentFlow: Determining deadlines/

priorities and optimization objective of applications can be cumbersome. However,

system-level cues such as reads and writes to disk/memory has information for deriving

the deadlines/priorities based on application behavior. This inspires design of learning-

based metric estimation frameworks to learn and adapt the deadlines/priorities/weights

based on application performance. Recent advances in flow prediction [140] are en-

couraging for the possibility of learning finer grained application characteristics. The

application API may also be extended to allow the application developer to specify ANI

preferences explicitly (as in TensorFlow). This is also feasible in serverless compute

frameworks such as Lambda.

• Intent-Awareness in Network Schedulers: An intent-aware ANI opens avenue

for new resource allocation schemes which can handle diverse objectives and con-

straints. Some of the challenges include ensuring fairness across applications with

varied objectives and handling coexistence of CadentFlows with regular TCP connec-

77

tions. Scheduling under limited information is also an interesting problem to tackle.

While our experiments focused on a single application with explicit knowledge of flow

sizes and priorities, in practice, one or more of these factors may be unknown. This

calls for mechanisms that can incorporate accuracy of metrics during scheduling and

adapt in real-time to changes.

78

Chapter 7: BIBLIOGRAPHY

[1] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s
(datacenter) network,” SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 123–
137, 2015.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
in Proceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX Association,
2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251254.1251264 pp.
10–10.

[3] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica,
“Apache spark: A unified engine for big data processing,” Commun. ACM, vol. 59,
no. 11, pp. 56–65, Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,” in
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184 pp. 135–146.

[5] S. A. Jyothi, A. Singla, B. Godfrey, and A. Kolla, “Measuring and understanding
throughput of network topologies,” in SC16: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, Nov 2016, pp. 761–772.

[6] S. A. Jyothi, A. Singla, B. Godfrey, and A. Kolla, “Measuring and understanding
throughput of network topologies,” CoRR, vol. abs/1402.2531, 2014. [Online].
Available: http://arxiv.org/abs/1402.2531

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and
A. Vahdat, “B4: Experience with a Globally-deployed Software Defined WAN,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486019 pp. 3–14.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-driven WAN,”
in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2486001.2486012 pp. 15–26.

79

[9] H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Mahajan, J. Padhye, and
M. Zhang, “Efficiently delivering online services over integrated infrastructure,” in
13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). Santa Clara, CA: USENIX Association, 2016. [Online]. Available: https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/liu pp. 77–90.

[10] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha,
J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering egress with edge fabric:
Steering oceans of content to the world,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: ACM, 2017. [Online]. Available: http://doi.acm.org/10.1145/3098822.3098853
pp. 418–431.

[11] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,
M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic, V. Valancius, C. Ying,
M. Kallahalla, B. Koley, and A. Vahdat, “Taking the edge off with espresso:
Scale, reliability and programmability for global internet peering,” in Proceedings
of the Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3098822.3098854 pp. 432–445.

[12] N. Dukkipati and N. McKeown, “Why flow-completion time is the right metric for
congestion control,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 59–62,
Jan. 2006. [Online]. Available: http://doi.acm.org/10.1145/1111322.1111336

[13] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction for cluster
applications,” in Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XI. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2390231.2390237 pp. 31–36.

[14] S. A. Jyothi, M. Dong, and P. B. Godfrey, “Towards a flexible data center fabric with
source routing,” in Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, ser. SOSR ’15. New York, NY, USA: ACM, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2774993.2775005 pp. 10:1–10:8.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network
architecture,” in SIGCOMM, 2008.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible Data Center Network,” in
SIGCOMM, 2009.

[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
“BCube: a high performance, server-centric network architecture for modular data
centers,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 63–74, Aug. 2009.

80

[18] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat, “Portland: A scalable fault-tolerant layer 2 data
center network fabric,” in SIGCOMM, 2009.

[19] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable and fault-
tolerant network structure for data centers,” in SIGCOMM, 2008.

[20] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch,
and M. Ryan, “c-Through: Part-time Optics in Data Centers,” in SIGCOMM, 2010.

[21] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fain-
man, G. Papen, and A. Vahdat, “Helios: A hybrid electrical/optical switch architecture
for modular data centers,” in SIGCOMM, 2010.

[22] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: a topology
malleable data center network,” in HotNets, 2010.

[23] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers
randomly,” in NSDI, 2012.

[24] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz, “LEGUP: using heterogeneity to reduce
the cost of data center network upgrades,” in CoNEXT, 2010.

[25] A. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and S. Keshav, “REWIRE:
An optimization-based framework for unstructured data center network design,” in
INFOCOM, 2012 Proceedings IEEE, March 2012, pp. 1116–1124.

[26] A. Valadarsky, M. Dinitz, and M. Schapira, “Xpander: Unveiling the secrets of
high-performance datacenters,” in Proceedings of the 14th ACM Workshop on Hot
Topics in Networks, ser. HotNets-XIV. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2834050.2834059 pp. 16:1–16:7.

[27] F. Shahrokhi and D. Matula, “The maximum concurrent flow problem,” Journal of
the ACM, vol. 37, no. 2, pp. 318–334, 1990.

[28] D. Padua, Encyclopedia of Parallel Computing, ser. Springer reference. Springer,
2011, no. v. 4, see bisection bandwidth discussion on p. 974. [Online]. Available:
http://books.google.com/books?id=Hm6LaufVKFEC

[29] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar, “On the hard-
ness of approximating multicut and sparsest-cut,” computational complexity, 2006.

[30] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, 1979.

[31] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian Journal
of Mathematics, vol. 8, pp. 399 –404, 1956.

81

[32] P. Elias, A. Feinstein, and C. Shannon, “A note on the maximum flow through a
network,” Information Theory, IEEE Transactions on, vol. 2, no. 4, pp. 117–119, Dec
1956.

[33] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms,” J. ACM, vol. 46, no. 6, pp. 787–832, Nov.
1999.

[34] A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data center topology de-
sign,” in 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), April 2014.

[35] C. Chekuri, “Routing and network design with robustness to changing or uncertain
traffic demands,” SIGACT News, vol. 38, no. 3, pp. 106–129, Sep. 2007.

[36] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious routing in the hose
model,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 774–787, 2011.

[37] X. Yuan, S. Mahapatra, W. Nienaber, S. Pakin, and M. Lang, “A New Routing Scheme
for Jellyfish and Its Performance with HPC Workloads,” in Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13, 2013, pp. 36:1–36:11.

[38] Gurobi Optimization Inc., “Gurobi optimizer reference manual,” http://www.gurobi.
com, 2013.

[39] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-Driven, Highly-Scalable
Dragonfly Topology,” in Proceedings of the 35th Annual International Symposium on
Computer Architecture, ser. ISCA ’08, 2008, pp. 77–88.

[40] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomputing,”
IEEE Trans. Comput., vol. 34, no. 10, pp. 892–901, Oct. 1985.

[41] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient topology for
high-radix networks,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 126–137,
June 2007.

[42] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus structures for
a computer network,” IEEE Tran. on Computers, 1984.

[43] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hyperx: Topol-
ogy, routing, and packaging of efficient large-scale networks,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, ser.
SC ’09, 2009.

[44] R. V. Tomic, “Optimal networks from error correcting codes,” in ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems (ANCS), 2013.

82

[45] M. Besta and T. Hoefler, “Slim Fly: A Cost Effective Low-Diameter Network Topol-
ogy,” in IEEE/ACM International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC14), Nov. 2014.

[46] “Topology evaluation tool,” www.github.com/netarch/topobench.

[47] S. A. Jyothi, A. Singla, B. Godfrey, and A. Kolla, “Measuring and understanding
throughput of network topologies,” http://arxiv.org/abs/1402.2531, 2014.

[48] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S. Shenker,
“Software-defined internet architecture: Decoupling architecture from infrastructure,”
in Proceedings of the 11th ACM Workshop on Hot Topics in Networks, ser. HotNets-XI,
2012, pp. 43–48.

[49] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rexford, and
R. Wattenhofer, “Dynamic scheduling of network updates,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14, 2014, pp. 539–550.

[50] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,
V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese, “Conga: Distributed
congestion-aware load balancing for datacenters,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM ’14, 2014, pp. 503–514.

[51] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter, and
R. Fonseca, “Planck: Millisecond-scale monitoring and control for commodity net-
works,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM
’14, 2014, pp. 407–418.

[52] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass: A central-
ized ”zero-queue” datacenter network,” in Proceedings of the 2014 ACM Conference
on SIGCOMM, ser. SIGCOMM ’14, 2014, pp. 307–318.

[53] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and C. Guo, “Explicit
path control in commodity data centers: Design and applications,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), May 2015.

[54] R. Ramos, M. Martinello, and C. Esteve Rothenberg, “Slickflow: Resilient source
routing in data center networks unlocked by openflow,” in Local Computer Networks
(LCN), 2013 IEEE 38th Conference on, Oct 2013, pp. 606–613.

[55] C. Kim, M. Caesar, and J. Rexford, “Seattle: A scalable ethernet architecture for large
enterprises,” ACM Trans. Comput. Syst., vol. 29, no. 1, Feb. 2011.

[56] M. Yu, A. Fabrikant, and J. Rexford, “Buffalo: Bloom filter forwarding architecture for
large organizations,” in Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’09, 2009, pp. 313–324.

83

[57] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow MACs: Scalable Label-
switching for Commodity Ethernet,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14, 2014, pp. 157–162.

[58] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Second-
net: A data center network virtualization architecture with bandwidth guarantees,”
in Proceedings of the 6th International COnference, ser. Co-NEXT ’10. ACM, 2010.

[59] A. Schwabe and H. Karl, “Using MAC Addresses As Efficient Routing Labels in Data
Centers,” in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14, 2014, pp. 115–120.

[60] M. Soliman, B. Nandy, I. Lambadaris, and P. Ashwood-Smith, “Source routed forward-
ing with software defined control, considerations and implications,” in Proceedings of
the 2012 ACM Conference on CoNEXT Student Workshop, ser. CoNEXT Student ’12,
2012, pp. 43–44.

[61] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions for
network update,” in ACM SIGCOMM. ACM, 2012.

[62] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and verification
of federated OpenFlow infrastructures,” in Proceedings of the 3rd ACM workshop on
Assurable and usable security configuration. ACM, 2010.

[63] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King, “Debug-
ging the data plane with Anteater,” in ACM SIGCOMM, August 2011.

[64] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis: Static checking
for networks,” in USENIX NSDI, 2012.

[65] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, 2013, pp. 15–28.

[66] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S. Whyte, “Real
time network policy checking using header space analysis.” in USENIX NSDI, 2013.

[67] V. Sharma and F. Hellstrand, “Framework for multi-protocol label switching MPLS-
based recovery,” Internet Requests for Comments, RFC Editor, RFC 3469, February
2003.

[68] “Arista 7250QX data sheet,” http://www.arista.com/assets/data/pdf/Datasheets/
7250QX-64 Datasheet.pdf.

[69] “Cisco nexus 3000 series data sheet,” http://www.cisco.com/c/en/us/products/
collateral/switches/nexus-3000-series-switches/white paper c11-713535.html.

84

[70] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and
H. Zhang, “C3: Internet-scale control plane for video quality optimization,” in 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, 2015. [Online]. Available: https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/ganjam pp. 131–144.

[71] AT&T, “The Cloud Comes to You: ATT to Power Self-Driving Cars, AR/VR and
Other Future 5G Applications Through Edge Computing,” http://bit.ly/attEdge,
2017.

[72] AT&T, “ATT Connected Car,” http://bit.ly/attConn, 2018.

[73] “ECOMP (Enhanced Control, Orchestration, Management & Policy) Architecture
White Paper,” https://goo.gl/KUmNq2.

[74] “SDN-NFV Reference Architecture, Verizon Network Infrastructure Planning,” https:
//goo.gl/YCeDBr.

[75] CORD, “Central Office Re-architected as a Datacenter (CORD),” https://goo.gl/
qzzChH, 2016.

[76] D. Applegate and E. Cohen, “Making Intra-domain Routing Robust to Changing and
Uncertain Traffic Demands: Understanding Fundamental Tradeoffs,” in Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, ser. SIGCOMM ’03. New York, NY, USA: ACM, 2003.
[Online]. Available: http://doi.acm.org/10.1145/863955.863991 pp. 313–324.

[77] Y. Li, J. Harms, and R. Holte, “A simple method for balancing network utilization
and quality of routing,” in Proceedings. 14th International Conference on Computer
Communications and Networks, 2005. ICCCN 2005., Oct 2005, pp. 71–76.

[78] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: Responsive
yet stable traffic engineering,” in Proceedings of the 2005 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, ser. SIG-
COMM ’05, 2005, pp. 253–264.

[79] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic Engineering in Dynamic Networks,” in Proceedings of the 2006
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’06. New York, NY, USA: ACM, 2006. [Online].
Available: http://doi.acm.org/10.1145/1159913.1159926 pp. 99–110.

[80] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “Mate: Mpls adaptive traffic engineer-
ing,” in Proceedings IEEE INFOCOM 2001. Conference on Computer Communica-
tions. Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), vol. 3, 2001, pp. 1300–1309 vol.3.

85

[81] N. Michael and A. Tang, “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,”
IEEE/ACM Transactions on Networking, vol. 23, no. 6, pp. 1862–1875, Dec 2015.

[82] J. McCauley, Z. Liu, A. Panda, T. Koponen, B. Raghavan, J. Rexford,
and S. Shenker, “Recursive sdn for carrier networks,” SIGCOMM Comput.
Commun. Rev., vol. 46, no. 4, pp. 1–7, Dec. 2016. [Online]. Available:
http://doi.acm.org/10.1145/3027947.3027948

[83] A. A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Elasticon: An elastic distributed sdn controller,” in Proceedings of the Tenth
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ser. ANCS ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2658260.2658261 pp. 17–28.

[84] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically
centralized?: State distribution trade-offs in software defined networks,” in
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2342441.2342443 pp. 1–6.

[85] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th Annual Symposium on Cloud
Computing, ser. SOCC ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633 pp. 5:1–5:16.

[86] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the
data center,” in Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX Association,
2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=1972457.1972488 pp.
295–308.

[87] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed,
low latency scheduling,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2517349.2522716 pp. 69–84.

[88] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center networks
with traffic-aware virtual machine placement,” in 2010 Proceedings IEEE INFOCOM,
March 2010, pp. 1–9.

[89] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A framework for nfv applications,” in Proceedings of the 25th
Symposium on Operating Systems Principles, ser. SOSP ’15. New York, NY, USA:
ACM, 2015. [Online]. Available: http://doi.acm.org/10.1145/2815400.2815423 pp.
121–136.

86

[90] Z. Ayyub Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A High
Performance Packet Core for Next Generation Cellular Networks,” in Proceedings of
the 2017 ACM SIGCOMM Conference, 2017.

[91] Z. A. Qazi, P. K. Penumarthi, V. Sekar, V. Gopalakrishnan, K. Joshi, and S. R. Das,
“KLEIN: A Minimally Disruptive Design for an Elastic Cellular Core,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’16. New York, NY, USA: ACM,
2016. [Online]. Available: http://doi.acm.org/10.1145/2890955.2890961 pp. 2:1–2:12.

[92] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787505 pp. 421–434.

[93] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos, J. Padhye, and
G. Varghese, “Wanalytics: Geo-distributed analytics for a data intensive world,” in
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723372.2735365 pp. 1087–1092.

[94] Wanghong Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets, “Grace-1:
cross-layer adaptation for multimedia quality and battery energy,” IEEE Transactions
on Mobile Computing, vol. 5, no. 7, pp. 799–815, July 2006.

[95] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multimedia
applications,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 292–331, Aug. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1151690.1151693

[96] Wanghong Yuan, K. Nahrstedt, and Kihun Kim, “R-edf: a reservation-based edf
scheduling algorithm for multiple multimedia task classes,” in Proceedings Seventh
IEEE Real-Time Technology and Applications Symposium, May 2001, pp. 149–154.

[97] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu scheduling for mobile
multimedia systems,” in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003. [Online].
Available: http://doi.acm.org/10.1145/945445.945460 pp. 149–163.

[98] B. Li, D. Xu, K. Nahrstedt, and J. Liu, “End-to-end qos support for adaptive applica-
tions over the internet,” Proceedings of SPIE - The International Society for Optical
Engineering, vol. 3529, pp. 166–176, 12 1998.

[99] V. IO, “Vapor IO Chamber,” https://www.vapor.io/chamber/, 2015.

[100] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freed-
man, “Live video analytics at scale with approximation and delay-tolerance,” in 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 377–392.

87

[101] I. Markit, “North American security camera installed base to reach 62 million in 2016,”
http://bit.ly/cctvInUS, 2016.

[102] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making
sense of performance in data analytics frameworks,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15). Oakland, CA: USENIX
Association, 2015. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/ousterhout pp. 293–307.

[103] “Telecommunications Database,” https://www.telcodata.us, 2018.

[104] D. World, “U.S. Population by zip code, 2010-2016,” http://bit.ly/usPop, 2016.

[105] R. Durairajan, P. Barford, J. Sommers, and W. Willinger, “intertubes: A study of the
us long-haul fiber-optic infrastructure.”

[106] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data
transfers in computer clusters with orchestra,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/2018436.2018448 pp. 98–109.

[107] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without prior knowledge,”
in Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2785956.2787480 pp. 393–406.

[108] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with
varys,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2619239.2626315 pp. 443–454.

[109] L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion times with utility
max-min fairness,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, April 2016, pp. 1–9.

[110] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and A. Vahdat,
“Sincronia: Near-optimal network design for coflows,” in Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3230543.3230569 pp. 16–29.

[111] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never than late:
Meeting deadlines in datacenter networks,” in Proceedings of the ACM SIGCOMM
2011 Conference, ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/2018436.2018443 pp. 50–61.

88

[112] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with preemptive
scheduling,” in Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2342356.2342389 pp. 127–138.

[113] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, “Coda: Toward
automatically identifying and scheduling coflows in the dark,” in Proceedings of the
2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16. New York, NY, USA: ACM,
2016. [Online]. Available: http://doi.acm.org/10.1145/2934872.2934880 pp. 160–173.

[114] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “TensorFlow: A System for Large-Scale Machine Learning.”
in OSDI, vol. 16, 2016, pp. 265–283.

[115] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “PyTorch: Tensors and dynamic
neural networks in Python with strong GPU acceleration,” 2017.

[116] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up web page
loads with shandian,” in 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). Santa Clara, CA: USENIX Association, 2016.
[Online]. Available: https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/wang pp. 109–122.

[117] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakrishnan, “Watchtower: Fast,
secure mobile page loads using remote dependency resolution,” in Proceedings of
the 17th Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’19. New York, NY, USA: ACM, 2019. [Online]. Available:
http://doi.acm.org/10.1145/3307334.3326104 pp. 430–443.

[118] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph computation
and partitioning on skewed graphs,” in Proceedings of the Tenth European Conference
on Computer Systems. ACM, 2015, p. 1.

[119] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. ACM, 2010, pp.
135–146.

[120] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One trillion
edges: Graph processing at facebook-scale,” Proceedings of the VLDB Endowment,
vol. 8, no. 12, pp. 1804–1815, 2015.

[121] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph processing at scale,”
in Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, ser. GRADES ’16. New York, NY, USA: ACM, 2016.
[Online]. Available: http://doi.acm.org/10.1145/2960414.2960419 pp. 5:1–5:6.

89

[122] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and
E. Chen, “Chronos: A graph engine for temporal graph analysis,” in Proceedings of the
Ninth European Conference on Computer Systems, ser. EuroSys ’14. New York, NY,
USA: ACM, 2014. [Online]. Available: http://doi.acm.org/10.1145/2592798.2592799
pp. 1:1–1:14.

[123] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
a timely dataflow system,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 2013, pp. 439–455.

[124] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja, “Twitter heron: Stream processing at scale,” in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
ACM, 2015, pp. 239–250.

[125] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache
flink: Stream and batch processing in a single engine,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 36, no. 4, 2015.

[126] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014, pp. 147–156.

[127] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy, “Enabling multi-party
3d tele-immersive environments with viewcast,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 6, no. 2, pp. 7:1–7:30, Mar. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1671962.1671963

[128] A. Arefin, R. Rivas, and K. Nahrstedt, “Osm: Prioritized evolutionary qos
optimization for interactive 3d teleimmersion,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 10, no. 1s, pp. 12:1–12:24, Jan. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2543899

[129] A. Arefin, Z. Huang, K. Nahrstedt, and P. Agarwal, “4d telecast: Towards large
scale multi-site and multi-view dissemination of 3dti contents,” in 2012 IEEE 32nd
International Conference on Distributed Computing Systems, June 2012, pp. 82–91.

[130] A. Arefin, R. Rivas, R. Tabassum, and K. Nahrstedt, “Opensession: Sdn-based cross-
layer multi-stream management protocol for 3d teleimmersion,” in 2013 21st IEEE
International Conference on Network Protocols (ICNP), Oct 2013, pp. 1–10.

[131] A. Arefin and K. Nahrstedt, “Multi-stream frame rate guarantee using cross-layer
synergy,” in 2013 21st IEEE International Conference on Network Protocols (ICNP),
Oct 2013, pp. 1–2.

[132] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,
and R. Murthy, “Hive: A warehousing solution over a map-reduce framework,”
Proc. VLDB Endow., vol. 2, no. 2, pp. 1626–1629, Aug. 2009. [Online]. Available:
https://doi.org/10.14778/1687553.1687609

90

[133] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,
“Mapreduce online,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX
Association, 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855711.
1855732 pp. 21–21.

[134] J. Wang, H. Zhou, Y. Hu, C. d. Laat, and Z. Zhao, “Deadline-aware coflow scheduling
in a dag,” in 2017 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), Dec 2017, pp. 341–346.

[135] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” arXiv
preprint arXiv:1404.5997, 2014.

[136] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol.
abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[137] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015.
[Online]. Available: http://arxiv.org/abs/1512.00567

[138] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available: http:
//arxiv.org/abs/1512.03385

[139] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[140] V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla, “Is advance
knowledge of flow sizes a plausible assumption?” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, 2019.

[141] M. Babaioff and J. Chuang, “On the optimality and interconnection of valiant load-
balancing networks,” in INFOCOM, 2007.

[142] F. Chung, “Laplacians of graphs and cheeger’s inequalities,” in Combinatorics, Paul
Erdös is Eighty, Vol. 2. Janos Bolyai Mathematical Society, Budapest, 1996, pp.
157–172.

91

Appendix A: PROOF OF THEOREM 2.1

Appendix A.1: We revisit the maximum concurrent flow problem, based on which we

defined throughput in §2.1: Given a network G = (V,EG) with capacities c(u, v) for every

edge (u, v) ∈ EG, and a collection (not necessarily disjoint) of pairs (si, ti), i = 1, . . . , k each

having a unit flow demand, we are interested in maximizing the minimum flow. Instead of

the traffic matrix (TM) formulation of §2.1, for the following discussion, it will be convenient

to think of the pairs of vertices that require flow between them as defining a demand graph,

H = (V,EH). Thus, given G and H, we want the maximum throughput. As we noted in

§2.1, this problem can be formulated as a standard linear program, and is thus computable

in polynomial time.

We are interested in comparing our suggested throughput metric with sparsest cut. We

first prove the following theorem.

Theorem A.1: The dual of the linear program for computing throughput is a linear

programming relaxation for sparsest cut.

Proof. We shall use a formulation of the throughput linear program that involves an expo-

nential number of variables but for which is easier to derive the dual. We denote by Ps,t the

set of all paths from s to t in G and we introduce a variable xp for each path p ∈ Ps,t, for

each (s, t) ∈ EH , corresponding to how many units of flow from s to t are routed through

path p.

max y (A.1)

subject to
∑
p∈Ps,t

xp ≥ y ∀(s, t) ∈ EH , (A.2)

∑
p:(u,v)∈p

xp ≤ c(u, v) ∀(u, v) ∈ EG (A.3)

xp ≥ 0 ∀p (A.4)

y ≥ 0. (A.5)

The dual of the above linear program will have one variable w(s, t) for each (s, t) ∈ EH
and one variable z(u, v) for each (u, v) ∈ EG.

92

min
∑
u,v

z(u, v)c(u, v) (A.6)

subject to
∑

(s,t)∈EH

w(s, t) ≥ 1 (A.7)

∑
(u,v)∈p

z(u, v) ≥ w(s, t) ∀(s, t) ∈ EH , p ∈ Ps,t (A.8)

w(s, t) ≥ 0 ∀(s, t) ∈ EH (A.9)

z(u, v) ≥ 0 ∀(u, v) ∈ EG. (A.10)

It is not hard to realize that in an optimal solution, without loss of generality, w(s, t) is

the length of the shortest path from s to t in the graph weighted by the z(u, v). We can also

observe that in an optimal solution we have
∑
w(s, t) = 1. These remarks imply that the

above dual is equivalent to the following program, where we introduce a variable l(x, y) for

every pair or vertices in EG ∪ EH .

min
∑
u,v

l(u, v)c(u, v) (A.11)

subject to
∑

(s,t)∈EH

l(s, t) = 1 (A.12)

∑
(u,v)∈p

l(u, v) ≥ l(s, t) ∀(s, t) ∈ EH , p ∈ Ps,t (A.13)

l(u, v) ≥ 0 ∀(u, v) ∈ EG ∪ EH (A.14)

(A.15)

The constraints
∑

(u,v)∈p l(u, v) ≥ l(s, t) can be equivalently restated as triangle inequali-

ties. This means that we require l(u, v) to be a metric over V . These observations give us

one more alternative formulation:

minl(·,·) metric

∑
(u,v)∈EG

c(u, v) · l(u, v)∑
(s,t)∈EH

l(s, t)
(A.16)

93

We can finally see that the above formulation is a linear programming relaxation for a cut

problem. More specifically, the sparsest cut problem is asking to find a cut S that minimizes

the ratio ∑
(u,v)∈EG cut by S c(u, v)

| edges ∈ EH cut by S|
(A.17)

This is equivalent to minimizing ratio (A.16) over `1 metrics only.

If we take EH to be the complete graph (corresponding to all-to-all demands), we get the

standard sparsest cut definition: ∑
(u,v)∈EG cut by S c(u, v)

|S||S̄|
(A.18)

Before we prove Theorem 1 from §2.1, we shall demonstrate the following claim.

Claim: If G is a d-regular expander graph on N nodes and H is the complete graph, the

value of the linear program for throughput is Ø(d log d
N logN

). The value of the sparsest cut is

Ω(d
N

).

Proof. Let us denote by T the optimal value of expression (A.16). Note that this is the

optimal value of the dual for the linear program for throughput, therefore equal to the

optimal throughput. By taking l(·, cdot) to be the shortest path metric on G, we calculate:

T ≤
∑

(i,j)∈EG
l(i, j)∑

i,j∈V l(i, j)
≤ d/2.|V |

Θ(N2 logN
log d

)
≤ O(

d log d

N2 logN
) (A.19)

Here, the first inequality follows from the fact that for d-regular graphs, each node can

reach no more than di nodes in i hops. This means that given a vertex v, there exist Θ(N)

nodes with distance at least logN
log d

from it, which means that the total distance between all

pairs of nodes is Θ(N2 logN
log d

).

Let Φ denote the minimum value of ratio (A.18) for G. Since G is an expander, this ratio

is

Φ ≥ Ω(
d · |S|
|S||V − S|

) = Ω(
d

N
) (A.20)

94

Restating Theorem 2.1 from Chapter 2:

Theorem 2.1. Let graph G be any 2d-regular expander on N = n
dp

nodes, where d is

a constant and p is a free parameter. Let graph B be constructed by replacing each edge

of G with a path of length p. Then, B has throughput TB = O(1
nplogn

) and sparsest cut

ΦB = Ω(1
np

).

Proof. Let (S1, S2) be the sparsest cut in B. Let (S1
′, S2

′) be the corresponding cut in G.

Namely, if an edge was cut in B by (S1, S2) that belonged to a path pe then (S1
′, S2

′) cuts

e. Let ΦB be the value of the cut (S1, S2) in A and ΦG the value of (S1
′, S2

′) in G. Then

ΦB =
E(S1, S2)

|S1||S2|
=
E(S1

′, S2
′)

|S1||S2|
≥ E(S1

′, S2
′)

p · |S ′1|p · |S ′2|
≥ ΦG

p2

by equation (A.20) we have ΦG ≥ Ω(1
N

) = Ω(p
n
) which gives us

ΦB ≥ Ω(
1

np
)

On the other hand, let TB be the value of the throughput of B. We follow a similar

reasoning as we did in equation (A.19).

TB ≤
∑

(i,j)∈EG
l(i, j)∑

i,j∈V l(i, j)
≤ Ndp

Θ((Np)2p logN)

≤ O(
1

Np2 logN
) = O(

1

np log n
)

(A.21)

95

Appendix B: PROOF OF THEOREM 2.2

Appendix B.1:

Proof. TA2A has demand 1
n

on each flow, so the largest feasible multicommodity flow routing

of TA2A in G has capacity t
n

allocated to each flow. Let C be a graph representing this

routing, i.e., a complete digraph with capacity t
n

on each link. Systems-oriented readers

may find it useful to think of C as an overlay network implemented with reserved bandwidth

in G. In other words, to prove the theorem, it is sufficient to show that taking T to be any

hose-model traffic matrix, T · t/2 is feasible in C.

For this, we use a two-hop routing scheme analogous to Valiant load balancing [141].

Consider any traffic demand vw. In the first step, we split this demand flow into n equal

parts, routing flow 1
n
·T (v, w) · t/2 from v to every node in the network, along the direct links

(or the zero-hop path when the target is v itself). In the second step, the traffic arriving at

each node is sent along at most one link to its final destination.

We now have to show that this routing is feasible in C. Consider any link i → j. This

link will carry a fraction 1
n

of all the traffic originated by i, and a fraction 1
n

of all the traffic

destined to j. Because T is a hose model TM, each node originates and sinks a total of ≤ 1

unit of traffic; and since we are actually attempting to route the scaled traffic matrix T · t/2,

each node originates and sinks a total of ≤ t/2 units of traffic. Therefore, link i carries a

total of
t

2
· 1

n
+
t

2
· 1

n
=
t

n
,

which is the available capacity on each link of C and is hence feasible.

96

Appendix C: MEASURING CUTS

Appendix C.1: We employ several heuristics for estimating sparsest cut.

Brute-force computation Brute force computation of sparsest cut is computationally

intensive since it considers all possible cuts in the network (2n−1 cuts in a network with

n nodes). In addition to bandwidth, the number of flows traversing each cut has to be

estimated which adds further overhead in the computation of sparsest cut.

Due to the computational complexity, brute force evaluation of sparsest cut is possible

only for networks of size less than 20. However, we perform limited brute-force computation

on all networks by capping the computation at 10, 000 cuts.

One-node cuts Designed computer networks as well as naturally occurring networks tend

to be denser at the core and sparse at the edges. When the core has high capacity, it is

likely that the worst-case cut occurs at the edges. Hence, this heuristic considers all cuts

with only a single node in a subset formed by the cut. There exists n cuts with a single

node. This is a very small fraction of the total 2n−1 cuts.

Two-node cuts n∗(n−1)
2

cuts with two nodes in a subset also reveal the limited connectivity

at the edges of the network.

Expanding cuts It is likely that the network is clustered,i.e., it contains two or more

highly connected components connected by a few links. Subsets of all possible combinations

of contiguous nodes in the network can be very large. We optimize our search to a subspace

of this category of cuts. Starting from each node, we consider cuts which include nodes

within a distance k from the node. When k = 0, the cut involves only the originating node

and is equivalent to the single node case discussed before. When k = 1, all nodes within

distance 1 from the node are considered – the node and its neighbors. k is incremented

until the entire graph is covered. If d is the diameter of the network, the number of cuts

considered is less than or equal to n ∗ d.

97

Sparsest cut estimator which found the worst cut

Topology family Total

#networks
with
through-
put= es-
timated
cut

Brute force 1-node 2-node
Expanding
regions

Eigenvector

BCube 7 2 2 0 0 3 7
DCell 4 2 2 0 0 2 3
Dragonfly 4 0 2 0 0 0 2
Fat tree 8 8 8 8 8 8 8
Flattened butterfly 8 5 6 0 1 0 5
Hypercube 7 3 3 0 0 1 6
HyperX 11 1 1 0 0 1 10
Jellyfish 350 3 0 0 0 2 349
LongHop 110 9 45 0 0 1 66
SlimFly 6 1 1 0 0 0 5

Natural networks 66 48 18 21 11 34 38

Total 581 82 88 29 20 52 499

Table C.1: Estimated sparsest cuts: Do they match throughput, and which estimators
produced those cuts?

Eigenvector based optimizations Eigenvector corresponding to the second smallest eigen-

value of the normalized Laplacian of a graph can give a set of n cuts, the worst of which is

within a constant factor from the actual cut [142]. The nodes of the graph are sorted in the

ascending order corresponding to their value in the second eigenvector [142]. We sweep this

vector of sorted nodes to obtain the n cuts.

How well did our sparse cut heuristics perform? Comparing columns 2 and 3 in Table C.1,

we see that cuts accurately predicted throughput in less than 15% of the tested networks only.

Table C.1 shows how often each estimator found the sparse cut. More than one technique

may find the sparse cut, hence the sum may not equal the total number of networks. Brute-

force computation was helpful in finding 15% of the sparse cuts. Cuts involving one or two

nodes and contiguous regions of the graph also found the sparse cut in a small fraction of

networks (less than 10% each). The majority of such networks are the natural networks,

which are often denser in the core and sparser in the edges. Sparse connectivity at the edges

lead to bottlenecks at the edge which are revealed by cuts involving one or two nodes. Fat

tree is another interesting case where every heuristic’s cuts yield the accurate flow value.

Overall, the eigenvector-based approximation found the largest number of sparse cuts (86%),

but it is known not to be a tight approximation [142], and the full collection of heuristics

did improve on it in a nontrivial fraction of cases.

98

