10 research outputs found

    On Factor Universality in Symbolic Spaces

    Get PDF
    The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation. In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes

    Subshifts as Models for MSO Logic

    Full text link
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of "pattern counting" subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al.Comment: arXiv admin note: substantial text overlap with arXiv:0904.245

    Asymptotically almost all \lambda-terms are strongly normalizing

    Full text link
    We present quantitative analysis of various (syntactic and behavioral) properties of random \lambda-terms. Our main results are that asymptotically all the terms are strongly normalizing and that any fixed closed term almost never appears in a random term. Surprisingly, in combinatory logic (the translation of the \lambda-calculus into combinators), the result is exactly opposite. We show that almost all terms are not strongly normalizing. This is due to the fact that any fixed combinator almost always appears in a random combinator

    Subshifts as Models for MSO Logic

    Get PDF
    We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of tilings, and of universal sentences in terms of combinations of ''pattern counting'' subshifts. Conversely, we characterise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts). Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier by Giammarresi et al

    Subshifts with Simple Cellular Automata

    Get PDF
    A subshift is a set of infinite one- or two-way sequences over a fixed finite set, defined by a set of forbidden patterns. In this thesis, we study subshifts in the topological setting, where the natural morphisms between them are ones defined by a (spatially uniform) local rule. Endomorphisms of subshifts are called cellular automata, and we call the set of cellular automata on a subshift its endomorphism monoid. It is known that the set of all sequences (the full shift) allows cellular automata with complex dynamical and computational properties. We are interested in subshifts that do not support such cellular automata. In particular, we study countable subshifts, minimal subshifts and subshifts with additional universal algebraic structure that cellular automata need to respect, and investigate certain criteria of ‘simplicity’ of the endomorphism monoid, for each of them. In the case of countable subshifts, we concentrate on countable sofic shifts, that is, countable subshifts defined by a finite state automaton. We develop some general tools for studying cellular automata on such subshifts, and show that nilpotency and periodicity of cellular automata are decidable properties, and positive expansivity is impossible. Nevertheless, we also prove various undecidability results, by simulating counter machines with cellular automata. We prove that minimal subshifts generated by primitive Pisot substitutions only support virtually cyclic automorphism groups, and give an example of a Toeplitz subshift whose automorphism group is not finitely generated. In the algebraic setting, we study the centralizers of CA, and group and lattice homomorphic CA. In particular, we obtain results about centralizers of symbol permutations and bipermutive CA, and their connections with group structures.Siirretty Doriast

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    ON LOCAL SYMMETRIES AND UNIVERSALITY IN CELLULAR AUTOMATA

    Get PDF
    Cellular automata (CA) are dynamical systems defined by a finite local rule but they are studied for their global dynamics. They can exhibit a wide range of complex behaviours and a celebrated result is the existence of (intrinsically) universal CA, that is CA able to fully simulate any other CA. In this paper, we show that the asymptotic density of universal cellular automata is 1 in several families of CA defined by local symmetries. We extend results previously established for captive cellular automata in two significant ways. First, our results apply to well-known families of CA (e.g. the family of outer-totalistic CA containing the Game of Life) and, second, we obtain such density results with both increasing number of states and increasing neighbourhood. Moreover, thanks to universality-preserving encodings, we show that the universality problem remains undecidable in some of those families
    corecore