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Abstract

A subshift is a set of infinite one- or two-way sequences over a fixed finite
set, defined by a set of forbidden patterns. In this thesis, we study subshifts
in the topological setting, where the natural morphisms between them are
ones defined by a (spatially uniform) local rule. Endomorphisms of subshifts
are called cellular automata, and we call the set of cellular automata on a
subshift its endomorphism monoid. It is known that the set of all sequences
(the full shift) allows cellular automata with complex dynamical and com-
putational properties. We are interested in subshifts that do not support
such cellular automata. In particular, we study countable subshifts, min-
imal subshifts and subshifts with additional universal algebraic structure
that cellular automata need to respect, and investigate certain criteria of
‘simplicity’ of the endomorphism monoid, for each of them.

In the case of countable subshifts, we concentrate on countable sofic
shifts, that is, countable subshifts defined by a finite state automaton. We
develop some general tools for studying cellular automata on such subshifts,
and show that nilpotency and periodicity of cellular automata are decidable
properties, and positive expansivity is impossible. Nevertheless, we also
prove various undecidability results, by simulating counter machines with
cellular automata. We prove that minimal subshifts generated by primitive
Pisot substitutions only support virtually cyclic automorphism groups, and
give an example of a Toeplitz subshift whose automorphism group is not
finitely generated. In the algebraic setting, we study the centralizers of CA,
and group and lattice homomorphic CA. In particular, we obtain results
about centralizers of symbol permutations and bipermutive CA, and their
connections with group structures.



ii



Tiivistelma

Siirtoavaruus on adrettomien yksi- tai kaksisuuntaisten kirjainjonojen joukko,
jonka madraa jokin joukko kiellettyja (ddrellisid) alisanoja. Tassé vaitoskir-
jassa tutkitaan siirtoavaruuksia topologisina dynaamisina systeemeina, jol-
loin luonnolliset morfismit niiden vélilla méaritellaan paikallisilla sadnnaillé.
Siirtoavaruuksien endomorfismeja kutsutaan soluautomaateiksi ja kaikkien
soluautomaattien joukkoa sen endomorfismimonoidiksi. On tunnettua, etté
kaikkien kirjainjonojen joukko (téysi siirtoavaruus) mahdollistaa erittain
monimutkaisten soluautomaattien konstruoimisen sekd dynaamisessa etta
laskennallisessa mielessa. Téassa vaitoskirjassa tutkitaan paaasiallisesti siir-
toavaruuksien toista aaripaata: avaruuksia, joilla soluautomaatit ovat jos-
sain mielessa yksinkertaisia. Erityisesti tutkitaan numeroituvia siirtoavaruuk-
sia, minimaalisia siirtoavaruuksia seké siirtoavaruuksia, joilla on jokin alge-
brallinen rakenne, jota soluautomaattien tulee kunnioittaa. N&aiden siir-
toavaruusluokkien endomorfismimonoidien ja soluautomaattien rakennetta
selvitetdan erilaisten yksinkertaisuuden kriteerien suhteen.

Numeroituvien siirtoavaruuksien tapauksessa keskitytdan numeroituviin
sofisiin systeemeihin eli numeroituviin siirtoavaruuksiin, jotka maaraa jokin
aarellinen tilakone. Tallaisten siirtoavaruuksien soluautomaattien tutkimi-
seen kehitetdan yleisia tyokaluja, joilla esimerkiksi soluautomaattien nilpo-
tenttisuus seké jaksollisuus naytetddn ratkeaviksi ominaisuuksiksi ja po-
sitiviinen ekspansiivisuus naytetddn mahdottomaksi. Toisaalta néille siir-
toavaruuksille saavutetaan myos ratkeamattomuustuloksia simuloimalla las-
kurikoneita soluautomaateilla. Minimaalisille siirtoavaruuksille osoitetaan,
ettd primitiivinen korvaussdanto, jolla on niin sanottu Pisot-ominaisuus,
maarad siirtoavaruuden, jonka automorfismiryhmé on virtuaalisesti sykli-
nen, ja annetaan esimerkki minimaalisesta siirtoavaruudesta, jolla on niin
sanottu Toeplitz-ominaisuus mutta jonka automorfismiryhmaé ei ole aarelli-
sesti generoitu. Algebrallisten siirtoavaruuksien endomorfismimonoideja tut-
kitaan 1dhinna unaarisen rakenteen, ryhmarakenteen seka hilarakenteen ta-
pauksessa. Erityisesti etsitdan yhteyksia erityyppisten soluautomaattien
sentralisoijien ja ryhméarakenteisten siirtoavaruuksien valilla.
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Chapter 1

Dynamical Systems,
Subshifts and Cellular
Automata

1.1 Introduction

In this thesis, we discuss cellular automata (CA) on subshifts. Subshifts are
(choose your favorite definition; they are equivalent)

e closed!, shift-invariant? subsets of S% for finite S, or

e sets of two-way infinite sequences over a finite set S, which are de-
fined by forbidding a (possibly infinite) set of words from occurring®
anywhere in the sequences.

We give some examples of subshifts below. Cellular automata on a subshift
X C 5% are (again, choose your favorite)

e the continuous, shift-commuting® maps f: X — X, or

e maps f : X — X defined by a local rule fi,. : S+ — S for some
radius r € N by

f(l“)z = floc(xifr, Lj—pd1ye-- ,56i+r)-

!The finite set S has the discrete topology, and S% the product topology.

2The shift map is the continuous map o : S* — S% defined by o(x); = 241 for all
i € Z, and shift-invariance of X means o(X) = X.

3A word is a finite sequence of letters from S, and to forbid a word u from occurring
in a sequence x means to forbid that some contiguous subsequence of x is u.

4A function is shift-commuting if it commutes with the shift map ¢ with respect to
function composition: f(o(z)) = o(f(z)) for all z € X.



The name ‘cellular automaton’ comes from a third point of view, or rather,
the intuitive description of the second definition, where we have an infinite
assortment of identical finite state machines M (their set of states being
S), one for each integer — or ‘cell’ — i € Z and applying f means that the
machines simultaneously update their states in parallel based on the states
of finitely many neighbors. Usually, the idea is that f is applied to the
configuration, say, once a second, and describes the evolution of the system
as a function of time.

Our approach does not quite fit the machine ideology (or the once-a-
second ideology), as we usually do not fix a single cellular automaton —
instead, for each subshift X, we are interested in the whole set of cellular
automata on X, and not only the iteration of a single CA. Since cellular
automata on a subshift X are closed under (function) composition, we usu-
ally call the set of cellular automata on X the endomorphism monoid of
X. Note that the definition we gave is that of a one-dimensional CA —
for example, Game of Life, the canonical example of a CA in pop culture,
is two-dimensional. Most of our study takes place in this one-dimensional
setting.

1.1.1 Outline of the Thesis

Our goal in this thesis is to find subshifts whose endomorphism monoids are
simple in the sense that, for example, very few cellular automata exist, or we
can quickly predict how each sequence evolves when the cellular automaton
is applied repeatedly.

The simplest example of a subshift is S¢ itself, called the full shift. This
is the set of all two-way sequences of symbols in S, such as

...0000.0000... and ...9853562951413.14159265358979323 .. .,

it S =1{0,1,2,3,4,5,6,7,8,9}, where by convention, the coordinate just to
the right of the symbol ‘.” is the Oth coordinate. (Of course, we had to
omit some of the infinitely many symbols.) Such subshifts are where most
research on one-dimensional cellular automata takes place. The subshift S%
is known to have a huge endomorphism monoid; it is not huge in terms of
cardinality (it is easily seen to be countable), but it is huge in terms of the
mathematics and computer science it contains. Apart from some examples
in Section 1.5, we rarely touch this monster in the rest of this thesis.?
While the endomorphism monoid of S% is very interesting, S% is not a
particularly interesting example of a subshift. A slightly more interesting
one is the golden mean shift Xy4q where S = {0, 1}, and the single subword

5 Although Chapter 4 is about its domesticated cousins with algebraic structure.

2



11 is forbidden. Examples of sequences in Xgq1q areb
...1001000010.0100010100... and ...010101.010101...,

but the sequence
...00001100.00100010. ..

contains a forbidden word, and is thus not in Xgqq. The name of this
subshift comes from its connection to the Fibonacci sequence

(0,1,1,)2,3,5,8,13,21,34, . ...

Namely, if, for each n, we count the number of subwords of length n that
can occur in sequences in the golden mean shift, then we obtain precisely
this sequence, slightly shifted:

{0,1}| = 2, |{00,01,10}| = 3, {000,001, 010,100, 101} = 5,

|{0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010}| = 8, ...

Thus, the number of words grows roughly according to powers of the golden
mean (more often called the golden ratio) ¢ = H'T‘ﬁ = 1.618.... This is an
example of a transitive SFT. An SFT (subshift of finite type) is a subshift
where only finitely many words are forbidden, and transitivity means that
two words that occur in sequences in the subshift can also occur in the same
sequence, in either order.

As SFTs are one of the best-studied classes of subshifts in the literature,
our first question is whether we can find SFTs with simple endomorphism
monoids. Unfortunately, we see directly that at least cellular automata
on Xgoq can be just as complicated to study as those on full shifts. For
example, by restricting to sequences concatenated together from 00001 and
00101, such as

...00001 00001 00101 00001 . 00101 00101 00101 000OL...,

we can simulate any cellular automaton on a binary full shift, by thinking of
00001 as 0 and of 00101 as 1 (note that the CA does not see the spaces, but
it is not hard to check that one can uniquely parse each such sequence into
a concatenation of the two words, so a simulation can be easily performed).

In fact, one can perform such simulations, and construct many other
complex CA, on any infinite transitive SFT, so the endomorphism monoid
of such a subshift is never very simple.” Every SFT contains at least one

5More precisely, based on what we see here, they might be in Xgola — of course, there
might be a forbidden word somewhere further away.

"See Section 1.5 for such general results, although usually the slightly stronger assump-
tion of ‘mixing’ is made instead.



transitive SF'T when a suitable additional set of words is forbidden, and the
only SF'Ts where we could possibly expect to find a simple endomorphism
monoid are then those where all the transitive subSFTs are finite. These
turn out to be precisely the SF'Ts containing countably many sequences, and
they (and the natural generalizations, countable sofic shifts and bounded
subshifts) are the main object of study in Chapter 2. A rather canonical
example of a countable SFT is obtained by choosing S = {1,2,...,n}, and
forbidding the words ab where b < a. The sequences in this subshift generally
look like

Lo 11111111111111222222223333333333344444444444444 - - - nnnnnnn . ..

(although some symbols may be omitted). It turns out that even countable
SFTs can have rather complex endomorphism monoids, and in particular
for all large enough n, cellular automata on the subshift above are compu-
tationally universal, in the sense of unpredictability, defined in Section 1.5.
Yet, they are simpler than those of full shifts: For example, there cannot
exist an algorithm — say, a Haskell® program — such that given a cellular
automaton f : S% — S%, the algorithm tells whether f is nilpotent, that is,
whether every configuration is eventually turned into the sequence

...00000000000000000000.00000000000000000000. . .

of all zeroes [Kar92]. However, we give a very simple algorithm for checking
this on countable SFTs and sofics in Theorem 2.2.5.

Intuitively, the reason the endomorphism monoids of SFTs are complex is
that the rules for checking whether a sequence is in the subshift are local (as
there are finitely many forbidden words). This means that a CA can make
local changes to the sequences rather freely, and thus, cleverly constructed
cellular automata are capable of organized computation. In the example
Xgold above, the precise way to do this was to simulate a CA of the full shift
on a subshift of Xy4q which looks roughly like the full shift. In Chapter 3,
we study subshifts where such simulations are explicitly forbidden. Namely,
we study cellular automata on subshifts X which are minimal, that is, do
not contain any proper subshifts. More concretely, this means that every
word that appears in a sequence in X actually appears in every sequence in
X, with bounded gaps (that is, it even appears in all long enough subwords).
Subshifts like this, when infinite, are never SFTs.

To obtain an example of such a subshift, we again take inspiration from
the Fibonacci sequence. Recall that this is the sequence of the Fibonacci
numbers ag, a1, az, as, as, as, ag, - - . , where

ap = 0,a; = 1,and in general ag1o = apy1 + ag for k > 2.

80r C, even if arbitrary storage is somehow added to the language.
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We define the Fibonacci words over the alphabet {0,1} by the analogous
recurrence relation for words, by

wo = 0, w1 = 01, ws = 010, w3 = 01001, w,4 = 01001010,

and in general
Wiy = Wiriwy for k> 2

(so that |w;| = a;j+2). Let S = {0,1} and forbid those finite words that do
not occur in any of the words w; to obtain a subshift Xgyp,, usually called the
Fibonacci subshift. This is a particular example of a so-called substitutive
subshift, since it is the subshift generated by the fixed point of the Fibonacci
substitution 7 defined by 0 — 01,1 — 0.° Every sequence in Xgp looks
pretty much the same (since it is minimal), and a typical example is

...10010100100101001010010010.10010100100101001010010010.. .. ..

It turns out that the global structure of this subshift indeed results in
a very simple endomorphism monoid: it is shown in [Oll113] that the only
cellular automata on Xgp, are the shift maps, that is, the only CA are the
maps that shift the points left or right by some fixed amount. We prove
a similar result for a large class of subshifts generated by substitutions.
Namely, for all primitive substitutions with the so-called balance property
(which is implied both by the well-known Pisot property, and the property
that images of all letters have the same length), we prove that all CA on
the subshift generated by the fixed point are kth roots'® of shift maps for
some fixed k. This result applies, for example, to Xgp, and the Thue-Morse
subshift generated by the substitution 0 — 01,1 — 10 (although for both
of these examples, stronger results are known). We also give an example
of a minimal subshift where such a result does not hold, by exhibiting a
Toeplitz subshift whose endomorphism monoid is isomorphic to the non-
finitely generated additive subgroup <(g)l | i€ N> of Q.

In Chapter 4, our approach is a bit different. Here, our subshifts of
interest will usually be the full shifts. Instead of removing sequences from
them by forbidding subwords, we will directly forbid some of the cellular
automata: we give S% a (universal) algebraic structure, and keep only the
submonoid of cellular automata that respect this structure. A good way to
construct examples of subshifts with algebraic structure is to choose a finite
algebra S, say, a group, and give 5% the algebraic structure where operations

9The fixed point of a substitution 7 is a one-way infinite sequence z € S™
such that 7(z) = z. For example, the fixed point of the Fibonacci substitution is
01001010010010100101001001....

1°An nth root of a CA f: X — X is another CA g : X — X such that g" = f, that is,
for a sequence x € X, g repeated n times on z gives f(z).

)



are applied cellwise (so that S# is the direct product of Z copies of S). By a
cellular automaton f respecting the algebraic structure, we mean that it is
an algebra homomorphisms from S% to itself. That is, if g : (S%)" — S% is
an algebra operation, then we require g(f(x1),..., f(zn)) = f(g(z1, ..., 24))
for all z1,...,z, € S%. For example, the subshift ZZ is the binary full shift
with an abelian group structure given by cellwise addition modulo 2. The
cellular automata on this subshift (which respect the algebra structure) are
very simple: they are cellwise sums of powers of the shift map o.

We also study unary algebraic structures obtained by simply choosing
a cellular automaton g : S — S% (or sometimes, a finite set of CA), and
considering it to be a unary algebra operation on the subshift. Cellular
automata f : S% — S% that respect the structure given by g are exactly
the ones that commute with ¢ in the sense that f(g(z)) = g(f(x)) for
all z € S%. Our main results are about cellular automata on subshifts
with such unary structure, and the interplay of a group structure and a
unary structure. For example, we introduce the so-called color blind cellular
automata — cellular automata that commute with symbol permutations —
and show how to simulate general cellular automata with them. In contrast,
we then show that cellular automata other than shift maps cannot commute
with all symbol maps unless the alphabet is binary, and precisely the groups
Zs, Z3 and Z3 allow group-endomorphic CA which are color blind.

1.1.2 Which Parts are Worth Reading?

The topic of this thesis is quite shallow, even within the theory of cellular
automata, and we do not answer any big open questions. Thus, it seems
possible that not everyone feels a strong need to peruse every page. This
section is meant as a small guide (or advertisement) for those people, and
contains what I'! feel are some of the highlights of the thesis.

For readers not interested in cellular automata or subshifts at all, we
of course have little to offer. However, when studying the borders of the
concept of color blind cellular automata, we discuss the so-called typhlotic-
ness of cellular automata as well. This notion turns out to be, in a sense,
an alternative definition of an ultrafilter. Some readers may find this —
Lemma 4.2.29 — interesting, and this part should be readable with little
preliminary knowledge.

Another somewhat exotic argument that may be of general interest!'? is
our formalization of the idea of letting periodic subpatterns in points become

"Here, and throughout the thesis, ‘we’ refers to a fuzzy subset of me, the possible co-
author(s) of my articles, and the reader(s). I try to use ‘I’ when stating my own opinions or
stating that I do not know something — the reader(s) or my possible co-author(s) certainly
might know the answer. The reader is of course allowed to disagree also with the sentences
containing ‘we’.

12 Although it is presumably not a quick read.

6



infinite, in the proof of Lemma 2.2.3. This allows for the use of compactness
arguments quite different from those generally used in the study of subshifts
or cellular automata.

If the reader is only interested in cellular automata on full shifts (and
other mixing SFTs)'® they may find at least Chapter 4 interesting — and
even the further subset of readers not particularly interested in algebra
might want to look at the discussion on intersections of centralizers of CA
in the end of Section 4.2.3 and solve the questions I leave open. We also
prove some general results about cellular automata on mixing SF'T's, such as
Lemma 1.3.22. This is a variation of the well-known Ryan’s theorem which
states that the centralizer of the automorphism group of a full shift is the
set of all shift maps. Our constructions of CA on mixing SFTs are based
on the ubiquity of unbordered words, that is, Lemma 1.3.5 (from [Lot02]).
Unbordered words make life much easier, at least for researchers who prefer
words to matrices (such as me), and I am very happy to have bumped into
this lemma, since I have spent quite a bit of time finding unbordered words
manually, or finding ways around them — if this rings a bell, the reader, like
me, may have missed this lemma.

For readers interested in all things cellular automata, we of course sug-
gest reading the whole thesis. In particular, we suggest at least taking a
look at the main results and open questions of each section. Indeed, our
main goal has been to find new aspects of cellular automata to study. I have
heard many say that the study of cellular automata is finished, or that at
least, all that is left is too hard. I disagree even in the case of the full shift,
but hopefully this thesis shows that there is at least a lot to study about
cellular automata on subshifts.

1.1.3 Possible Future Work

As I mentioned, I believe there is still much to study in all of these areas. In
particular, I believe that the study of cellular automata on countable sub-
shifts is not at all finished. I feel we have a pretty good grip on the case of CA
on one-dimensional sofic shifts already, but there are many questions of gen-
eral nature one can still ask (and we list some questions in Section 2.4). As
far as I know, almost nothing is known about cellular automata on countable
two-dimensional SFTs, and in fact I am not aware of that many articles on
countable dynamical systems in general. Often, such systems are not even
mentioned in books on dynamical systems, although I feel Chapter 2 alone
(and the literature listed in Section 2.1) is proof that they are worth study-
ing. It would also be interesting to investigate the connection between CA

13In fact, cellular automata on other subshifts are rarely even called ‘cellular automata’,
so I imagine there are such readers.



on countable sofic shifts and conserved quantities, hinted at in the caption
of Figure 2.1.

On minimal subshifts, my general feeling!* is that interesting cellular
automata do not exist. However, I am not aware of any articles that show
such general results. We make some general remarks in the beginning of
Chapter 3, but leave very basic questions open. Even for minimal subshifts
generated by symbol-to-word substitutions or those generated by Toeplitz
sequences, little is known in general. Even the small case of primitive Pisot
substitutions which we (partially) solve in Section 3.2 is new, as far as we
know, and such subshifts are subsumed in the larger class generated by
primitive substitutions, which are further subsumed in the study of linearly
recurrent subshifts — I do not know how to take these extra steps. The
most interesting examples of endomorphism monoids for minimal subshifts
we have been able to build are those of Section 3.3, which — while still very
simple — are at least not finitely generated.

The study of Chapter 4 where subshifts in different (universal algebraic)
varieties are considered, is even less finished. The only natural varieties
for which we obtain general results are the ones with only reversible unary
operators whose combinations generate only finitely many different opera-
tions even in the free algebra in this variety (for example, in the case of
a single operation f, we could have the identity f"(x) ~ x for some n).
This corresponds to the study of the centralizer of an equicontinuous family
of reversible unary cellular automata; for these, we prove the existence of
an intrinsically universal CA in the endomorphism monoid, which could be
considered to partially solve the endomorphism monoid of such subshifts, as
it implies that some kind of copy of the endomorphism monoid of the full
shift can be found in it.

About general centralizers, we can say very little, and not for the usual
reason that we can prove that only little can be said: for all I know, the
centralizer of a CA on a full shift might have a very simple description
in general (although I certainly doubt this). I cannot even say anything
about the centralizer of a single almost equicontinuous CA, or positively
expansive CA, in general, although these are not that far away from the
classes of equicontinuous and bipermutive CA which we study in Section 4.2
and Section 4.3, respectively.

Of course, unary operators give rather trivial examples of algebras. As
far as I know, nothing general can be said about, say, the endomorphism
monoid of a subshift with a single binary operator. There is a lot of study
about cellular automata respecting a group structure, but for example, a
lot is open even about cellular automata respecting a lattice structure. In

14 At least, I'm not aware of much evidence to the contrary. I don’t even know any
convoluted tailor-made examples that have interesting endomorphisms, let alone natural
ones.



Theorem 4.4.5, we prove that surjective CA on a full shift with cellwise
lattice structure are very simple. In order to generalize this for all mixing
SFTs with a cellwise lattice structure (and even for non-surjective CA on
full shifts), one probably needs a deeper understanding of lattices than I
currently have.

At least one chapter is completely missing from this thesis, and that is
Chapter 5: Random Subshifts. I believe that the typical subshift has a very
simple endomorphism monoid containing shift maps only. Of course, it is
not clear what a ‘random’ or ‘typical’ subshift is. For example, if we forbid
a random finite set of words (in any sense), then we have some probability
to obtain the empty SFT, some probability to obtain one with positive en-
tropy, and some probability to obtain a countable SF'T. The endomorphism
monoid of the empty SFT is trivial, and that of a positive entropy SFT is
never even close to simple. Furthermore, as we hint in Section 2.4, we believe
‘most’ countable SF'T's have at least somewhat complicated endomorphism
monoids as well. In [Mill2], it is shown that if for each i, a word of length n;
is forbidden, for a sparse enough sequence of n;, then the subshift obtained
is necessarily nonempty. This means that we can forbid a random subset
of words of such lengths, and surely obtain a nonempty subshift. I would
be very interested in knowing what happens, even for particular distribu-
tions — is the endomorphism monoid typically small, typically big, and how
sensitively do the answers depend on the choice of the distribution?

1.2 The General Setting — Dynamical Systems

We begin with a brief exposition of dynamical systems, as this general frame-
work is the main motivation for the study of subshifts.

We assume a basic knowledge of set theory, topology, groups, monoids,
category theory, and automata theory. In set theory, the reader should be
familiar with concepts such as surjectivity, injectivity and countability. In
topology, the reader should be familiar with concepts such as metrics, open
and closed sets and compactness. For groups and monoids, the reader should
be familiar with concepts such as subgroups and submonoids, should know
what the identity element is, and should have an intuitive understanding
of group and monoid actions. In category theory, the reader should know
the concepts of objects and morphisms. In automata theory, the reader
should know what regular languages are, and should be able to describe
what kind of set a regular expression such as 0*(1* 4+ 0*) means. Readers
with a background in mathematics should be able to quickly pick up missing
preliminaries as needed in any standard reference, or Wikipedia.

We will only talk about monoid actions in this section — they are the
main motivation for the definitions, but are of little use in the more restricted
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setting in later sections. Our monoids always act from the left, and if M is
a monoid acting on a space X (and the action is clear from the context),
then Y C X is an M-subset of X if MY C Y.

When no topology is given, a finite set is considered to have the discrete
topology, and a subset of R has the subspace topology. Our natural numbers
include 0: N = {0,1,2,...} € Z. The metric of a metric space is usually
called d: X x X — R, and we write U @ X if U is an open set in X. As a
general convention, for products X x Y, m; and o denote the projections
to the X- and Y-component, respectively. We use the Kleene star operation
on sets of functions by

F*={idx}U{fio---ofx | keNAVi€[1,k]: f; € F},
when F € XX, where idx is the identity function on X.

Definition 1.2.1 Let M be a (discrete) monoid. An M-dynamical system
is a pair (X,T) where X is a compact metric space and T (the dynamics

or the action) is a continuous action of M on X. For m € M, we write
Tm : X — X for the action of m on X.

Usually, the monoid acting through 7" is either (N,+) or (Z,+) in this
thesis. We usually use additive notation for the monoid M, as we do not
discuss non-commutative actions. For both actions of N and Z, the map
T = T" defines the action completely, and we often just give this function,
and call it the dynamics'®. Dynamical systems are studied in many levels
of generality in the literature. Often, the monoid acting on X is replaced
by a topological group such as R, and sometimes only actions of Z or N are
included. Furthermore, the assumptions of compactness and metrizability
can be relaxed.

Often, we say just that X or T is a dynamical system, when the action
or the space, respectively, is obvious.

Definition 1.2.2 For any monoid M, the M-dynamical systems form a
category, and the morphisms between two M -dynamical systems (X, T) and
(Y, T') are the continuous functions f : X =Y such that foT™ =T"™o f
for all m € M. A surjective morphism is called a factor map, an injec-
tive morphism is called an embedding, and a bijective morphism s called a
conjugacy. A subset Z C X is said to be invariant if T™(Z) C Z for all
m € M, and the dynamical system (Z,(T™|z)men) is called a subsystem.

We now define our main object of study, the endomorphism monoid, and
its better-known cousin, the automorphism group.

5However, in a sense, the N-action given by a homeomorphism f : X — X differs from
the Z-action it gives, as for example the subsystems it gives are subtly different. This is
why we give our definitions in terms of monoid actions.
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Definition 1.2.3 Let (X,T) be a M-dynamical system. Then we write
End(X) for the endomorphism monoid of X, that is, the set of endomor-
phisms (morphisms f : X — X ) with monoid structure given by function
composition, and identity element idx : X — X (the identity function).
We write Aut(X) for the automorphism group of X, that is, the restriction
of End(X) to automorphisms (endomorphisms that have a left and right
inverse).

As we only consider compact dynamical systems, every bijective mor-
phism f: X — Y is invertible in the sense that there exists a left and right
inverse f~':Y — X such that f~'o f =idy and fo f~! =idy.

In Chapter 4, when subshifts in a (universal algebraic) variety F are
considered, if fi,..., fx are the algebra operations on X, End(X, f1,..., fx)
will refer to the endomorphism monoid, and Aut(X, fi,..., fx) to the auto-
morphism group of X, in the category of dynamical systems with algebraic
structure in this variety. More concretely, End(X, f1,..., fx) is the restric-
tion of End(X) to morphisms f : X — X such that if f; : X™ — X, then
[i(f(x1), ..., f(zn)) = f(fi(z1,...,2y)) forall z; € X and 1 < j < k.

Whenever the monoid M is abelian, the action of any element of M
is itself an endomorphism of an M-dynamical system. Conversely, each
endomorphism f of a dynamical system X gives a new action of N (or Z) on
X, that is, (X, f) is an N-dynamical system in its own right (or a Z-system
if f is bijective).

We note that embeddings and subsystems are essentially the same thing:
a subsystem is the image of an embedding, the image of an embedding is
a subsystem, and the embedding induces a conjugacy between its domain
and image. Thus, often, subsystems are defined as embeddings. Note that
if f: X — Y is a conjugacy, then the inverse f~!:Y — X is a conjugacy
as well (by compactness).

1.2.1 Dynamical Notions

We now define several properties of N- and Z-dynamical systems. We only
list brief definitions, and do not discuss them in much detail here. We
discuss many of them in more detail when they are used, and give more
concrete alternative definitions. The properties are often referred to as ‘dy-
namical properties’, because they are invariant under conjugacy (because
they are defined in terms of the topology and the action). The following are
convenient shorthands for accessing limit points.

Definition 1.2.4 Let X be a topological space, let f : X — X. Then
e the set of f-limit points of Y is Q¢(Y) = (,,50 Upsm [™(Y),
e the limit set of f is Qp(X) =(,50 ["(X),
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o forY C X, we define wy(Y) =U,cy Qr({y}),

e and the asymptotic set of f is wr = ws(X).

The limit set (resp. asymptotic set) of an N-dynamical system (X, T")
is Qp (resp. wr). In the case of compact spaces (in particular if f is the
action of a dynamical system), the limit set is just the set of points = with
an infinite chain of preimages ...,z_2,2_1,29 =  such that f(x;) = z;41.

Definition 1.2.5 Let M = N or M = Z. An M-dynamical system (X, T)
18

e nonwandering, if

VUCX :3Im>0:T™U)NU #10

e transitive, if
VUO,VG@X :Im>0:T™U)NV #0
e mixing, if
VUO,V@X :Im>0:Vn>m :T"(U)NV £

e sensitive, if

Je>0:Vre X,0>0:Fye X,n>0:d(z,y) <IN(T"(y),T"(x)) > €

e equicontinuous, if

Ve>0:30>0:Ve,y:d(z,y) <d = Yn>0:d(T"(x),T"(y)) < €.

e expansive, if M = Z and

Je>0:Ve,ye X:x#y = IneZ:dT"(y), T"(x)) > ¢

e positively expansive, if

de>0:Ve,ye X:o#y = In>0:d(T"(y),T"(x)) > €

e nilpotent, if

drge X :T(zg) =20 AV € X :In>0:T"(x) = xo
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e uniformly recurrent, if

VUCX:In>0:Vee X :{z,...,T" Y z)}NU #0

Many of the properties we listed make sense also for, say, M = Z%, but
we have little need for them.

It is clear that a sensitive system is not equicontinuous. There is also a
natural intermediate notion. We say that z € X is an equicontinuity point
if

Ve>0:30>0:Vy:d(z,y) <d = Vn>0:d(T"(x), T"(y)) <e.

It follows from compactness that (X, T') is equicontinuous if and only if every
point x € X is an equicontinuity point. Sensitivity implies that there are
no equicontinuity points. We say that (X,T) is almost equicontinuous if
equicontinuity points form a residual set. For this and related observations
see the discussion after Definition 5 in [Kur97].

We say that a dynamical system X is minimal if it has no subsystems
apart from the trivial ones, () and X. It is easy to see that minimality is
equivalent to uniform recurrence when M = N or M = Z, and we will use
the two terms rather interchangeably.

1.3 The Specific Setting — Subshifts

1.3.1 Words and Subshifts

Let S be a finite set, referred to as the alphabet. A word over S (or pattern)
is a function w : [0, — 1] — S, where ¢ = |w| is the length of w. When an
interval [a,b] with a # 0 is used in place of [0, ¢ — 1], the word is implicitly
shifted back to the origin. For indexing particular coordinates or intervals
of words, we always use the notation w; = w(i) or wi,p = w|gs), Where
wliqp = w such that u; = wiy, (and intervals with b < a give the empty
word e : ) — S). If u = Wi,y for some a,b € N, we write u C w and say u
occurs in w. We write

[wly = [{i | Wi it|u|—1] = u}l,

that is, |wl, is the number of occurrences of u in w (used mainly when u
is a letter). We write S* for the set of all words over S. For u,v € S*, we
write uv for the concatenation of u and v, defined by

(uw); = { u; if i < |ul,

Vi_|y| Otherwise.

This gives S* the structure of a monoid, with the empty word as the identity
element.
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Remark 1.3.1 We use 0-indexed words.

The dynamical systems we are most interested in are the so-called one-
dimensional subshifts, that is, spaces of one- or two-way infinite sequences,
with the left shift as the natural dynamics. In general, for any monoid M,
subshifts give natural examples of M-dynamical systems.

Definition 1.3.2 Let M be a commutative monoid, and let S be a finite
set (with the discrete topology). The set SM (with the product topology) is
called the full (M-)shift on S. It becomes an M -dynamical system (S™, o)
with the action 0™ (x); = Tiym for x € SM and i,m € M. The action o
1s called the shift map. We also refer to the functions o™ as shift maps.
Subsystems of S™ are called (M -)subshifts.

The elements of SM are usually called points, and in the case M = N or
M = Z, they are indexed just like words. In particular, for x € S%, T(q )
is the word zgaxqy1---ap if b > a, and otherwise, the empty word. For a
subshift X c S%, as we did with words, we write w C z if T[ap = w for
some a,b € Z, and w C X if w C z for some z € X. Informally, we refer to
both 7 and the symbol x; as the ith cell of x.

In the case M = Z, the topology of SM is given by the metric

d(x7y) = inf{2in ‘ Ll—n,n] = y[fn,n}}‘

There is a lot of leeway in this definition, and for example, replacing 27" by
%H gives the same topology.

If we set M = Z in Definition 1.3.2, we obtain the (one-dimensional)
two-way subshifts, which are our main object of interest, and which the
word ‘subshift’ usually refers to. They can be given a nice combinatorial
definition'®: if X is a two-way subshift, then there exists a set of forbidden
words F C S* such that X is the set of sequences x € S% for which T4 &
F for all 4,57 € Z. If M = N, we obtain the (one-dimensional) one-way
subshifts. The combinatorial description of one-way subshifts is equivalent
to that of two-way subshifts (but the shift map o then need not be surjective,
and it is almost never injective). Given a one-way subshift X c SN, its two-
way extension is the two-way subshift X< = {z € S% | Vi : Tio0) € X}

Remark 1.3.3 The term ‘shift’ refers to both the map o and the space SM.
The reason for this is that in the theory of dynamical systems, the action
and the space are often considered the same object. This can be confusing.
To avoid confusion while conforming to the standard terminology, we try to

16We refer to definitions as ‘combinatorial’, when the definition is given in terms of
concrete combinatorial objects such as words. Such definitions can usually be found for
concepts defined for subshifts and cellular automata.
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always also use the term ‘map’ when talking about o, and when talking about
the space SM or its subsets, we explicitly use the term ‘space’, unless this
1s implied, as in ‘full shift’, ‘subshift’ or ‘sofic shift’. However, we do use
this type of identification of the space and the action for cellular automata
(defined below), and for example say that a cellular automaton f: X — X
is transitive if the corresponding N-system (X, f) is transitive.

We write B, (X) = {w € S" | w C X}, and B(X) = U,B,(X). The set
B(X) is called the language of X. It is known that two subshifts are equal if
and only if their languages are equal [LM95]. If X C S is a subshift, then
the (topological) entropy of X is

heop(X) = Tim_ L log|B,(X)|.
The entropy of a one-way subshift is defined with the same formula. Topo-
logical entropy can be defined for dynamical systems in general, but for
this particular notion, the combinatorial definition is simpler to state than
the topological one, so we omit the general definition (unfortunately, this
means that we have to define entropy separately for cellular automata below,
although both correspond to the same dynamical notion).

The language of a subshift X is always extendable, that is, w € L implies
awb € L for some a,b € ST, and factor-closed, that is, uv € L implies u € L
and v € L. The converse holds as well, in the following sense. Given an
extendable language L C S*, we write

BYL)={zxeS%|Vr:3welL: Ty W)

This is the smallest subshift whose language contains L. We always have
B~1(B(X)) = X, and we have B(B~!(L)) = L if and only if L is factor-
closed.

The points z,y € S% are left-asymptotic if ; = y; for all small enough
1 € Z, and right-asymptotic if x; = y; for all large enough i € Z. If the points
are both left- and right-asymptotic, we say that they are simply asymptotic.
For a € S, we say «x is a-finite if x is asymptotic to the point y with y; = a
for all ¢ € Z (that is, only finitely many cells of x contain a symbol other
than a). The sequences &(_oo,) € SN for n € Z (defined in the obvious
way) are called left tails of x, and x|, o) € SN the right tails. In general,
we manipulate left tails and right tails as if they were words, but take care
to only write wv if u is a left tail or a word, and v is a right tail or a word.
The meanings of such expressions should be clear.

A point € S% (resp. = € SN or S™N) is (o-)periodic, or spatially
periodic with period p if x; = x4, for all i € Z (resp. i € Nor i €
(=00, —=p+1]), and the words x; ;1) are called repeating patterns. We say
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that © € S% is periodic to the left if it is left-asymptotic to a periodic point,
and define periodicity to the right symmetrically. For z € SN, if Tjo0) 18
periodic, we say x is eventually periodic.

For describing points in subshifts, our conventions are as follows: The
notation w? (resp. wN or w™N) for w a word (or symbol) means the pe-
riodic point z with period |w| with x|, -1 = w (resp. z[g|u—1) = w or
T(_|w|+1,00 = w). We call points a? for a € S unary. The notation  uv.v'w™
means the point z with g |,/—1] = v, T_jp),=1] = Uy T[jul,00) = wN, and
T(—oo,—|o]] = 1N, so that the symbol . means that the cell to the right of it
is coordinate 0, and *° means that the symbol or word next to it is repeated
infinitely.

We say two words u and v agree from the left if u = vv’ or v = uu’ for
some u’,v'. We define agreeing from the right symmetrically. Given a total
ordering < for an alphabet S, the lexicographical order of S™ is defined by
u<v <= u=wau,v=wh', a <b. A rotation of a word u is a word
wv such that vw = u. A word is primitive if it is not the proper power
of another word, that is, u is primitive if u = v = v =wu,n = 1. If
uv = vu, then v and v are powers of a third word w. More generally, it is
known that if two words u, v satisfy a nontrivial equation, such as u* = v*
for some k, ¢ > 0, then they are powers of the same word. It is also easy to
see that if a word is non-primitive, then all its rotations are non-primitive,
and thus a word is primitive if and only if all of its rotations are primitive.
A word u € S* is Lyndon if it is primitive and strictly lexicographically
smaller than any of its rotations. A set of words U is mutually unbordered
if uww =wu' = v=w=c¢€V|w > u for all u,u/ € U, that is, no two
words in U can overlap in a nontrivial way. A word u is unbordered if {u}
is mutually unbordered.

The main property of Lyndon words we need is that a periodic sequence
has a unique repeating pattern which is a Lyndon word (in particular, we
will not need Lyndon decompositions):

Lemma 1.3.4 Given a finite set U of Lyndon words, there exists M > 0
such that if u,v € U and w is an arbitrary word such that |w| > M, w C uM
and w C vM, then u = v.

Proof. It is enough to, for a single pair u,v € U with u # v, find M
such that ©™ and v™ cannot overlap by M. If such M does not exist, then
for some rotation v’ of v we even have that arbitrarily large M, u™ and
(v')M even agree from the left by at least M. If M is large enough, then
this means v and v’ satisfy a nontrivial equation of the form u* = (v')’,
and are thus powers of the same word. Since v is primitive, so is v/, and it
follows that v = v’. Since u and v are Lyndon, we must have u = v, since u
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and v have the same rotations, and both v and u = v’ are lexicographically
minimal among them. m

A Lyndon word is in particular unbordered, but not every unbordered
word is Lyndon. Unbordered words are very useful in the study of cellu-
lar automata because they allow us to, for example, talk about replacing
words by other words without having to worry about possible overlaps (in
which case replacement might be nondeterministic, and not doable by a
CA). Luckily for us, unbordered words are unavoidable:

Lemma 1.3.5 (Theorem 8.3.9 in [Lot02]) Letz € SN. If x is not peri-
odic, then for any m, there exists an unbordered word w C = with |w| > m.

Periodicity of points can be replaced by periodicity (that is, finiteness)
of subshifts using the following lemma.

Lemma 1.3.6 If a subshift X C SZ% or X c SN contains only periodic
points, then it is finite.

Proof. The case X C $%" is proved in Theorem 3.8 in [BDJO8]. The
case X C SN follows by considering the two-way extension of X. m

Lemma 1.3.7 Let X C S% be an infinite subshift. Then for any m, there
exists an unbordered word w T X with |w| > m.

Proof. Lemma 1.3.6 and Lemma 1.3.5. =
Of particular interest to us are the SFTs and sofic shifts, which form an
important family of subshifts studied in symbolic dynamics.

Definition 1.3.8 If the subshift X C S% can be defined by a finite set of
forbidden words, it is called an SET (subshift of finite type). If the set of
forbidden words can be taken to be a reqular language, then X is said to be
sofic.

The theory of sofic shifts, SFTs and one-dimensional subshifts in general
is discussed in depth for example in [LM95] and [Kit98]. These classes
appear throughout this thesis. Note that an SF'T is sofic, since any finite
set is regular. It is well-known that a subshift is sofic if and only if it is the
image of an SFT in a block map. Another characterization of sofic shifts
is that their languages are regular, and sofic subshifts of S% can thus be
identified with regular languages L. C S* which are extendable and factor-
closed. Tt can be shown that when L is regular, B~1(L) is a sofic shift, and
we usually use this notation for defining sofic shifts (and even SFTs).

In addition to using languages and the B~! operator, we can sometimes
describe a subshift as the orbit closure of a point — this is particularly useful
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in Chapter 3. If x € S%, we write O(z) for the orbit {o"(x) | n € Z} of
a point z, and it is easy to see that the closure O(z) C S% is always a
subshift. We say % is the subshift generated by the point x. We also
use this terminology in the case of one-way points, and then the subshift
generated is one-way as well. It is not hard to show that O(z) is always a
transitive subshift, and it is minimal if and only if Vy € O(z) : O(y) = O(y).

Essentially just by rephrasing the definitions, one can obtain combina-
torial characterizations of the dynamical properties listed in Definition 1.2.5
for a one-dimensional subshift. We mainly need the characterizations of
mixing, transitivity and minimality. A subshift X is transitive (resp. mix-
ing) if for any words u,v C X, for some (resp. any large enough) n € N, we
have uwv C X for some word w with |w| = n. In fact, if X is a transitive
(resp. mixing) sofic shift, then there exists N € N such that w can be taken
to have length in {N,...,2N — 1} (resp. N) for any u,v C X. In the case
of mixing SFT, such N is called a mixing distance.

Minimal subshifts are another very important class of subshifts. A sub-
shift is minimal if and only if, for each u = X, there exists N, such that if
w C X and |w| > Ny, then v C w. They are at the other end of the spec-
trum of subshifts than SFTs and sofic shifts, in the sense that nontrivial
mixing SFTs allow the most freedom in the construction of points (in that
they are considered the natural generalization of a full shift), while minimal
subshifts allow the least.

1.3.2 Cellular Automata

We now define cellular automata as the endomorphisms of subshifts.

Definition 1.3.9 A cellular automaton on an (M-)subshift X is an en-
domorphism f : X — X in the category of (M-)dynamical systems. A
morphism between subshifts X and Y 1is called a block map

By our definition of ‘morphism’, a cellular automaton is then a (not
necessarily surjective) continuous map from X to itself which commutes
with the shift map 0. Again, a combinatorial definition can be given when
M = Z: if X is a subshift, then a function f : X — X is a cellular
automaton if and only if there exists » € N and a function fi,. : S+ — 8
such that f(z); = fioc(Z[i—ritr)) for all z € X,i € Z. Here, 7 is called the
radius of f, and fioc the local rule of f. Of course, there are infinitely many
possibilities for the radius and the local rule, as one can increase the radius
freely. To simplify discussion, we implicitly choose one such pair (r, fioc) for
each cellular automaton f. The shift map is of course a cellular automaton,
with radius 1 and local rule oj. : S® — S defined by ojoc(a,b,c) = c.
Sometimes, it is convenient to have more general local rules fioe : SN — S,
where N C Z is not necessarily an interval of the form [—r,7]. Such N is
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called a neighborhood for f, and we again implicitly choose a neighborhood
for each CA.'7

In the case M = N, we can find a similar characterization, but the
local rule fioe : S™' — S only looks to the right of the current cell, and
f(@)i = floc(T}iiqr)). Namely, a morphism clearly cannot look to the left
when deciding the new state of the origin in the case M = N. Because it
commutes with the shift, this means it can never look to the left. More
generally, in both the cases M = N and M = Z, block maps from X c SM
to Y C (8")M can be given local rules fio. : S¥ 1 — S or fioc : S™F = 9.
In the case M = Z% the combinatorial definitions generalize in the obvious
way.

Similarly as for subshifts, dynamical properties of cellular automata can
usually be given definitions in terms of words. For example, a cellular au-
tomaton f : X — X on a subshift X C % is transitive if and only if for
every u,v € Bary1(X) there exist n and x € X such that x_; ;) = v and
(@) k) = -

We say a CA is eventually periodic if there exist n, p such that f"1?(z) =
f"(z) for all z € X. If f*(z) = x for some z, x is said to be f-periodic,
or sometimes temporally periodic when the CA f is fixed. A CA f: X —
X is equicontinuous if and only if it is eventually periodic'®. The most
basic examples of equicontinuous maps are the symbol maps @ : S — S
which (by abuse of notation) are also applied to points z € X by 7(z); =
m(x;). A symbol permutation is a bijective symbol map. Cellular automata
corresponding to symbol maps are often called autarkic in the literature.

There are also properties of interest for cellular automata which do not
directly come from dynamical notions. In particular, we say a CA f: X —
X where X C S% is captive if there exists a local rule fio : 2"+t — S such
that fioe(w) C w for all w € S* 1. We say s € S is a spreading state for f if
fioc(w) = s whenever s C w, and the radius of f is at least 1.1 A quiescent
state is a state s € S such that f(s%) = s%.

We say a CA f: §% — S% with neighborhood N C Z is permutive [sic]
in the coordinate j € N if for any € S%, the map

at— f(m(—oo,j—l]ax[j—&-l,oo))O?

7A CA on a full shift has a unique minimal neighborhood, but this is not the case in
general.

181 do not know a reference for this that applies to all subshifts, so we include the
proof: Equicontinuity implies eventual periodicity since there are finitely many width-1
traces, which are then eventually periodic (see below). The other direction is clear from
the definitions.

9Note that, unlike captivity, our definition of a spreading state depends on the choice
of fioc. What is actually important is that this state spreads at least as fast as any other
computation might happen — at the ‘speed of light’ — and that it fills the whole point.
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where a is put in the jth coordinate on the right, is bijective from S to S. We
say f is left-permutive if it is permutive in the coordinate j where j = min V.
Right-permutivity is defined symmetrically, and a CA is called bipermutive
if it is both left- and right permutive, and has neighborhood size at least
2. We define permutivity similarly in the multidimensional case, and say
f: 57 - §7% with neighborhood N is permutive in a coordinate v € N if,
when cells of the neighborhood other than ¢ are fixed, permuting coordinate
U permutes the image of fio.. A CA (of any dimension) is said to be totally
extremally permutive if it is permutive in the cells in the corners of the
convex hull of its neighborhood.

If f: X — X is a CA, then a spaceship for f is a point z € X which is
left-asymptotic to a periodic point y, right-asymptotic to a periodic point
z, and f"(z) € O(x) for some n € N. This is slightly more general than the
usual definition of spaceships, but it is the correct one for the application in
Section 2.2. We say that a spaceship is nontrivial when x is not spatially
periodic.

The abuse of notation we use with symbol maps — 7 (z); = m(z;) — is also
used with cellular automata on a few occasions, when we feel it simplifies
the discussion.

Definition 1.3.10 Let X be a subshift, and let f : X — X be a CA with
radius r. If w C X, we define

f(w) = (froc(wp,2r)s - - s foc(Ww|—2r—1,jw|-1])) € Bjuw|—2r(X)

when |w| > 2r 4+ 1, and f(w) is the empty word if lw| < 2r.

When discussing CA on product subshifts X x Y C S% x ()% where
X C S%Y C (8)% are subshifts, it is more convenient to think of the
products as subshifts of (S x $)%, in the obvious way. We sometimes refer
to m;(z) as the ith track of x. More generally, we use the terminology of
tracks for subshifts Z C (S x $')%. When f: X - X and g:Y — Y are
cellular automata, their Cartesian product is the CA fxg: X XY — X xY
where f is applied in the X-component, and g in the Y-component. We use
the term ‘Cartesian product’ instead of just ‘product’ to distinguish this
from the composition operator o. These notions of course generalize to any
finite collection of subshifts.

The study of subshifts encompasses the study of cellular automata in
the following sense. Let X be an M-subshift, and let f : X — X be a
cellular automaton on X. The spacetime subshift of f is the dynamical
(M x Z)-system (Y,T') where Y = {y € X% | Vi € Z: yiy1 = f(y;)} with
the action ((T""™(y))i); = (Yi+n)j+m- The elements of ¥ are called the
spacetime diagrams of f. Usually, we have M = Z, and we then call the y;
rows of y and ... (y—2)i(y-1)i-(v0)i(y1)i(y2)i ... columns of y. The rows of

20



spacetime diagrams of f are exactly the limit set of f. If f is surjective, then
the spacetime subshifts contain complete information about f. Similarly, we
define the one-way spacetime subshift and diagrams of f, as the (M x N)-
system containing the positive orbits. Given a CA f: X — X for X C S4,
the width-n trace subshift of f of a cellular automaton is the subshift

{(m[[),n—l]a f($)[0,n—1}7 fQ(x)[O,n—1}7 e ) | US X} - (Sn)N'

Again, there is a natural two-way variant where the trace is two-way infinite.
We define the entropy of a CA using its trace subshift: the entropy of a
CAf: X—>Xis
nh—>rg<> htop (Xn)a

where X, is the width-n trace subshift of f.

We discuss a general concept that is useful for studying CA on multi-
dimensional subshifts X c $Z°. Namely, we define actions of matrices on
points. We denote by SL4(Z) the set of d x d matrices over Z that, as
functions acting on column vectors from the left, map Z¢ bijectively to it-
self. It is well-known that these are exactly the matrices whose determinant
is invertible in Z, that is, £1. For a point z € SZ* and A € SLq(Z), we
define A(x) € 521 by A(z)z = za@m) for all 7i € Z?. (Here, the choice of
A over A='in z A() is by analogy with how shift maps are defined: we
always transform the view, not the point.) For a subshift X C Szd, we
define A(X) = {A(z) | z € X}. From the linearity and bijectivity of A it
follows that A(X) is also a subshift. For a cellular automaton f : X — X,
we define A(f) : A(X) — A(X) by A(f)(z) = A(f(A7Y(x))) for all z € X.
It is easy to see that A(f) is a cellular automaton, and if N C Z% is the
neighborhood of f, then A=!(N) is that of A(f). Moreover, A(f) usually
shares all dynamical and computational properties of f. Also, if f and g are
CA on SZ°, then A(fog) = A(f) o A(g).

1.3.3 Nilpotency and Periodicity

As nilpotency is important in Chapter 2, we discuss nilpotency of (multidi-
mensional) cellular automata and its several equivalent definitions in some
detail. First, this is equivalent to having a singleton limit set [CPY89].
Of course, since the limit set is a subshift, it is then {Ozd} for some symbol
0 € S. We give two more equivalent definitions. The first is weak nilpotency,
which is proved equivalent in the case of a transitive subshift in [GR10a],
and in more generality in [Sall2] (we give the proof below). The second
one, asymptotic nilpotency, is equivalent to nilpotency in the case of a full
shift in all dimensions. This is proved in [GRO8] in one dimension, and in
more generality in [Sall2]. In one dimension, the result is in fact true for
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all SFTs. The transitive case is proved in [GR10a], and the general case is
noted in [Sall2].

Definition 1.3.11 Let X C SZ be a subshift. A CA f: X — X is weakly
nilpotent if
EIaES:VxEX:EInGN:f”(x):azd.

It is asymptotically nilpotent if
JacS:VeeX:ImeN:Vm>n: f"(z)5=0a

We sometimes prefix the symbol a (usually @ = 0) in these terms, and
talk about, for example, 0-asymptotic nilpotency. A CA is weakly nilpotent
if every point maps to the point 02" after finitely many steps, but the number
of steps needed may change depending on the point. Asymptotic nilpotency
means that every individual cell eventually becomes zero (and stays that
way forever) no matter what the initial point is. In other words, the width-
1 trace subshift contains only points of the form w0>°.

Asymptotic nilpotency can also be defined in terms of the limit point
operator w: a cellular automaton is asymptotically nilpotent if and only if

P e X :Vee X wr({z}) = {2},

that is, |wg| = 1. The ‘if’ is because if there exists such z°, then it must be
unary:

wi({z}) = {2"} = wi({o(@)}) = {o(=")} = {2"},
0

so ¥ = o(zY).

Proposition 1.3.12 (Proposition 1 in [Sall12]) Let X C SZ% be a sub-
shift. Then a cellular automaton f on X is nilpotent if and only if it is
weakly nilpotent.

Proof. Suppose on the contrary that the CA f : X — X is weakly
nilpotent but not nilpotent for some subshift X C 52 Since nilpotency is
equivalent to the limit set being a singleton, there exists a point x in the
limit set of f with x5 # 0, for the symbol 0 such that all points reach the
all-0 point in finitely many steps. Since z is in the limit set, it has an infinite
chain (z°);cn of preimages. If r is the radius of f, then since 0 is a quiescent
state, there must exist a sequence of vectors (v);en such that [v’ — v | <r
and o' (z%)5 # 0 for all i € N.

Let y be a limit of a converging subsequence of (¢* (z));en. Since f is
weakly nilpotent, there exists n € N such that f"(y) = 0%". Let i € N be
such that

,Ui+n (x

YByn(@) = C ZM)BQM((S)' (1.1)
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By definition of the 2 and v*, we have that f(z*") = 2% and thus

fn(y)Bm(a) =o' (mz)BM(G)
contains a nonzero symbol, a contradiction, since we assumed f"(y) = 0",
]

As in the one-dimensional case, we say z,y € SZ% are asymptotic if they
differ in only finitely many cells. We also define a-finiteness for points of
SZ% in the obvious way.

Theorem 1.3.13 (Theorem 4 in [Sall12]) Let X C S% be an SFT where
0-finite points are dense. Then a cellular automaton f on X is 0-nilpotent
if and only if it is asymptotically 0-nilpotent.

The denseness of finite points is not a property that is often assumed
from multidimensional SFTs. A more commonly used gluing property is so-
called strong irreducibility. Many other gluing properties have been defined,
and some are listed for example in [BPS10].

Definition 1.3.14 Let X C S be a subshift. We say X is strongly irre-
ducible if there exists m € N such that for any y,z € X and any finite sets
N,N'" c Z% with min{|v — /| | v € N,v' € N’} > m, there exists a point
x € X with xy =yn and Ty = Znv.

By compactness, the sets N and N’ can then be taken infinite as well,
and we easily obtain the following lemma.

Lemma 1.3.15 Let X C S%° be a strongly irreducible SFT and let x € X.
Then the points asymptotic to  are dense in X.

Since a subshift has to have the point 0Z" in order to support asymptot-
ically nilpotent cellular automata, we see that in our case of interest, strong
irreducibility is a stronger requirement than the density of 0-finite points:

Corollary 1.3.16 Let X C 57" be q strongly irreducible SF'T. Then a cellu-
lar automaton f on X is nilpotent if and only if it is asymptotically nilpotent.

Proof. We only need to show that if f is asymptotically nilpotent, then
it is nilpotent. Of course, if f is 0-asymptotically nilpotent, then 02" € X.
But then by the previous lemma, 0-finite points are dense in X, and thus f
is nilpotent by Theorem 1.3.13. m

Theorem 1.3.17 (Corollary 1 in [Sall12]) Let X C S% be an SFT. Then
a cellular automaton f on X is nilpotent if and only if it is asymptotically
nilpotent.
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The equivalence of nilpotency and asymptotic nilpotency can be seen
as stating that the trace of a CA is weakly nilpotent (as a subshift) if and
only if the CA itself is. While it is not in general true that if the trace is
eventually periodic, then the CA is as well (the Spreading State CA fio. :
{0,1}3 — {0,1}, fioc(a,b,¢) = min{a, b, c} is a counterexample), at least if
all traces are periodic, then the CA is as well. This is a direct corollary of
Lemma 1.3.6.

Lemma 1.3.18 Let X be an arbitrary subshift. If the width-1 trace of f :
X — X is periodic, then f is periodic.

1.3.4 Some Standard Tools

Combining Theorem 8.1.16 and Corollary 4.4.9 of [LM95], and Corollary
2.21 of [Fio00], we get the following version of the well-known Garden of
Eden Theorem.

Definition 1.3.19 Let X C SM be a subshift. A CA f: X — X is said
to be preinjective if whenever {i € M | x; # y;} is finite and nonempty for
vy € X, we have f(z) # 1(y).

Injectivity of course implies preinjectivity. In the case M = Z, the
condition that {i € Z | x; # y;} is finite means precisely that = and y are
asymptotic.

Lemma 1.3.20 (Garden of Eden Theorem) Let X be a mizing sofic
shift. If the CA f : X — X is preinjective, then it is surjective. If f is
surjective and X is an SFT, then f is preinjective.

In particular, it follows that an injective cellular automaton is surjective.
This is no more true if X is not mixing, as shown by [Fio00], and we give
some examples in Section 2.2 as well. Interestingly, the fact that injective
cellular automata are surjective is true on full shifts in very high (perhaps
full) generality: A huge class of groups is known where injectivity implies
surjectivity [CSC10]. Groups where this implication is true are called sur-
junctive. They were introduced in [Got73] in 1973, and it is still not know
whether there exists a group which is not surjunctive.

An important tool from symbolic dynamics is the Extension Lemma,
which is useful for constructing cellular automata with desired properties:

Lemma 1.3.21 (Extension Lemma [Boy83]) Let T', T' and U be sub-
shifts and let f : T'" — U be a block map, so that the following conditions
are satisfied:

o U is a mixzing SFT.
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o T’ is a subshift of T.

e the period of any periodic point of T is divisible by the period of some
periodic point of U.

Then, f can be extended to a block map g : T — U so that g7 = f.

By definition, all cellular automata commute with shift maps. Con-
versely, if a cellular automaton on a mixing SFT X commutes with all other
cellular automata, then it is a shift map, with a single caveat. This is a
variant of a result of Ryan from [RyaT72], although the endomorphism case
is a bit easier. We define the center of a monoid M to be the set of elements
a € M such that ba = ab for all b € M.

Lemma 1.3.22 If X is a mizing SFT, then f is in the center of End(X)
if and only if

e f is a shift map, or

e X has a single unary point a® and f(zx) = a® for all x € X.

Proof. First, suppose f(X) is a single unary point. If X has another
unary point b4, then g(x) = b% clearly does not commute with f. If there
is no other unary point in X, then for all g € End(X) we have g(a?) = a4,
so that f is indeed in the center.

Next, suppose that f(X) is not a single unary point, and for all i there
exists z € X such that f(x)g # ;. We may assume f has one-sided radius.
We first show that there exists a spatially periodic point x with f(x) ¢ O(z)
such that f(x) is not unary. For this, let v T X be an unbordered word
longer than the one-sided radius of f, and the window size and mixing
distance of X. Let also v,v" be two words such that f(v) contains two
distinct symbols, |v| = [v'| < |u| and vou,uwv'u © X. Let z = (uvu)?. If
f(2) & O(z), we are done. Otherwise, let f(z) = ¢/(z) where 0 < j < |uvu|
and let y = (uv'u(uvu)¥)? where k > 2 is arbitrary. We necessarily have
f()i = f(2); for i € [Jun'|, |uv'u(uvu)®| — 1], which — due to the fact u is
unbordered — already determines that if f(y) € O(y), then f(y) = o/ (y).
If f(y) ¢ O(y), then we are again finished. Otherwise, let w be such that
uwu C X, and for all z, (g |y|—1] = w == f(z)o # 7;. Now, choose

z = (w'u(wou)w)?.

Since v # v and |v| = |[v/| < |u], it is easy to see that f(z) € O(z) =
f(x) = o9(z). But this is impossible due to the occurrence of w.
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Now, we have a periodic point = such that f(z) is not in its orbit and
f(z) is not unary. The subshifts X’ = O(z) and X" = O(f(z)) are then
disjoint closed sets, so the map

() = z ifxeX’
g\r) = o(x) ifxeX”
is a cellular automaton on the subshift X’ U X”. Since X' U X" C X, we

can think of ¢’ as a block map from X’ U X” into X, and by the Extension
Lemma 1.3.21, ¢’ extends to a cellular automaton g : X — X, and then

9(f(x)) = o(f(z)) # f(x) = fg(x)),

so that f is not in the center. m

Ryan’s precise result in [Rya72] is that if a surjective map on the full
shift commutes with all automorphisms, then it is a shift map. Ryan’s
theorem can be recovered by constructing the CA g more carefully to make
it reversible. We skip the proof as Lemma 1.3.22 is more than enough for
us.

1.4 Computation and Counter Machines

1.4.1 Counter Machines

Counter machines are one of the many equivalent ways to formalize the
idea of computation. This is also one of the simplest models. A counter
machine is a finite state machine equipped with a finite number of counters,
each of which can contain any natural number. We pay most attention
to this model since, unlike the more commonly used (and computationally
equivalent) model of Turing machines, simulating counter machines can be
done on countable SFTs.?% As we will, on occasion, make quite detailed
constructions with such machines, we give a precise definition.

Definition 1.4.1 Let k € N. A k-counter machine is defined as a triplet
M = (¥,k,0), where ¥ is a finite state set and

§C (S [LE] % {Z P} x2)U (D x [LE] x {-1,0,1} x ¥)

the transition relation. A configuration of M is an element of ¥ x N¥. The
machine M operates in possibly nondeterministic steps as directed by J, in
the sense that M induces a relation

(=nm) C (2 x Nk) x (2 x Nk)

by (pvnla"'vnk) =M (Q7m1a"'7mk’) Zf

200n two-dimensional countable SFTs, Turing machines can be used as well. For ex-
ample [JV11] constructs two-dimensional countable SFTs with interesting computational
and dynamical properties based on Turing machines.
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2.5, Z,q) €5 An; =0AYi:m; =n,,

.7, P,q) €6 Anj >0AVi:m; =n,,

p.J,1,q) €S Am; =nj +1AVi# j:m; =ny,

(
(
(
(

p,J,0,q) € 6 AVi:m; =mny, or

° (p,j,—l,q) 65/\mj:nj—1/\Vi7éj:mi:ni.
The interpretation of (q,ni,...,ng) is of course that the machine is in
state ¢ with counter values n1,...,n;. We denote the transitive and reflexive

closure of =, by =7},, and if a = b, we call a a predecessor of b and b
a successor of a. We usually do not have explicit initial and final states, as
this does not affect the semantics of the machine. Instead, we say that a
configuration is initial if it has no predecessor, and final if it has no successor,
and dedicate states for particular purposes as needed.

We say the machine M is (structurally) deterministic if for any pair of
distinct tuples (p1,i1,71,q1), (P2,%2,72,q2) € 0, if p1 = p2 then i3 = iy and
{j1,72} = {Z, P}. That is, from any state, either there is at most one way to
continue, or there are exactly two ways, depending on whether a particular
counter is 0. Dually, we call the machine (structurally) reversible if for any
(p1,i1, 41, q1), (P2, 92, j2, q2) € 0, if g1 = g2 then iy = iz and {41, j2} = {Z, P}.
That is, every state can either be entered in at most one way, or there
are exactly two ways, and the previous state is determined by whether a
particular counter is 0.

For a deterministic machine M, a configuration (p,ni,...,nx) is halting
in exactly four cases. Namely, this happens if § contains

e 1o tuple of the form (p,7,j,q) for j € {—1,0,1,Z} and n; =0,
e 10 tuple of the form (p,i,7,¢q) for j € {—1,0,1, P} and n; > 0, or
e a tuple (p,i,—1,¢q) and n; = 0.

The first two cases mean that the counter machine has no rule that de-
termines the new state, and the third means that the machine attempts to
decrement a counter below 0. If none of these cases occurs, then (p, ny, ..., ng)
has a unique successor configuration.

We state some direct corollaries of the definitions as a lemma.

Lemma 1.4.2 If M is deterministic, then = is a partial function, that
18,
a,bce ExXNA(a=y DA (a=yc) = b=c

If M s reversible, then it is an ‘injective relation’, in the sense that

a,bce ExXNA(a=p o) AN(b=yc) = a=h.

27



If M is deterministic and reversible, there exists a deterministic and re-
versible counter machine M~ such that

(CL =M b) <~ (b = -1 a).

Note that (the transition relation of) a reversible counter machine need
not be bijective, only injective. Furthermore, there exist injective counter
machines which are not reversible with this definition (although the differ-
ence is minor). Similarly, a machine where there is a unique transition from
each state is not necessarily deterministic with our definition. The classi-
cal reference for counter machines is [Min67], although our definitions are
essentially from [Mor96].

Given a counter machine M, we write G for the directed graph (Vas, Ear)
where Vyy = % x N¥ and Ey = {(a,b) € V2 | a = b}, called the configu-
ration graph of M. Note that if M is deterministic and reversible, then G
is a disjoint union of paths.

There is a convenient way of converting an arbitrary deterministic counter
machine into a deterministic and reversible machine. The following result
can be extracted from the proof of Theorem 3.1 in [Mor96]. Namely, in
Lemma 1.4.3, we state the specific way in which the reversible counter ma-
chine constructed in [Mor96] simulates the original one, since the theorem,
as stated in [Mor96], is hard to use as a black box.

Lemma 1.4.3 (Proved as Theorem 3.1 of [Mor96]) For any determin-
istic k-counter machine M = (3,k,0) there exists a deterministic and re-
versible (k + 2)-counter machine M' = (X U A,k + 2,8") such that for all
ms,ni,h € N and q,p € X,

(Q7m17"')mk) :>M (p7nl)"'7nk)
holds if and only if there exists £ € N with
(¢,m1,...,mg, h,0) =2, (p,na, ..., 0, ¢,0)

where the intermediate states of the computation are in A. Furthermore, if
there are no = pr-transitions to (resp. from) state q in §, then there are no
=\ -transitions to (resp. from) q in ¢§'.

This gives us a rather direct simulation of a deterministic counter ma-
chine by a reversible one. Note that we do not have much control over the
(k + 1)th counter — this is where the information needed for running the
machine backwards is stored. The precise transformation from h to £ is that
when a bit of information is forgotten by M (that is, a configuration with
two distinct preimages is entered) this bit is stored in the (k + 1)th counter
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by ¢ = 2h + b, where b is the bit that was forgotten (that is, b is 0 or 1
depending on what the previous configuration was). The transition along
the states in A performs the computation h +— 2h + b in a deterministic and
reversible fashion, and then returns control to the states X.

1.4.2 The Arithmetical Hierarchy

Let ¢ be a first-order arithmetical predicate. That is, ¢ is a predicate that
contains some number of free variables, some existentially and universally
quantified variables, addition, multiplication, constants in N, the relation <
and Boolean operations, and when the free variables are given values in N,
it is either true or false. If ¢ contains only bounded quantifiers (variables
are only quantified up to a function of other variables), then we say ¢ is 28
and II). For all n > 0, we say ¢ is X if it is equivalent to a formula of the
form 3k : ¢ where ¢ is II2_; (and contains k as a free variable), and ¢ is
119, if it is equivalent to a formula of the form Vk : ¢ where 1 is 39 ;. This
classification of arithmetical formulas is called the arithmetical hierarchy (see
e.g. [0di89, Chapter IV.1] for an introduction to the topic). We write @
for the set of formulas with k free variables, and other variables quantified
with bounded quantifiers. The nonstandard quantifier 3°°n : ¢(n) has the
meaning ‘there exist infinitely many n such that ¢(n).” This quantifier is
useful due to the following lemma.

Lemma 1.4.4 (Dual of Lemma 2 in [KSW60]) Let £ € N and ¢ €
®opr1. Then there exists ¢ € i1, uniformly computable from ¢ and k,
such that

Ing :Vng t - Ing1 : Vngg : Ingkgr  d(na, .., Nogtr)
s equivalent to
Ing : 39 1 I%ng 1 - TN npaq s V(N1 . MEr).

A subset A of Nis X0 or Y, if A = {x € N | ¢(x) holds} for some
¢ with the corresponding classification. It is known that the X! sets are
exactly the recursively enumerable sets, and the II{ sets their complements.
The recursive sets form precisely the intersection 3¢ NTI{. When classifying
sets of objects other than natural numbers (e.g. words), we assume that
the objects are in some natural and computable bijection with N. Also, a
subshift is given the same classification as its language, so that, for example,
sofic shifts are II{ subshifts, and in general a subshift is I1{ if and only if
there exists a Turing machine (or counter machine) that outputs a list of
forbidden patterns that defines it. Similarly, a subshift X is recursive if

there is a Turing machine that, given a word w, eventually outputs w C X
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or w £ X, depending on which is the case. See [CR98] for a general survey
on I1Y sets.

A subset A C N is many-one reducible (or simply reducible) to another
set B C N, if there exists a computable function f : N — N such that z € A
iff f(z) € B. If every set in a class C is reducible to B, then B is said to be
C-hard. If, in addition, B is in C, then B is C-complete.

It is well-known that the computational power for the formulas does not
change if general recursive languages are allowed in place of the formulas
with only bounded quantifiers, in the sense that X! consists of precisely the
recursively enumerable languages, and in general 22 contains the kth Turing
jump of the empty language.

1.5 What is ‘Simple’?

We now make the idea of simplicity precise, by defining three properties
that an endomorphism monoid may or may not have. The three properties
we define are predictability, sparseness, and being finitely generated. These
will be our canonical measuring sticks of simplicity, and we try to investigate
them for the subshifts of each of the chapters. Endomorphism monoids of
mixing SFT are not simple in the sense of any of these definitions.

The first definition, being finitely generated, is rather self-explanatory.

Definition 1.5.1 The endomorphism monoid is finitely generated if there
exists a finite set of endomorphisms F such that all endomorphisms are
composed of those in F.

It is well known that the endomorphism monoid of a mixing SF'T is not
simple in this sense:

Proposition 1.5.2 The endomorphism monoid of an infinite mixing SFT
s not finitely generated.

Proof. By Theorem 7.8 in [BLR88], the automorphism group is not
finitely generated. On mixing SFTs, the product of two endomorphisms f, g
is an automorphism if and only both f and ¢ are automorphisms. This can
be seen as follows: By Lemma 1.3.20, all injective cellular automata are
surjective. If g o f is an automorphism, then f is injective, and it follows
that f is surjective. Since g has to be injective on the image of f, it is
injective, and thus surjective as well. This means that if the endomorphism
monoid were finitely generated, then the finitely many automorphisms in
the set of generators would generate the automorphism group. Thus, the
endomorphism monoid is not finitely generated. m

We choose the following as our canonical notion of computational sim-
plicity:
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Definition 1.5.3 The endomorphism monoid of X C S% is predictable if,
given a local rule fioe : S — S corresponding to a CA f: X — X and
a pair of words u,v C X, it is decidable whether there exists n € N and a
point x € X with (g |,—1] = u such that f"(x)( s|—1) = v. If this problem
1s decidable for a single f, we say f is predictable.

Of course, if there is an unpredictable endomorphism, then the endo-
morphism monoid is not predictable either.

This notion captures, into a yes/no question, whether the subshift X
can support dynamics for which the reachability problem for pairs of words
is undecidable. There are many other ways to state this basic idea, such
as considering, instead, whether a given point eventually evolves into an-
other one. However, such a definition often either hides computation in
the description of the points, or requires periodic points, which we do not
have in Chapter 3. The reachability problem is (up to a subtle technical
difference®!) referred to as the halting problem in [DKVBO06].

Proposition 1.5.4 The endomorphism monoid of an infinite mixing SFT
1s not predictable.

Proof. First, the problem is very easy on a full shift if we can choose
the alphabet, and we begin with this case. We choose the alphabet S =
(XU{«+,—=}) x A)U{#}, where X is the set of states of a Turing machine
M and A is the alphabet of M. The state # will be spreading for the CA
we construct. For z € S%, we write m1(z) for the point y with y; = a if
z; = (a,b), and y; = # otherwise. If 7i(x) is locally not in the countable
SFTY = B~!(—* ¥ +*), the CA outputs the spreading state #. On points
where 71 (z) € Y, the Turing machine M is simulated in the obvious way.

Now, it is easy to choose the machine M so that the prediction problem
is undecidable — all we need to do is to make sure the fact that the tape
is infinite in both directions is not a problem. For this, we can take the
alphabet A to contain left and right border symbols #, and #,, such that
the head cannot escape from between them, the left border symbol never
moves and the right border symbol is moved to the right as space is needed,
and can also be moved back to the left by the Turing machine. Nothing is
read from the other side of the borders. Now, even restricting to pairs of
words of the form ((#pw#,, — s <)), (#0'#,, — t %'w/‘)), where s,t € 2
are states of the Turing machine (on top of some symbol) and w,w’ € A*,
the prediction problem for the CA is clearly undecidable if we choose the
Turing machine properly. By blocking r symbols together, where r is the

21Unlike [DKVBO06], we do not require that the system f : X — X be effective. However,
the symbolic dynamical system f : X — X is effective whenever X has a recursive
language, and this is usually the case in this thesis.
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radius of this CA, we obtain a CA on the full shift (S")% which has radius
1, and an undecidable prediction problem.

As for the case of a general mixing SFT X C S%, let m be a window size
and a mixing distance for X, and let k£ be the minimal alphabet size needed
for the construction in the previous paragraph, with a CA with radius 1.
Use Lemma 1.3.7 to obtain an unbordered word v of sufficient length that
we can find k£ + 1 words ug,...,ur C X, all of the same length |u;| < |v|,
such that X’ = B~Y((vuy + - -+ 4+ vug)*) is an SFT and a subset of X. For
this, we can first choose the k + 1 words w of the same length, then choose
v such that |v] > |uj| + 2m, and finally extend the words u/ by words of
length m on both sides to obtain words wu; such that vu;v C X. Let J = |v|,
N = |u;| and U = {ug, ..., ux}.

Now, there is a unique way to parse each point of X’ into a concatenation
of the vu;, since v is unbordered and N < J. Given any radius 1 cellular
automaton ¢ on a full shift [1, k]%, we construct a corresponding CA on X.
First, extend g to the full shift [0, k] by making 0 a spreading state.

Now, we define an auxiliary block map h : X — (SU{#,$})% as follows:

#7 if Eljaj/:ke [jv]l]/\x[jd’] =,
h(:U)k = Tk, if Hj,j/ k€ [j+J,j/—J]/\$[j7j/] EUU’U’ and
$, otherwise.

We define f(z) as a function of (z,h(z)) as follows:
o If h(x); € {#,$}, then f(z); = z;.

o If h(z)) 0 = w7 wy# ugr, then
F@) [y aa N —T-N] = Ug(i i)

o It h(z)ysinj—s n) €U but h(z)y,q & U# U#'U, then

[j7j
f(@) i+ 74N,j/—T—N] = Yo-

The three cases do not overlap, and the new value of each coordinate is
determined by exactly one of them. Furthermore, the locations of vs never
change, and f(z)[; 1 € vUv <= z; ;1 € vUv, so the image of each point in
X isin X. Now, f simulates g on X', and if j;, j/ € [1, k] for all ¢ € [1, n], then
the word #Jujl#‘] . #Jujn#‘] is reachable from #Juji#‘] . #Juﬂl#‘] in
the action of f if and only if j; - - - jiy, is reachable from 7] - - - j;, in the action
of g. This of course means that f is not predictable for suitable g. =
Roots of predictable CA are also predictable, in the following sense.
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Lemma 1.5.5 Let X C S% be a recursive subshift. Suppose there exist
m € N and p > 0 such that given a local rule fioe : S* Tt — S correspond-
ing to a CA f : X — X and a pair of words u,v T X, it is decidable
whether there exists j € N and a point © € X with (g |, —1] = u such that
fm+jp(x)[07‘v|_1] =v. Then the endomorphism monoid of X is predictable.

Proof. Given fio. : St — S, v and v, we need to decide whether there
exists n € N and a point x € X with x|, = u such that f"(m)mw,l} =
v. First, it is clear that it is decidable whether this is true for some 0 <
n < m. Since X is recursive, we can easily enumerate the preimages W =
Uf;ol ~1({v}). Tt is then enough to check whether there exist w € W, j € N
and x € X with x[oj‘u‘_u = wu such that fm+]p(.1‘)[_(‘w‘_|v|)/27(|w|+‘v‘)/2_1} =
w, which is decidable by the assumption, and the fact that W is finite. m

In [BLRS8S], Aut(X) for a mixing SFT X C S% is discussed in detail.
The symmetry of X is defined as the relative asymptotic density of Aut(X)
in the set of all cellular automata on X:

1
s(X) = limsup — log log |Aut(X),/,
n

n—o0

where Aut(X),, denotes the set of bijective cellular automata on X that can
be defined on the neighborhood [—|n/2], [n/2]]. Inspired by this, we define
the following.

Definition 1.5.6 Let C be a family of cellular automata on S%. The density
of C is defined as

. 1
d(C) = limsup — logg logg| [Cyl, (1.2)

n—oo N

where C, denotes the set of cellular automata in C that can be defined on the
neighborhood [—|n/2],[n/2]] (or when d-dimensional subshifts are consid-

ered, [—|n/2], [n/2]]%).

Definition 1.5.7 A set of cellular automata (usually the endomorphism
monoid) is sparse if it has density 0.

We usually discuss the density of a subset of cellular automata on a fixed
full shift with alphabet S, and then base |S| makes the most sense for the
logarithm, since then the set CA of all cellular automata on S% has density
1, as

1 1 n 1
—loglog|CA,| = = loglog |S|I°" = log|S| + — loglog|S| — log|S].
n n n

Of course, if one is studying general mixing SFTs, it makes more sense
to fix the base, and in particular, one should use the same base as in the
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definition of entropy. With this convention, in [BLR8S8], it is shown that
the density of the endomorphism monoid of a mixing SFT is equal to its
entropy, and Kim and Roush have proved that this is the case also for the
automorphism group. Of course, the choice of base only affects the density
by a multiplicative constant, so whether or not the endomorphism monoid
is sparse is independent of the base.

Proposition 1.5.8 The endomorphism monoid of an infinite mizing SFT
18 not sparse.

Since density is easily seen to be smaller than or equal to the entropy
in general, this is not a very good notion of simplicity for Chapter 2, as all
countable subshifts have zero-entropy. However, the notion is relevant in
Chapter 3 and Chapter 4.

Our definition of density measures the asymptotic growth rate of a set
of cellular automata on a given alphabet, when the radius increases. An
alternative perspective is taken in [The05] (developed further in [BT09]),
where the radius » € N is fixed, and the density of a set C of cellular
automata is defined as the limit of |C"|/|C.A"|, when it exists, where C" is
the set of CA in C with radius 7 on an alphabet of size n. For example, the
density of captive cellular automata is 0 with this definition, while we will
show in Proposition 4.2.21 that it is 1 with Definition 1.5.6.

Many of the main results and open questions of the thesis can be ex-
pressed in terms of these concepts:

e In Section 2.4, we show that endomorphisms of countable sofic shifts
have high computational power. The endomorphism monoid is (rather
trivially) sparse, but not always finitely generated or predictable.

e In Section 3.1, we give a minimal subshift whose endomorphism monoid
is not predictable. The example is not very satisfying, and we leave
open the existence of more natural ones. We also leave open the ex-
istence of minimal subshifts whose endomorphism monoids are not
sparse.

e In Section 3.2, we show that subshifts associated with primitive Pisot
substitutions have a simple endomorphism monoid: it is sparse, finitely
generated and predictable. This follows from the much stronger result
that it is in fact virtually the group generated by the shift map.

e In Section 3.3, we show by example that Toeplitz subshifts can support
non-finitely generated endomorphism monoids.

e In Section 4.2, we show that mixing SFTs with equicontinuous re-
versible unary operators always have a complex endomorphism monoid,
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in the sense that it contains an intrinsically universal CA. We show
that the endomorphism monoid of a full shift with symbol permuta-
tions as unary operations is not sparse or predictable. However, when
the operations are not reversible, or there is additional algebraic struc-
ture, the endomorphism monoid may contain only shift maps.

e In Section 4.3, we show that full shifts with algebraic structure given
by bipermutive unary maps have sparse endomorphism monoids. We
do not know whether the endomorphism monoid is finitely generated
or predictable in general, but in the case when the map is a group
homomorphism for a cellwise group operation, both questions reduce
to the corresponding questions for group shifts.

e In Section 4.4, we prove that the set of surjective endomorphisms of
full shifts with cellwise lattice structure is sparse, finitely generated
and predictable.

We mention that according to [Hocl0], it is shown in [KR90] that the
automorphism group of the full shift embeds into Aut(X) for any mixing
SFT X. More generally, it is not hard to show that the endomorphism
monoid of a full shift embeds into End(X) for any mixing SFT X.
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Chapter 2

Countable Subshifts

2.1 Cellular Automata on Countable Subshifts

In this chapter, we study subshifts with countably many points. Our em-
phasis is on the one-dimensional case. This chapter is an extended version
of [ST12a].

General countable dynamical systems have been studied in for exam-
ple [Bob02], and some interesting countable dynamical systems are con-
structed for example in [HYO01]. Despite countability being a rather strong
assumption, such systems can be quite intricate. Countable subshifts are
in particular countable, compact and Hausdorff spaces, so they are homeo-
morphic to successor ordinals [MS20, Milll] (although we do not take this
approach when studying countable subshifts). Computational properties of
general countable one-dimensional subshifts are discussed for example in
[CDTW12]. The case of countable multidimensional SFTs is discussed for
example in [BDJ08, JV11, BJ13, ST12b, ST13d], from the structural and
computational points of view.

Entropy is the standard tool for detecting information flow in a dynam-
ical system. A countable dynamical system necessarily has zero entropy as
we show in Proposition 2.1.3, and as a consequence, also a cellular automa-
ton on a countable subshift has zero entropy. This means that in terms of
information, not much is going on. Some dynamical behaviors are also im-
possible in high generality, for example, transitivity is impossible in general
in countable systems. See Proposition 2.1.8 for more such properties.

In the one-dimensional case, the most accessible countable subshifts are
probably the bounded ones (including countable SFTs and sofic shifts).
Points in such subshifts are concatenations of finitely many subwords taken
from a finite set of periodic points. Cellular automata on bounded sub-
shifts are in many ways simpler than general cellular automata in terms of
dynamics. Namely, certain types of (usually common) behavior are impos-
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sible, and certain (usually undecidable) properties become easily decidable.
In particular, nilpotency turns out to be decidable on countable sofic shifts,
while it is undecidable on the full shift. These results follow from what we
like to call the Starfleet Lemma (Lemma 2.2.3), which states that, starting
from any point, a fleet of spaceships eventually appears.

In terms of computational power, on the other hand, cellular automata
on countable SFTs and sofic shifts can be very complicated. We show that
their limit sets can be just as complicated as those of general cellular au-
tomata, and their nonwandering sets and asymptotic sets are also beyond
computability. These results are proved by using the lengths of the periodic
parts of points as counters of a counter machine.

Before getting to the theory, we show some examples of what cellular
automata on countable sofic shifts can look like, in Figure 2.1 and Figure 2.2.

p pN pN N p v
p p NN N
pY p N 4 p Y
pN N N 4 N

p N N Nl
NN Nl Y

4 p 4 Y
4 pN 4 Y
4 N Y
4 N Y
4 4 Y
4 4 4

Figure 2.1: A radius 1 CA on a countable sofic shift. We have empty cells,
and particles ./, \, and {}. The rule is that particles move in the direction
they point to, and if two particles enter the same cell, they join into a
|-particle. The countable sofic shift is set of points containing at most n
particles, where n > 8. In general, any CA that cannot increase the total
number of particles — or some local function computed from them — gives rise
to an infinite family of such systems. This includes all number-preserving

CA.

2.1.1 The Cantor-Bendixson Derivative

Especially when studying countable topological dynamical systems, the Cantor-
Bendixson derivative is a very important tool. While combinatorial tech-
niques suffice in the proofs of this chapter, the Cantor-Bendixson rank gives

a nice way to state general conjectures about countable sofic shifts, and we
thus briefly outline this concept.
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Figure 2.2: Three radius 1 CA on the countable SFT B~1(0*1*(+ + —
)2*(3 + 4)4*) with bouncing arrows, and numbers indicated by 5 shades
of gray. In the CA on the left, the bouncing area 1*(+ + —)2* expands
steadily. In the CA in the middle, its width expands as needed. In the CA
on the right, the width of the area is preserved.

If X is a topological space, we say x € X is isolated if {x} is an open
set. For every ordinal A, we define the Cantor-Bendizson derivative of order
A of X, denoted by X (or X’ when A = 1), by transfinite induction:

° X(O) — X’
o X+ = {2 € X(® | z is not isolated in X}, and
o X(@ — ﬂ5<a X ) if o is a limit ordinal.

There must exist an ordinal A such that XN = XA+ a5 X is a set. The
lowest such A\ is called the Cantor-Bendizson rank of X, and is denoted
rank(X). We say that a space is perfect if it contains no isolated points.
From the definition of the derivative operator, it is clear that then X (rank(X))
is a perfect space. We note that in a subshift X C S4, a point z is isolated
if and only if there exist ¢ € Z and w € S* such that for y € X, y; i1 jw—1] =
w <= y = x. We use this fact without any explicit mention in many
of our proofs. We say that a topological space X is ranked if and only if
X (rank(X)) — ¢ The rank of a point x, rankx (x), in a ranked topological
space X is the smallest ordinal A such that z ¢ X0,
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Example 2.1.1 Forn > 1, let X,, = B~1(1*2*---n*). The Cantor-Bendizson
derivative of X, s

n
X, =B (i 1)@+ 1))
i=1
It is easy to check for subshifts X andY that (X UY) = X" UY’, and the
subshift B~Y(1*--- (i — 1)*(i + 1)*n*) is conjugate to X,_1 for all i. Thus,
by induction, we see X, is ranked, and its Cantor-Bendizson rank is n + 1.

2.1.2 Entropy and Endomorphisms in General

We begin with a few observations about countable subshifts and their endo-
morphisms which follow directly from topological and measure theoretical
considerations. For example, the topological entropy of a countable subshift
is always 0. I am not aware of a simple combinatorial proof for this fact, but
it is a straightforward corollary of the following version of the Variational
Principle.

A (probability) measure p on a subshift X is called ergodic if for all
subshifts Y C X, either u(Y) = 0 or u(Y) = 1. A measure is extremal is
a set M of measures if p = ¢t/ + (1 — ¢)u” for t € (0,1) implies p/ = p”.
It is well-known that the ergodic measures are extremal among invariant
measures. The following follows easily from Theorem 8.7 in [Wal00].

Lemma 2.1.2 Let X C S% be a subshift. Let
Muax(X) = {p | p is shift-invariant, by, (X) = hiop(X)}.

Then Mpax(X) is nonempty, convexr and compact, and its (nonempty set
of ) extremal points are exactly the ergodic measures of X in Mpax(X).

Here, h,(X) is the measure-theoretic entropy of X with respect to the
measure p. For the definition of this, see [Wal00] or any other standard
reference; for understanding the corollary, we only need that a measure
with finite support has entropy O.

Proposition 2.1.3 Let X C S% be a countable subshift. Then we have
hiop(X) = 0.

Proof. By the previous lemma, h,(X) = hyp(X) for some ergodic
measure g on X. By countable additivity and shift-invariance of y, p is
supported by periodic points. Since p is extremal among shift-invariant
measures, there can be only one such orbit, that is, p is of the form

Op +---+ 6ak—1(x)
k )
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for some z € X, k = |O(z)|, and 0, is the Dirac measure centered on x
defined by 0,(A) = {y € A |z = y}|. As we mentioned, the entropy of such
pis 0, 80 hiop(X) =hy(X)=0. m

The converse of Proposition 2.1.3 is not true. For example, many mini-
mal subshifts have zero entropy and contain uncountably many points (for
example, the substitution subshifts in Section 3.2).

Corollary 2.1.4 The entropy of a cellular automaton on a countable sub-
shift X € S% is 0.

Proof. The entropy of a cellular automaton is, by definition, the limit
of the entropies of its width n traces when n tends to infinity. If the CA
f X — X has radius r, then the length-k words in the width-n trace of f
are determined by words of length n + 2kr of X. It is then easy to see that
the width-n trace has entropy at most 2r times that of X. Thus, if X has
entropy 0, so does f. m

As we mentioned in Section 1.5, the density of the endomorphism monoid
is smaller than or equal to the topological entropy in general, and thus we
have the following corollary.

Corollary 2.1.5 The endomorphism monoid of a countable subshift is sparse.
We now proceed to Proposition 2.1.8. For this, we need a few lemmas.
Lemma 2.1.6 A nonempty perfect subset of S% is uncountable.

Proof. This is well-known (in more generality), but we give a simple
combinatorial proof for completeness. Let w = X be an arbitrary central
pattern of a point of X. Since X is perfect, there exist two incomparable
patterns wg,wy, both extending w, which are each the central pattern of
some point of X. We continue inductively on wg and w;, always splitting
w,, into incomparable patterns w,g and w,1, which both extend w, and are
the central pattern of a point of X. The function

: (oo} o
(ag,ai,as,...)— 117rln 0Wagayag---a,0

(where Wagaag--a, i centered around the origin) is an embedding of 2N into
X, and thus X is uncountable. m

Lemma 2.1.7 Let X C S% be a subshift. If X is countable, then the isolated
points are dense in X.

Proof. Suppose X is countable. Let Y be the set of all points y such
that for some open neighborhood U > y, there are no isolated points in U. If
Y is empty, then the isolated points are dense. Otherwise, Y is a nonempty
perfect open set, so Y is perfect also with the relative topology, and thus
uncountable. This is a contradiction. m
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Proposition 2.1.8 Let f be a cellular automaton on a countably infinite
subshift. Then f is not sensitive, transitive or mizing, and f is almost
equicontinuous.

Proof. Since every isolated point is trivially an equicontinuity point
and the set of isolated points is countable and dense (by Lemma 2.1.7),
equicontinuity points form an open dense set (in particular a residual set),
so f is almost equicontinuous. Thus, f is not sensitive.

Now, suppose that f is transitive. We show that X has finitely many
isolated points: If z € X is any isolated point, then since f is in particular
nonwandering, we have f"(x) = z for some n > 0. By transitivity, each
isolated point of X is in the f-orbit {z, f(z),..., f* '(x)} of x. From this
and another application of Lemma 2.1.7, it follows that the isolated points
are a finite dense set in X. Thus X is finite as well. m

2.1.3 Countable Sofic Shifts

One-dimensional countable sofic shifts are particularly accessible examples
of countable subshifts. Points of countable sofic shifts consist of long periodic
patterns and a bounded number of disturbances between them. We mention
the main robustness result for this class:

Proposition 2.1.9 Let X C S?% be a sofic shift. Then X is countable if
and only if hiop(X) = 0.

Proof. By Proposition 2.1.3, if X is countable, then it has entropy 0.
Now, suppose X is uncountable, and let (Y, g) be a finite-to-one SFT cover
for it such that the forbidden words of Y C T4 have length 2 (for example,
the minimal right-resolving cover, [LM95]), and ¢ has radius 0. Since g is
finite-to-one, Y has positive entropy if and only if X does, as the entropies
are equal by Theorem 8.1.16 in [LM95].

Suppose that Y has zero entropy. We note that if y € Y is such that
Yii,i) = awa and y; i = aua and w,u € (T'\ {a})*, then w = u. Namely,
otherwise

(auaw + awau)* C Y,

and it is then easy to see that Y has positive entropy. For such a, it follows
that if y; = a, y; = aand i < j, then y}; ;) € (au)*a. From this it follows that
Y is countable, since each point y € Y is uniquely determined by recording,
for each a € T, the leftmost and rightmost coordinate where a occurs, if
such coordinates exist. If a occurs infinitely many times to the left (right),
then the left tail (right tail) has repeating pattern au, and we record the
repeating pattern and its phase. m

From Proposition 3.8 in [ST13d], it follows that countability is further
equivalent to X being ranked. The Cantor-Bendixson rank of every sofic
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shift is finite, so this means X = ) for some n € N. From Lemma 2.1.13
below, and the easily shown fact that a positive entropy sofic shift contains
an infinite transitive subshift, we obtain one more equivalent condition: ev-
ery transitive subshift of X is finite.

In the next section, we need some mathematical way to express the
structure of a countable sofic shift. For this, we give the following version
of Lemma 1 from [ST12a], which gives a way to parse points of SFTs into
unique finite representations. From this, we extract a weaker parsing result
for sofic shifts.! In fact, for SFTs, we prove a slightly stronger result than
the one given in the statement of the lemma; see the discussion after the
proof. Lemma 4.8 from [PS10] is similar in spirit.

Lemma 2.1.10 Let X be a countable SFT. Then there exists a finite set T
of tuples of words in B(X) such that every point x € X is uniquely repre-
sentable as

x = Puguiultve Vo1 U U USY (2.1)

for some ny,...,npm—1 € N\ {0} and (ug,...,Um,v1,...,0p) € T. Con-
versely, every point representable as such a concatenation is a point of X.

Proof. Let
U={ueB(X)|> u™ e X,uis a Lyndon word},

and let M be greater than the window size of X. It is easy to see that U is
finite, directly using the fact that X is countable, the pigeonhole principle,
and the fact that X is an SFT.

We explain a procedure that, given x € X, constructs a tuple T'(z) € T
that can be used to represent x as in (2.1).

Let I ={...,[jo,ko— 1], [j1, k1 — 1], [j2, k2 — 1], ...} be the list (ordered,
say, by j first and k second) of all intervals [j,k — 1] such that, writing
N =Fk—jJ, 2j_MNk+MN-1] = u?MF! for some u € U. By Lemma 1.3.4,
we may choose M > 1 large enough that if u,v € U, and w C «v™, w C
vM and |w| > M, then u = v. Then, intervals of I can not overlap and
T, ki—1] = Tljis1,kis—1] Whenever k; = jii1. It is easy to see that any
long enough subword of x contains a subsequence from which a periodic
point can be extracted, by the pigeonhole principle. Since periodic points
are of the form u# for u € U, this implies a bound (independent of z) on
the length of intervals J such that J N |JI = 0. On the other hand, if
Tl kie1) = T, ky—1)» then [k, jy — 1] CUT (zp,,j,—1) must be a power of

T am sure Lemma 2.1.10 is true as such also for sofic shifts, but I do not know a nice
proof for this; in particular, our proof sketch given in [ST12a] omits the details of dealing
with ‘nonlocal’ periods of periodic parts of points, and as such, the algorithm given only
works in the case of SFTs.
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T(j, k;—1], Or X is uncountable). We thus obtain a bound (independent of x)
on the total length of Z \ |JI.

The left tail of x is periodic with a unique repeating pattern u € U,
and we let ug = u. If = is in the orbit of u%, we take the tuple (u) as the
representation of x. Otherwise, we let [jj,, ks, — 1] € I be the coordinates
of the (M + 1)th rightmost occurrence of ug in the left tail of x, so that
luo| + [ju, kgy — 1] ¢ I. Let uy,...,un be the ordered list of words of U
such that u; = @[;, j, 1 for some [Gr ks, =1 = [Js,js, + N =1 €I
and [j;, — N,j;, — 1] ¢ U, with ¥i : J;y1 > J;. The list is finite by the
observations in the previous paragraph. The intuition is that these words
u are Lyndon representatives of long enough periodic patterns of z. We
choose v; to be ‘the rest’ of x: v; = ik, Note that v; is not taken
to be x|

1y, =1
Ky qyda =1

Denote by T'(x) the tuple (ug, ..., Un,v1,...,Vny) constructed above for
x. Since we choose a tuple for each point of z, it is clear that each = has
a representation of the form (2.1), by the tuple 7'(x). On the other hand,
since in each tuple T'(x), v; ends and v;41 begins with at least M repetitions
of u;, we have that all points that have a representation of the form (2.1)
are in X.

Now, we only need to show that the representation is unique. For this,
we note the following properties for the tuples T'(x):

e v; begins with uf\f 1 but does not agree from the left with uf\f Jlrl.

M+1

e v; ends with u but does not agree from the right with u;”

e v; does not begin with vM if u # v.
e v; does not end with v™ if u # v.
e v; does not contain v>M*! for any v € U.

We only prove the first property, the rest being similar. If there are
less repetitions in the beginning of v;, then this can only mean that v; is
a proper prefix of u},, as otherwise the occurrence of u;_1 to the left of v
would not have been in I when adding the tuple for x. In general, however,
it is impossible for v; to be a prefix of a word in u;_;, as clearly this would
imply that there is an overlap of uf‘f , and uf\/[ of length at least M in x.
If there are more than M repetitions in the beginning of v;, then the first
|ui—1| coordinates of v; would have been an interval in I when choosing this
tuple for x, and the impossibility of v; being a proper prefix of uf\f 1“ was
shown above. This concludes the proof of the first property.

Now, suppose T'(z) # T(y), but z € X has two representations

T —

00 ny 1 0o _ ., __ o0 Ny Ny oo
UQUIUT * Uy | Ul = 2 = "~ Sot187 "~ Sppq tMSM
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where the s; and ¢; are taken from T'(y). First, it is easy to see that we have
ug = So and u,;, = Sps, by Lemma 1.3.4. Also, the two tails must exactly
coincide, so that viuft -« u,™ 7 vy, = tls]lvl . --sjjy/[]‘ﬁltM, by the first two
properties of the tuples listed above. Using the five properties, it can be
proved by induction (from either direction) that v; = t;,u; = s;,n; = N; for
all7. m

We remark that not only is there a unique decomposition for each point
x € X, but a block map can output the decomposition, in the sense that
there exists a block map f : X — AZ for a suitable alphabet A such that,
writing #[w] = a,#/*!=1 (where a,, is a distinct symbol for each word w),
we have that

z = ug.vrut o un U

maps to

f(@) = Tt uo] #or]#[ua]™ - - - H#um—1]"" " [om]# [um]™

for all tuples (ug, ..., Um,V1,...,0m) € T and ny,...,nm—1 € N\ {0}. The
map is realized by outputting a,, if the current cell is the leftmost symbol of
u € U such that u repeats at least M times in both directions, # for other
cells that occur in such u € U, and finally compressing the remaining cells
(whose lengths are bounded) into words #[w].

Of course, such a map does not in general exist in the sofic case. For
example B~1(0*(11)*0*) does not allow such a map: necessarily, any symbol
1 sufficiently deep in a repetition of 1s is mapped to #[1] = a;. It follows
that there are representations of *°01™0*° for all large enough n, not only
even n.

Next, we define bounded subshifts, and show their connection with sofic
shifts.

Definition 2.1.11 A language L C S* is said to be bounded if there exists a
finite sequence of words (wy,ws, ..., wy,) such that L C wy ---wy;. A subshift
1s said to be bounded if its language is bounded.

Bounded languages are a very common topic of study in the theory
of formal languages. The notion of a bounded subshift, however, is not
standard.

Lemma 2.1.12 A union of finitely many bounded languages is bounded,
and if L is bounded, then also the factor closure

{u|Fwel:urC w}
of L is bounded.
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Proof. If L and L' are bounded by (wi,...,wy) and (w),...,w},), then
L UL is bounded by (wr,...,w,,wl,...,w,).

For the second claim, suppose L is bounded. Let u = w where w € L.
Then u € vw} ... w;v" where v is a suffix of w; and v a prefix of wg. For
each choice of v,v',j, k, we let w(y . jr) = (v,wj,...,wy,v"), and choose
the bounding language to be the concatenation of the tuples w, s j ) over
tuples (v,v’, j, k). Clearly, the obtained tuple bounds the factor closure of

L. m

Lemma 2.1.13 A subshift is bounded if and only if it is contained in a
countable sofic shift.

Proof. First, the subshift B~!(wiw}---w}) is sofic by definition, and
obviously countable as well. Thus, bounded subshifts are contained in count-
able sofic shifts.

Next, we show that a countable sofic shift is bounded, which of course
implies that all subshifts contained in a countable sofic shift are bounded.
For this, suppose X is countable and sofic. Let (Y, g) be a countable finite-
to-one edge shift cover of X, with g a symbol map. Let T” be the set of
tuples obtained for Y according to Lemma 2.1.10. We let "= ¢g(7”), in the
sense that for (ug,...,vm) € T', we put (g(ug),...,g(vm)) € T. It is easy to
see that the tuples T' give representations of all points € X (in the sense
of the statement of the lemma), and only such points.

Now, for each tuple T'(x) = (ug, ..., Um, V1, ...,Un) € T, the language of
finite subwords of points y € X with T'(y) = T'(z) is bounded by the factor

closure of wj---w} where (wq,...,wy) = (ug,v1,U1,...,Um,Unp). Thus,
B(X) is bounded as the finite union of these factor closures by Lemma 2.1.12.
[ |

Lemma 2.1.14 For each (v, ..., vy ) there exists (wo,...,wy) such that

B (g v}) € BN wp - w}),
and the w; are Lyndon words.

Proof. We may assume the words v; are primitive by replacing them
with their primitive roots, as this can only increase the size of B~ (vj - - - v}).
Next, let v; = u;uy where uyu; is Lyndon. Let u; = ag - Ay and uy =
bi by, where a;,b; € S. Now, replace each v; in the tuple by the words
Aty .oy Qs Wirtli, b1, ., by, |, which are all trivially Lyndon. m

We choose such a bounding tuple (wy, . .., wy) for each bounded subshift
X, called a Lyndon bound for X.

In Section 2.2, to prove Lemma 2.2.3, we will need a way to associate
tuples of numbers to points of a bounded shift. For this, it is useful to
observe that a bounded subshift does not contain arbitrarily large powers of
words other than those in the Lyndon bound, in the following sense.
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Lemma 2.1.15 Let {w; | i € [1,n]} be Lyndon words. Then for large
enoughm, if w™ C B~ (w} - --w}), then O(w?) = O(w?) for somei € [1,n].

Proof. Let k = max{|w;| | i € [1,n]}. Suppose w C B~ (w} - w}). If
m > 2n and |w| > k, then w? C wiz for some ¢. Since w; is Lyndon, it is in
particular unbordered, and it is easy to see that |w;| divides |w|, from which
the claim follows.

There are finitely many words |w| < k, and it is enough to prove the
claim for such Lyndon words (since every word is the power of a rotation of a
Lyndon word). Let M be given by Lemma 1.3.4 for U = {u | v Lyndon, |u| <
k}. Now, wMm = B~ (w}---w}) implies wM = B~1(w}) for some i, and
since w,w; € U, we have w = w;. m

We can now parse general bounded subshifts with the same ideas as in
Lemma 2.1.10.

Definition 2.1.16 Let X be a bounded subshift, let wy ---wy, be its Lyndon
bound, and let m be minimal such that

o Lemma 1.53.4 holds for M =m and U = {w; | i € [1,n]}, and

o if w™ C B H(w}---w}), then O(w?) = O(w?) for some i € [1,n].
Now, let x € X. If x; ;1 = wf”m but Tpj_ w1 Tljji+ws|] ¢ Wi, then the
interval [j +ml|w;l|, 7" — mlw;|] is said to be a wi-sea of z. There can also be
infinite seas, which are also referred to as oceans:

o If v € O(w?), then (—o0,00) is a w;-sea of .

o Ifr sy € wi_N but T(—oo ji+wi|] & wi_N, then (—oo, j' — mlw;|) is a
w;-sea of x.

o Ifr)jo) € wN but T(j—fwi],00) & wN, then [j + ml|w;|,00) is a w;-sea of
x.

The mazimal intervals [j,j'] not intersecting any of the seas are called is-
lands of x.

We make some easy observations, which are proved using the properties
of m, similarly as in Lemma 2.1.10. First, no two seas can overlap, and in fact
there must be a nonempty island between any two seas (by the assumption
on m). A periodic point contains a single two-way infinite ocean (and thus
no islands), but every other point contains precisely two oceans. Also, the
number of seas in x € X is exactly one more than the number of islands.

An important property to ensure is that whenever we see something
periodic, it is actually part of a sea. This follows directly from our choice of
m.
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Lemma 2.1.17 Let X be a bounded subshift and let m be as in Defini-
tion 2.1.16. If v € X and T}j_(mi2)w|,j/+(m+2)w|] = w?, then [4,7'] (if
nonempty) is completely contained in a u-sea of x, where u is the unique
Lyndon word satisfying O(u?) = O(w?).

Note that in particular this means u = w; for some w; in the Lyndon
bound of X (by the definition of a sea).
Proof. By decreasing j and increasing j’ if necessary, we may assume

Tl (m+1) g+ (m+ 1) w]) € W

By the second assumption on m, we have O(w?) = O(w#) for some w; in
the Lyndon bound of X. In particular, by again decreasing j and increasing
j" if necessary, we may assume w = w; and T[j_m/w,| j/+mlw;]] = wk where
k > 2m + 1. Then, by the definition of a w;-sea, [j,j] is contained in one.
The uniqueness is just a property of Lyndon words: O(u?) = O(v%) implies
u = v if both are Lyndon. m

Another important observation is that there is a global upper bound on
the total length of the islands, although we only need the following corollary
of this:

Lemma 2.1.18 Let X be a bounded subshift. Then there exists { such that
if x € X, then [j, '] intersects a sea in x of length at least #.

Proof. Let w} - - - w} be the Lyndon bound of X. Let k = max{|w;| | i €
[1,n]}. If x € X, then z; ;] is a subword of a word in wj ---wy,. Writing
t=j"—17, x[j 1 contains a subword w € wy - --wy, of length at least ¢ — 2k
(by dropping a suffix of one of the words w; from the beginning of zy; j|, and
such a prefix from the end of x; ;7). The word w further contains a subword
w! where |w!| > (t—2k)/n by the (generalized) pigeonhole principle, so that
[7,7'] intersects a w;-sea of x of length at least (¢t — 2k)/n — 2mk. The claim
follows because

(t —2k)/n—2mk > (t — 2k(1 +mn))/n > (t — L) /L,

if ¢ =2k(1+mn). m

We now show some basic results about how this definition interacts with
cellular automata. First, we show that islands cannot appear from thin air.
Indeed they should not: islands represent the aperiodic parts of the point,
and cellular automata cannot make a periodic sequence aperiodic.

Lemma 2.1.19 Let X be a bounded subshift with canonical Lyndon bound
wi---wy, and let f: X — X be a CA. Then there exists k such that if i is
in an island of f(x), then [i — k,i + k] intersects an island of x.

48



Proof. Let r be the radius of f, and let ¢ = max{|w;| | i € [1,n]}. Let
m be as in Definition 2.1.16. Let k = ¢(m + 2) + r. Suppose [i — k,i + k]
does not intersect an island of z. Then, z[;_ ;1 has period p for some
p = |wil, so that in particular f(2)j ririvk—r] = F(@)li—gmt2)itq(m+2))s
and thus f(Z)j—p(m+2),i+p(m+2)] also, has period p. It then follows that i is
in a sea of f(z) by the Lemma 2.1.17, which is a contradiction. m

Using the previous lemmas, we see that long seas must have ‘correspond-
ing’ long seas in the preimage, although their length can, in theory, decrease
quite a bit. The asymmetry is due to the fact that seas can appear from
thin air: a cellular automaton can of course make an aperiodic sequence
periodic.

Lemma 2.1.20 Let k and ¢ be as in the previous lemmas. Then if f(x)
has h seas of length at least 2k 4+ £ + j, then x has at least h seas of length
at least j/¢.

Proof. Enumerate the islands of f(z) as [ji, j/] in increasing order of
Ji, and for each i, choose a coordinate «; € [j; — k, ji + k] which is part of
an island of z (guaranteed by Lemma 2.1.19), so that «; is an increasing
sequence (reordering if needed). Now, for every sea [j/ 41, ji+1 — 1] of length
at least 2k + ¢ + j, [a; + 1,541 — 1] is of length at least ¢ + j, and thus
contains a sea of length at least j/¢ by Lemma 2.1.18. m

Remark 2.1.21 Just like countable sofic shifts are a common generaliza-
tion of (the incomparable classes of) countable SFTs and subshifts of the
form B7L(w}---w?), transitive sofic shifts are a common generalization
of (the incomparable classes of) transitive SFTs and subshifts of the form
B7Y((wy+- - -+wy)*). Subshifts of the form B~ ((w1+- - -+wy)*) are usually
called renewal systems, and they are a well-studied class of subshifts.

2.2 CA on Countable Sofics — the Simple

In this section, we show that endomorphisms of countable sofic shifts are
a bit easier to analyze than those of the full shift. We introduce two tools
for studying countable sofic shifts. One is the Starfleet Lemma, so named
because in the terminology of cellular automata, it states that a collection
of spaceships appears infinitely many times in the orbit of any point. This
lemma is used to show that nilpotency and periodicity are decidable proper-
ties, and positive expansivity is impossible on countable sofic shifts, and also
2-dimensional countable SFTs. The other tool is what we use to prove the
Starfleet Lemma: While countable sofic shifts are compact as subshifts, they
become discrete when we project them into tuples of numbers denoting the
lengths of their periodic subwords. We recompactify them by letting these
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lengths become infinite, and show that cellular automata have well-defined
extensions in this new space. Interestingly, this lets us conclude things about
the original subshift.

2.2.1 The Starfleet Lemma

We first introduce some notation for accessing the seas and islands, and give
a simple continuity lemma.

Definition 2.2.1 Let X be a bounded subshift, and wi ---w;,

» its Lyndon
bound. For an aperiodic x € X ,? let

S(@) = (=00, jol, [j1, 1], -, 7 00)),

where = [(x) is the number of islands, be the sequence of seas of x, in
increasing order of j;. We also write

Ux) = (1 = j1,-- - g1 — Jp-1),

and
T(z) = (ro,- - ;B85 Sy - 735) e [5’()()254-17

if [4i, Ji] is an ri-sea, and s; = Tij 4+14-1)- For periodic x € X, we write

T(z) = (w;) if z € O(w#), and U(z) = ().

Note that if = has precisely one infinite sea, then U(x) = (). Also note
that for aperiodic x € X, T'(z) and S(x) uniquely determine z. For both
periodic and aperiodic z € X, T'(z) and U (x) uniquely determine O(x), and
conversely (T'(o(x)),U(o(x))) = (T(x),U(x)) since the locations of seas and
islands are defined by local properties of x. Furthermore, there are finitely
many different tuples T'(z).

We show that if points have the same structure apart from the length of
the seas, then their images share this property. This is important, because it
implies that extensions of cellular automata to the topological space defined
in the proof of Lemma 2.2.3 are well-defined and continuous.

Lemma 2.2.2 Let f: X — X be a CA. There exists { such that if T'(z) =
T(y) and for alli either U(x); = U(y); or U(x);,U(y); > h for some h > ¢,
then T(f(x)) = T(f(y)) and for all i either U(f(z)); = U(f(y)): holds, or
U(f(2))i, U(f(y))i > h — € holds.

Proof. Although we generally try to avoid this practice, in this proof,
to avoid naming all the coordinates we need, variables denoting words re-
member their position in the point where they occur. For example, if

2For periodic z, one could say S(x) = ((—o0, 00)).
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xr = Pu.ow™, we may talk about v containing a sea. By this, we mean
that a sea occurs in x in the subsequence the variable v took its contents
from.

Let r be the radius of f and m as in Definition 2.1.16 and let a be the
length of the longest word in the Lyndon bound of X. Let £ = 2ma+2r+1,
and suppose

x = Crorgsirytsarg? - SErR

is the decomposition of x according to Definition 2.2.1 (so that the subwords
ri't for ¢ € [1, k—1] are precisely the finite seas of ). Consider another point

o) T n’l n'2 00
Y = r0.TgS171 8279~ =+ - SETL

with n; = n} or n;,n, > h > £ for i € [1,k]. Since seas are defined by a local
property and £ > m, it is clear that this is in fact the decomposition of y
into seas and islands according to Definition 2.2.1. Next, we group together
maximal subwords of (the presentation of) z of the form sjrj 'r’], sj +1
where n; < h for i € [j,j']. These subwords are shared by = and y by
the assumption that n; = n/ if n; < h. Thus, we obtain a subsequence
J0sJ1572 s Jey Je+1 of [0, k] where jo = 0 and je41 = k, words uq, ..., Uct1,
and new presentations

T'ch oo
xr = T]O 7" Ul’f’jl UQ ch UC+1?”jC+1
and ) )
n n.
_ Je 0o
y = rj,. 7’ NCUM Yug - - T U 1T

where nj,,nj > h for all i € [1, .

Now, decompose f(z) as

f(z) = ‘X’wo.vlw?jli%vgwgmfw equpde” T’Uc+1wco_<;_1,
where |w;| = |rj,| for i € [0,c+ 1], and |v;| = |u;| + |r],_ |+ % |. That is,

we let w; be the periodic image of the periodic subword r 7 of x, except for
subsuming the images of the r left- and rightmost repetltlons in the words
v;, since these need not be periodic. Of course nj, — 2r > 2m + 1 since
h > € =2ma+2r+1. Note that this decomposition of f(x) is generally not
the decomposition according to Definition 2.1.16. Still, since r is the radius
of f, it is easy to see that

n —2r n’-2—2r n;,C —or .
f(y) *wy. 'Ulwl V2Wo c We Vet1Weiq,

where again n; —2r > 2m + 1
First, we need to show T(f(z)) = T(f(y)). Because the subwords

n;, —2r n;i—2r . o
w, and w;, (in the decompositions we gave) both have length at
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least 2m + 1, it follows that both of these subwords contain a w;-sea span-
ning all but possibly the 2m bordermost repetitions. Two things can happen
with the words v;. For some 4, it could be that O(w;) = O(w;+1), and in
fact w?fl_l_%viw?”_% has period |w;|. Then, the ‘w;_;-sea’ and the ‘w;-
sea’ are actually a single longer u-sea for the unique Lyndon word w such
that O(u?) = O(w? ;) = O(w#). The same then happens in f(y) for the

)

n!. —2r n!. —2r
subword wiffl VW, ’i . Other v; intersect an island. Then, identical

seas and islands appear in f(x) and f(y) near the occurrence of v; because
the local rule for determining the islands — looking at (2m + 1)-repetitions
of the words in the Lyndon bound of X — does not look further than am
cells into the periodic subword with repeating pattern w;, and thus f(x)
and f(y) look identical in terms of seas, and thus also islands. All in all,
precisely the same seas and islands are formed, so T(f(x)) = T(f(y)).3
Now that T'(f(z)) = T(f(y)), all that is left is to show that if the ith seas
of f(z) and f(y) have a different length, then this sea contains more than
h—{ repetitions of the repeating pattern. But clearly the only seas that could

nji—Zr—Zm

have different lengths are the ones intersecting the middle |w, | cells

of the subwords w?“_% in f(x). Such seas contain at least n;, — 2r — 2m
(resp. nj — 2r — 2m) repetitions of some u in the Lyndon bound of X in
f(x) (resp. f(y)), and since nj,,n; > h and 27 + 2m < £, this is more than
h—+¢ =

Lemma 2.2.3 (Starfleet Lemma) If f is a CA on a bounded subshift X,
then for all x € X, there exist £ € N and a tuple

t=(ro,...,r¢,51,...,50) € B(X)**H1
such that
e for all h € N, there exist n € N and ny,...,ng_1 > h such that
[ (z) € O(%Frosiry*s2 - 'Sz_lTZfEISZT?O),

o

e and for all i € [1,4], the point *r;_ys;r;

for f.

3The reason we included a in the argument is that the local rule for determining
whether to put a v-sea in a repetition of w;, for a word v in the Lyndon bound with
|v| >> |w;l, can see way past the repetition of w; in both directions, if we do not have the
factor a. Of course, our choice of m ensures that a v-sea will not actually be there, since
it would intersect the sea induced by the repetition of the primitive root of w;, but we
feel the argument is clearer when the local rule determining the seas truly sees the same
things when decomposing f(z) and f(y).

is a nontrivial spaceship
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We call a tuple t as above a starfleet for x.

Proof. The main idea in the proof is to extend the space X by allowing
infinite periodic patterns in the points. In terms of our nautical metaphor,
we allow more than two oceans in a point. We take a limit point of f™(x)
in this new space containing a maximal number of oceans. We follow the
preimages of the finite words (the ‘archipelagos’ of seas and islands) between
oceans. As the number of oceans was taken to be maximal, these do not
grow infinitely, and thus repeat. This of course means that the same point
of spaceships occurs infinitely many times in the orbit of z.

We now formalize this in terms of the Alexandroff extension of N, that
is, the one-point compactification N U {oco} of N with base

{{n},[n, 0] | n € N}.

Let T(X) = {T(z) | = € X}, and define X = {(T(x),U(x)) | x € X}.
We topologize (N U {c0})?~! by the product topology for each 8 — 1. The
space is compact by Tychonoff’s theorem, and it is clearly metrizable (so
we may use sequential reasoning when working with it). Now, X can be
considered (by some abuse of notation, depending on the definition of the
disjoint union) a subspace of the topological space

| B(T)-1
Z= UTGT(X)(N U{oo})

(where B(T") = B(x) for any x € X with T'(z) =T).
We define a function f: X — X by

F(T(@), U(2)) = (T(f(2)), U(f(x))).

This map is well-defined since T'(x) and U (x) uniquely determine the orbit of
z, f preserves orbits, and (T'(o(z)),U(o(z))) = (T'(x),U(z)). It is trivially
continuous, since X is a discrete subspace of Z.

Next, we extend f to the compact space ) = X C Z by the obvious
formula:

fU(T,0)) = lim f((T(2:), U(z3))),

when (T'(z;),U(z;)) — (T,U). To show this is well-defined, suppose that
(T(x),U(z;)) — (T,U) and (T'(y:),U(y;)) — (T,U) as i — oco. We may
assume that for all U; < oo we have U(x;); = U(y;); = Uj, since {U;} is
an open set in N U {oo}. Now, what we have are points z; and y; with
T(x;) = T(y;) and either U(x;); = U(y;); or both U(z;); and U(y;); tend
to infinity as ¢ — co. The claim then easily follows from Lemma 2.2.2.
Now, consider the sequence (7", U") = (T(f™(x)),U(f™(z))), and let
(T,U) be its limit point such that h = |U| is maximal, that is, there are a
maximal amount of coordinates in U containing the value co. First, suppose
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there are no limit points with |U|s > 0. It is then easy to see that the set
{Uj | n€N,j € [1,|U"|]} must be finite, so that (T",U") = (T, U™ for
some n < n’. Then f™(x) is a spaceship, and the claim easily follows.

Now, suppose |U|w > 0, and let pj,p2,... be a sequence such that
(TP, UP") — (T,U). By restricting to a subsequence, and by an easy com-
pactness argument, we may assume

TP =TP2 =TP = ... |
Tp2—1 _ pps—=1 _ ppa-l _ |
and in general for all 7
TPi+1—% — TPit2—% — TPi+3~F — .,
Now, consider the sequence of tuples
((UPY), (UP2, uP>~1), (UPs, UPS—H UP372), ),

and let
N = (N, N, N2 N3,..)

be a limit point of a subsequence of it, in the sense that for all j, N7 is a
limit point of (UPi~7); for a subsequence (p}); of (p;);.

Now, observe that by continuity, f((Tpi“_i_l,N”l)) = (TP+17% NY)
for all 5. Since N° = U has a maximal amount of islands h, there are
h coordinates j such that Ujp; — 00 as ¢ — o0o. By Lemma 2.1.20, we

-1 . .
must have Ujpf — oo for at least h coordinates j’, so that N! has at

least h infinite coordinates as well. Inductively, we see that N* has at least
h infinite coordinates for all i. Of course, if some N’ has more than h
infinite coordinates, then h was not maximal. Let H; be the set of infinite
coordinates of N?. If for all n there were 4, j such that N; >n but j ¢ H;,
then some limit of a subsequence of N* would have at least h + 1 infinite
coordinates. Thus, there must be a uniform bound on the finite coordinates
of N*. This implies N* = N™ for some n < n/, and we can further take
T™ = T™ . The result then follows by opening up the definitions. m

Note that we only used Tychonoff’s theorem for a finite product of com-
pact metric spaces — a case which is particularly easy to prove. Of course,
this means that the proof readily turns into one omitting the explicit use of
compactness.

2.2.2 Dynamical Properties of CA on Countable Sofic Shifts

In this section, we study the dynamics of CA on sofic bounded subshifts. For
this, we do not need the specifics of parsing of points in bounded subshifts,
and only use the Starfleet Lemma.
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As we saw in Lemma 1.3.20, on mixing sofic shifts, injectivity implies
surjectivity, and on mixing SF'Ts, preinjectivity is equal to surjectivity. We
now give two very simple examples of a CA on a countable subshift, showing
that neither result holds on countable SFTs (although the examples given
in [Fio00] are just as simple).

Example 2.2.4 Let X = B~1(0*1*2*) and let f = fincremens be the cellular
automaton defined by

£(°°0.1m2%¢) = 0.1 12,

Clearly, such a CA is injective on X, but it is not surjective. Similarly, the
CA g = fdecrement deﬁned by

g(0001n200) _ ooo'lmax{O,n—l}2oo.
s surjective but not even preinjective.

Not everything is different of course. For example, a CA on a countable
sofic subshift that is surjective and injective is a homeomorphism (and thus
reversible), since this is in general true on compact spaces, for continuous
functions.

Next, we discuss decidability results for countable sofic subshifts. Many
such results hold on general sofic shifts, and thus also on countable ones.
This includes the decidability of surjectivity, injectivity, reversibility and pe-
riodicity with a fixed period p. In general, any property which is expressible
as a first-order statement where variables range over points of sofic shifts is
decidable by the results of [Biic60].

One of the most important undecidable properties of cellular automata
on full shifts is nilpotency [Kar92]. Its importance lies in the many fur-
ther undecidability results that follow from it. We show that this property
is in fact decidable on countable sofic shifts due to the Starfleet Lemma.
This is interesting, since nilpotency is undecidable also for counter machines
[BBK*01], and CA on countable sofic shifts are in some sense a hybrid be-
tween counter machines and cellular automata (see for example Section 2.3),
so that one might expect this problem to be undecidable as well.

Theorem 2.2.5 If X is a countable sofic shift, then given a CA f: X — X
it 1is decidable whether f is nilpotent.

Proof. We will prove that one of the following cases holds for a CA
f on a countable sofic shift X: either f is nilpotent, it is not nilpotent on
periodic points, or X contains a nontrivial spaceship for f. Since the latter
cases imply non-nilpotency and all three are semi-decidable, this proves the
proposition.
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Assume that f is not nilpotent, but is nilpotent on the finitely many
periodic points of X, and let 0¢ be their limit. We will show that X contains
a nontrivial spaceship for f. By Proposition 1.3.12, f is not even weakly
nilpotent, so there exists a point x € X with f"(x) # 0% for all n. Let
(70 -+ 70,815 .,8¢) € B(X)**t! be a starfleet for z. Since f is nilpotent
on periodic points, we have r; € 0% for all 4. Since f™(x) # 0%, ®r;_15;1;>
is a nontrivial spaceship for f. =

For countable SFTs, this question is not very interesting, and there is no
need to apply the Starfleet Lemma. Namely, if all periodic points map to 0
in f, then the CA is already nilpotent. This is because f™(X) must be a
singleton, since every point in it is left- and right-asymptotic to 0%, and if
such a point is not 0%, then X is uncountable (since it is an SFT).

By Theorem 1.3.17, nilpotency is equivalent to asymptotic nilpotency
on all SFTs, including countable ones. Thus, we have the following.

Corollary 2.2.6 It is decidable whether a given CA on a countable SFTs
18 asymptotically nilpotent.

However, we will see in Section 2.4 that asymptotic nilpotency is unde-
cidable on countable sofic shifts.

Rice’s theorem, Theorem 8 in [Ric53], states that for any nontrivial class
of languages C, it is undecidable whether the language of a given Turing ma-
chine is in C. There is an analogous result for the limit sets of CA on the
full shift [Kar94] which states that for any nontrivial class of limit sets, it
is undecidable whether the limit set of a given CA is in this class. By the
previous proposition, whether the limit set is {04} is decidable for cellular
automata on countable sofic shifts. An interesting question is whether some
weaker form of Rice’s theorem holds on countable sofic shifts, since Theo-
rem 2.4.6 proved in Section 2.4 implies that individual limit sets can have
very complicated structure. In fact, the result of [Kar94] only holds if the
full shift on which the cellular automaton is run is not fixed: for cellular
automata on a fixed full shift S, it is certainly decidable whether the limit
set is S%, as this is easily seen to be equivalent to surjectivity. However, all
other questions about the contents of the limit set are undecidable [GR10Db].
Similarly, it could be that the singleton limit sets are special in the count-
able case, but a natural partial Rice’s theorem still exists. We can at least
show that some properties of the limit set are undecidable: for an example
of an undecidable property about the limit sets of CA on countable SFTs,
see Corollary 2.4.11.

Also the decidability of periodicity follows from the Starfleet Lemma. By
the results of [KOO08], the problem is again undecidable for both counter ma-
chines and cellular automata, even when restricting to reversible machines.

56



Proposition 2.2.7 For CA on countable sofic shifts, periodicity is a decid-
able property.

Proof. We will prove that one of the following cases holds for a CA f
on a countable sofic shift X: either f is periodic, f is non-injective, or X
contains a spaceship for f which is not temporally periodic. Since the latter
cases imply non-periodicity and all three are semi-decidable, this proves the
proposition.

Suppose on the contrary that f is non-periodic (and hence not weakly
periodic by Lemma 1.3.18) and injective, and all spaceships are temporally
periodic. Now let z € X be arbitrary, and let (rg,...,r¢, 81,...,5¢) be a
starfleet for it. Since the points “°r;_1s;r7° are spaceships, they must be
temporally periodic, so we can choose £ = 1. Now f"(x) is a spaceship
for large enough n, and by injectivity of f, x is a spaceship itself, hence
temporally periodic. This is a contradiction, since f was not weakly periodic.
]

Question 2.2.8 [s eventual periodicity of CA decidable on countable sofic
shifts?

It is easy to see that nilpotency and periodicity are nontrivial proper-
ties of cellular automata on countable sofic shifts. An interesting dynamical
property of cellular automata on the full shift is positive expansivity. Pos-
itively expansive CA have the nice dynamical property that they are con-
jugate to their one-directional trace, which makes them easy to study. It
is not known whether the property is itself decidable for cellular automata,
but many decidability results can be proved for CA that have this property.
In the case of countable sofic shifts, we can show that positive expansivity
is not possible at all.

Proposition 2.2.9 Let f be a cellular automaton on an infinite countable
sofic shift X C S%. Then f is not positively expansive.

Proof. If f has a nontrivial spaceship, then it is clearly not positively
expansive. If f has no non-trivial spaceships, then f™(x) is spatially periodic
for some n and any x € X by the Starfleet Lemma. Clearly, there exists
C' such that d(f(y), f(z)) < Cd(y, z) (a Lipschitz constant for f). Now, for
any € > 0, one can take a non-periodic z such that 0 < d(z,0"(z)) < &=, so
that d(f"(z), f*(oP(z)) < e for all ¢ < [0,n — 1], and f*(z) = f'(cP(z)) for
1 > n. f is not positively expansive. m

Note that expansivity is of course possible, as the shift map is itself ex-
pansive. I do not know whether positive expansivity is possible on countable
subshifts in general. As a corollary of our result and a result of [BDJOS§],
we see that it is at least not possible for cellular automata on countable
two-dimensional SFT's.
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Lemma 2.2.10 (Theorem 3.11 in [BDJ08]) Let X C S%° be an infinite
countable SFT. Then there exists x € X which has exactly one direction of
periodicity.

Proposition 2.2.11 Let X C S%% be an infinite countable SFT, and let
f: X = X bea CA. Then f is not positively expansive.

Proof. Take a singly but not doubly periodic point x € X. Let x
have period vector #. Now, let Y be the set of points of X with period .
Of course, f(Y) C Y. By a matrix translation argument, we may assume
7 = (0,1). Namely, let @ € Z? be such that

w

A= < ;>GSL2(Z)

(using, say Bézout’s identity). Then A(x) has period (0,1). Now, f induces
a natural action on the one-dimensional subshift Y’ = ¥z ). Of course, Y’
is countable, and since Y was singly but not doubly periodic, Y is infinite.
By Proposition 2.2.9, f is not positively expansive on Y’, and thus not on
Y either. m

2.3 From Counter Machines to Cellular Automata

Let M = (X,k,9) be a deterministic counter machine. We construct a
countable SF'T X s and a CA fjr on X simulating M in a concrete fashion.
The idea is that the tape contains a symbol # marking an ‘origin’, and there
are k tracks corresponding to the k£ counters of M, each of which contain a
single symbol which is m cells to the right of # if the corresponding counter
contains the value m. A symbol called the ‘zig-zag head’ bounces between
# and the rightmost counter, performing the computation.

As we want to do the simulation in a countable SF'T, we have to locally
remember which counters (or # or the zig-zag head) are to the left and
right of the current cell. Thus, the content of each track will be of the form
©asb>® for some symbol s. The construction works equally well if we set
a = b =0, but the forbidden patterns have to be adjusted, and the subshift
obtained will be proper sofic.

Definition 2.3.1 Let 31 C X be the set of those states q for which we have
(q,i,2,q') € 6 or (q,i,P,q') € §, wherei € [1,k], ¢ € X. Let X9 = X\ X1.
We define a subshift Xy C S% where

S = (' U{a,b}) x {#,a,0} x [] {i,a.b},

1€[1,k]
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and X' = (21 x {+=, =} U (B2 x {<—, <, —=}). The subshift Xy is a subset
of
BN a"¥'b%) x B~ (a"#b*) x [[ B '(a"ib®),
1€[1,k]
and we also forbid some extra patterns of length at most 2: First, we forbid
the symbols (s, m,w) where

e scY andm=a,
e s and w; =b fori e [1,k], or
e m = a and w; # a for some i € [1, k]
are forbidden. Furthermore, if (¢,1,7,q") € ¢ for j € [—1,1],
e we forbid the symbol ((q, ), m,w) if w; = a.
e and if j = —1, we forbid the symbol ((q,+"),m,w) if w; = b.
e and if j € {0,1}, we forbid the symbol ((q,<+"), m,w) if w; # a.
e and if j = 1, we forbid the length-2 patterns
(g1, <), mb, wh) (b, m?, w?)
where w? # a.

Write X = X for short. The first list of forbidden patterns (letters)
specifies that none of the symbols [1, k] can occur to the left of #, and not
all symbols [1, k] U {#} can occur on the same side of s € ¥'. The second
specify when the left arrow should be < and when «+'. It is clear that X
is a countable SFT. A point of X, is good if it contains some s’ € ', the
symbol # and all symbols i € [1, k].

We refer to the (at most one) symbol ¥’ in a point as the zig-zag head.
The idea of the CA f) is that the zig-zag head sweeps back and forth be-
tween the symbol # and the rightmost counter, updating the counters based
on the tuples in §. (Note that the rightmost counter can be detected locally,
by waiting until none of the symbols on the tracks containing counters are
a.) The state of the simulated counter machine is kept in the component 3,
and it is updated at the origin, when a new sweep begins. The component
{—,«,+'} is used to remember which direction the head is going, and we
have two versions of the left arrow to remember whether a counter value has
been changed yet, +— meaning that a counter has not been updated, and <’
that one has. The counter values are changed when going to the left toward
the origin, on the step where the zig-zag head is on top of the counter we
want to change. Cells of the point more than one cell away from the zig-zag
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head are unchanged by the CA, so that at most 3 cells can be changed in a
single step.

We now define fj; in detail. The important properties of fy; will be
summarized in Lemma 2.3.2.

The coordinate ¢ of a good point x € Xjs such that x; contains the
symbol # in the second component is called the root of x. To define fa;, we
define an auxiliary function ¢ : ¥/ x N¥*1 — §Z by

o(p,m,ny,...,nE) = (Ca.a™pb™) x (Ca.#b>) x H Xa.a™ib>.
1€[1,k]

Let D C ¥/ x N**1 be the set of those configurations ¢ for which ¢(c) € X ;.
Then ¢ is a bijection between D and the good points of X, rooted at the
origin. In particular, the orbit closure of ¢(D) is Xjy.

We now define the image of fj; on the points ¢(D). The set of points
in ¢(D) will be closed under the CA, so that

fu(o((q,d),m,ny,...,ng)) = o((¢,d),m',nf,....,n})

for some ((¢/,d"),m’,n!,...,n}) € D. We now give global rules for determin-
ing each of the components in ((¢/,d’),m’,n),...,n} ), and the rules amount
to a specification of a CA with radius 1. The rules do not cover every case,
and we say that updating is successful if for all of the components, one of the
rules for determining a new state for it applies. If updating is not successful,
then none of the components is updated as described, and the CA behaves
as the identity map instead, that is,

((¢,d),m' ,ny,....,n})) = (q,d),m,ny,...,ng).

First, we define the movement of the zig-zag head, that is, the new value
of m’:

o Ifde {+,«'}, and m > 0, then m' =m — 1.

o If d € {+,«'}, and m = 0, then m' = 0.

o If d = — and m < max{n; | i € [1,k]}, then m’ =m + 1.
e If d = — and m = max{n; | i € [1,k]}, then m' =m.

For determining the new values of other components, we need to name
a particular situation: we say that we see the Col (counter of interest) if
m = n; and (q,1, j,r) € 6 for j € {—1,0,1}. In this situation, we will update
the value of the counter n;, if we are going to the left, and d = <. There are
some things worth noting here. First, since we are updating while moving to
the left, the zig-zag head cannot exit the area spanned by the #-symbol and
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the rightmost counter. Second, when we update a counter, we change the
direction component to <', so that at most a single counter can be updated
during a sweep. Third, by the definition of a deterministic counter machine,
if (¢,1,7,7) € 6 for j € {—1,0,1}, then this is the only tuple in  with ¢ as
the leftmost component. Thus, it is indeed enough to update the state of
one counter.

Next, we determine the new value of the direction component d':

e If d=<«"and m > 0, then d = <.

e Ifd=<«"and m =0, then d = —.

e If d =<, m >0, and we do not see the Col, then d’' = <.

e If d =<, m >0, and we see the Col, then d’' = <.

o If d=+ and m =0, then d = —.

e If d=— and m < max{n; | i € [1,k]}, then d' = —.

e If d = — and m = max{n; | i € [1,k]}, then d’ = «.

Next, we determine the new value of the state component ¢':

e If m > 0, then ¢’ = q.

e If d=— and m = 0, then ¢’ = q.

e Ifde{«,«'},m=0,(q,i,Z,r) € § and n; =0, then ¢’ = r.
o Ifde{+,«'},m=0,(qi,Pr)e€dand n; >0, then ¢ =r.
e Ifde{+,«'},m=0,(q1i,j,r) €dand j€[-1,1], then ¢ = r.
Finally, we determine the new values of counters:

o If d € {«',—}, then Vi : n, =n,.

e If d = < and we do not see the Col, then Vi : n} = n;.

o If d = < and we see the Col (so that m = n; and (¢,%,5,7) € § for
J € [-1,1]), then if n; + j > 0, we put n, = n; + j and nj, = n;, for
h # 1.

By inspecting the cases determining the new state for each component,
we find that the only points where updating is not successful are ones where
the zig-zag head is at the origin, d € {<—, «'}, and the counter machine halts
on the configuration (g, n1,...,ng). That is, exactly mirroring the situation
for counter machines, we are in one of the cases below:
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e d € {«+,+}, m =0 and there is no tuple of the form (q,,7,7) in &
for j € {-1,0,1,Z} and n; = 0.

e d € {+,+'}, m =0 and there is no tuple of the form (g,7,7,7) in §
for j € {-1,0,1, P} and n; > 0.

e d= . m=0=n;and (g, 1) € 5

Note that the new value of each component in each cell is determined by
a local rule of radius 1 on ¢(D). Thus, fys extends to a cellular automaton
on Xy, with a radius 1 local rule (fas)ioc : S% — S.

We list some properties of the construction without proofs. Namely, we
formalize the idea that points where the zig-zag head is at the origin and
going to the right correspond to configurations of the counter machine. Let

E={((g,d),m,n1,...,ng) € D |m=0,d=—},

the set of tuples corresponding to such points. We show that if we restrict
our attention to rows of spacetime diagrams containing elements of ¢(F),
then we will see encoded computations of M, in the following sense:

Lemma 2.3.2 We have the following correspondence between M and f;:
e The point fyr(x) is good if and only if x is.

o If(q,n1,...,ng) = (¢ 0, ... ,nL), then there exists a smallest num-
ber n > 0 such that f*(¢((q,—),0,n1,...,nk)) € ¢(E), and we have

M (o((g,—),0,n1,...,n1)) = o((¢',—),0,n), ..., n}).

o If(q,n,...,n}) is not initial for M, then there exists m > 0 such that
if ..., x_o,x_1 is a preimage chain for xo = ¢((¢',—),0,n],...,n}),
that is, far(xi—1) = x; for all i <0, then there exists a largest n with
—m < n < 0 such that x, € ¢(F), and if x,, = ¢((q,—),0,n1,..., 1),
then

(g,n1,-..,ng) = (¢, n), ... np).

o If(q,n,...,n}) is initial, then ¢((¢',—),0,n],...,n}) has no infinite
preimage chain.

The CA fys constructed above simulates a counter machine M on a
countable subshift X ;. When the counter machine M is also reversible, we
can make a further modification and add a direction of time, simulating the
machine in both directions. More precisely, we define a countable SFT

Y € BN a"S"b) x B (a"#b") x [[ B~ '(a*ib*)
1€[1,k]
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with additional forbidden symbols determined as for X, but we add an
extra component in the zig-zag head:

S =% x {1, 1}

The idea of this component is that M is simulated forward if the component
is |, and backward if the component is 1.

More precisely, for = € Yy, write m(z) € X for the point in X, where
the {{,T}-component is removed from the zig-zag head (so that = : Yy, —
Xy is a symbol map), and FJl : Xy — Yy and 7TT_1 : Xy — Yy for the
symbol maps that add the {],1}-component determined by the subscript.

On good points (defined as before), we define a CA gy : Yar — Y by

gat(@) = 77 (Far(m(a)),

if the direction of time is forward ({) and updating of fj; is successful on z.
If the direction of time is backward, and there exists a unique point y with
a backward direction of time such that = 7’ Y far(m(y))), then gar(z) =y
(uniqueness can clearly be checked by a local rule) If neither of the previous
cases occurs, then the direction of time is flipped.

Note that while a deterministic and reversible counter machine M has
an inverse counter machine M~! and Xj; = X,,-1, we cannot simply run
one of the CA fys or fy;-1 on X depending on the direction of time: fj;-1
is not the inverse of fj;. In fact, gy has radius 2.

We need to show that gy, is bijective. For this, we prove a general lemma
about this type of direction-of-time constructions.

Lemma 2.3.3 Let f: X — XU{_} be a function satisfying f(x) = f(y) €
X = 2 =yt We add a time component, to obtain a new space Y =

X x {4,1}, and define g: Y —Y by
D=, f fla)=yeX,
=1, if f(z) =
1) = (=,
T =

* g

* gy 1, if f(x) =y, z€ X, and

(z,
e g(z,
(v,
(v,

(1), ify & F(X).

Then g is a well-defined bijective function.

* gy

Proof. It is easy to verify that precisely one of the four cases always
occurs, so g is a well-defined function.

*If we think of f(x) = . as meaning that = does not have an image in f, then the
assumption is that f is an injective partial function from X to itself.
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First, let us show ¢ is injective. Suppose on the contrary that g(x,d) =
g(',d") = (y,e) and (x,d) # (2/,d'). If d # d', then without loss of
generality, we may assume e = d. Then 2/ = y, since the arrow com-
ponent cannot change if the point changes. If d = |, then f(x) = y, so
g, d'") = (z,1) # (y,e), a contradiction. If d = 1, then f(y) = z, so
g(a’,d) = (x,]) # (y,e), a contradiction. We thus have that d = d’. If
e # d, then x = y = 2/, so necessarily also e = d. Finally, the case d = | is
impossible by the injectivity of f and the case d = 1 is impossible because
f is a function. Thus, ¢ is indeed injective.

To show that g is surjective, let (y,d) be arbitrary. Then

e if d =] and f(z) =y for some z, then g(z,d) = (y,d),

o ifd=|andy ¢ f(X), then g(y, 1) = (y,d),
e if d =1 and f(y) =z € X for some z, then g(x,71) = (y,d), and

e if d =1 and f(y) = -, then g(y,]) = (y,d).

Lemma 2.3.4 If M is deterministic and reversible, then the CA gy :
Yrr — Yar is bijective.

Proof. It is enough to show that fy; : X3y — X/ is injective on points
where updating is successful, as the claim then follows from Lemma 2.3.3
and the fact that because changes to the current point only happen near the
zig-zag head, it is enough to carry the direction of time in the zig-zag head.
The injectivity of fa; on points where updating is successful is a simple case
analysis. ®m

2.4 CA on Countable Sofics — the Complex

In this section, we focus on the computational properties of cellular au-
tomata, mainly considering the computational complexity of their limit sets
and asymptotic sets. This section slightly differs in spirit from the rest
of this thesis, as it turns out that both limit sets and asymptotic sets are
computationally rather complicated.

Before moving on to such results, let us briefly consider the finitely gen-
eratedness of the endomorphism monoid.

Example 2.4.1 There exists a countable sofic shift whose endomorphism
monoid is not finitely generated. For example, X = B~1(0*10*10*) does not
have a finitely generated endomorphism monoid, since if fi,..., fn is any
finite set of CA on X, and r is the mazimal radius among the f;, then the
fi do not generate any CA on X mapping °°0.10710%° — °°0.10"~110>°,
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It is slightly harder to construct a countable SFT without a finitely
generated endomorphism monoid, because the global structure of the point
must be visible to the local rules of the CA, so that one might in theory be
able to move the interesting patterns close to each other, perform the logic
of the CA locally, and then send them to their final locations. We show by
a very simple example that this is at least not possible in general.

Proposition 2.4.2 There exists a countable SF'T whose endomorphism monoid
s not finitely generated.

Proof. We claim that the countable SFT X = B~1(0*1*2*) does not
have a finitely generated endomorphism monoid. Suppose on the contrary
that fi,..., fn generate the endomorphism monoid, and let r be the maximal
radius among their local rules. Let f be defined by

F(°0.1%27) = >0.1¥27,

where k' =4r + 1 —k if k € [2r,2r + 1], and k¥’ = k otherwise.

Suppose f = fj, -+ fj;. First, it is clear that also the f;, map 0% — 0%
and 24 — 24, or f would not behave as the identity for large enough lengths
of the run of 1s. Similarly, we see that on the points *°0.1%2% with k > 2r,
all of the f;, simply increment of decrement k by some r’ € [—2r,2r| (and
possibly shift the whole point).

Now, there must exist a prefix g = fj, --- f;, of f;,---f; such that
g(%°0.1272%°) € 0(°°0.1277£2°°) where £ > 0, since otherwise we have

Im : Vk > 21 @ f(°0.18m2%0)
which contradicts the choice of f. But then
9(%°0.1Mm2%°) € O(>0.1™2)

for all m > 2r, which clearly means that ¢ is not injective, which is a
contradiction since f is injective. m

Next, we discuss predictability. In fact, using the construction in the
previous section, there is little work in showing that the endomorphism
monoid of a countable SFT need not be predictable:”

Proposition 2.4.3 There exists a countable SFT X whose endomorphism
monoid 1s not predictable.

5In fact, this is even easier than on the full shift, because unlike on the full shift,
isolated points are dense in a countable sofic shift, so the finite pattern can completely
determine the orbit of the point.

65



Proof. Let M be a counter machine for which it is undecidable whether,
given two configurations c¢; and ca, ¢1 =}, c2. Then, X); has an unpre-
dictable endomorphism monoid, as fjs is clearly unpredictable. m

A more interesting question than whether such examples exist is how
common they are. I believe they are common — even ubiquitous.

Conjecture 2.4.4 There exists k such that every countable SF'T of Cantor-
Bendizson rank at least k has a non-finitely generated endomorphism monoid.

If this is the case, the next question is what the minimal such k is. As
we saw in Proposition 2.4.2, there exists a rank 3 countable SF'T with this
property. On the other hand, it is easy to see that a rank 2 countable SF'T
always has a finitely generated endomorphism monoid. Thus, k& = 3 is a
plausible candidate.

Conjecture 2.4.5 There exists m such that every countable SF'T of Cantor-
Bendixson rank at least m has a non-predictable endomorphism monoid.

Again, if this is the case, it would be interesting to know the minimal
value of m. It is well-known that for counter machines, two counters suffice
for general computation (see for example [Min67]). This means that there
exists such a countable SFT with an unpredictable endomorphism monoid
for m = 4 by the proof of Proposition 2.4.3. It seems clear that a CA on
a countable SFT with Cantor-Bendixson rank 3 or less cannot perform any
kind of computation,® so m = 4 is the smallest possible candidate.

We recall the hierarchy X,, = B~1(1*2*...n*) of countable SFTs from
Example 2.1.1. The subshifts X,, seem like good canonical examples of
countable SFTs. In Proposition 2.4.2, we showed that X3 does not have a
finitely generated endomorphism monoid. We can also easily perform the
construction of Section 2.3 on a subSFT of X, for large enough n, and find
X, with an unpredictable endomorphism monoid: If k colors are needed
for the subshift X in Proposition 2.4.3, and n is larger than 2k - k!, we
can dedicate a contiguous subset of length at most k of the even colors of
X, for each order in which the colors may occur in X. To make sure the
points where extra patterns occur are not a problem, we leave all odd colors
unused, and use them as spreading states. It is easily seen that X,, then has
an unpredictable endomorphism monoid for large n.

In the rest of this section, we refine the message of Proposition 2.4.3 that
cellular automata on countable SF'Ts and sofic shifts are capable of general
computation, by proving a sequence of undecidability results for them.

5The points of such an SFT can contain at most 2 islands. Cellular automata can only
increase the lengths to infinity, or decrease them until it reaches a finite set of points,
depending on its radius.
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2.4.1 Limit Sets and Transient Behavior

Recall that the limit set of a CA f: X — X is the set of points x € X with
arbitrarily long chains of preimages (and by compactness, also an infinite
one) in the action of f.

If f is a cellular automaton on a I1Y subshift X, then the (language of
the) limit set of f is also IIY, since if a word w is not in the language of
the limit set of f, then a Turing machine enumerating forbidden patterns of
X will eventually find an n such that there is no preimage chain of length
n along legal patterns of X. It is folklore that this is tight, in the sense
that there exists a CA with a I19-complete limit set on a full shift, although
I am not aware of a published proof of this. In Corollary 2 of [Hur87],
the existence of a cellular automaton with a non-recursive limit set on a full
shift is claimed, but the article only proves that it is undecidable to compute
whether, given a cellular automaton, its limit set contains a particular letter,
which on the face of it has no implications on the complexity of the limit
set. We show the existence of a cellular automaton on a countable SFT
with such a complicated limit set, from which the result follows also on a
full shift.

Theorem 2.4.6 There exists a CA f: X — X on a countable SFT X such
that the limit set of f is I1Y-complete.

Proof. Let M = (3,k,d) be a deterministic and reversible counter
machine such that

L(M) = {n | The computation starting from (go,n,0,...,0) is infinite.}

is TI9-complete for some gy € X, and there are no transitions (g, 1,5, qo) in
d. Such a machine is obtained by first finding such deterministic counter
machine M’ (for example, L(M) could contain the indices of non-halting
machines in some effective enumeration of Turing machines), and making it
reversible with Lemma 1.4.3.

Let N be the inverse counter machine of M, and construct the countable
SFT Xy and the cellular automaton fy as in Section 1.4. Note that we use
the one-directional version of the simulation, but for the inverse counter
machine.

Now, we claim that the point

Tn = ¢((QO7_>>707n707' . 70)

is in the limit set of ¢ if and only if n € L(M). First, if n € L(M), then an
infinite chain of preimages is obtained by simply running M: if

c=>n (q,n11, - nk) =M (@2, 02,1, Mo k) =M -
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for ¢ = (qo,m,0,...,0), then the same configurations form an infinite N-
preimage chain. An infinite preimage chain for z,, is then found by stitching
together fy-computations between points

&((gi, =), 0,m41,5 -, k))

(see Lemma 2.3.2).
Consider then the case n ¢ L(M). Suppose the full computation of M
starting from ¢ = (qo,n,0,...,0) is

C=M (Q17n1,1,---,n1,k) =M =M (Qmanm,lv e anm,k)~

Then, by Lemma 2.3.2, any fy-preimage chain of z, will, in a bounded
number of steps, reach the point

d)((Qm: _>)7 07 Nm,1,---, nm,k)a

which has no infinite preimage chain. Thus, x, does not have one either.
Now, to show that the language of the limit set of f is II{-complete,
simply note that the points z, are isolated, and the isolating pattern is
easily computed from n. =
The corresponding result follows also on the full shift, proving Corollary
2 in [Hur87].

Corollary 2.4.7 There exists a CA f on a full shift such that the limit set
of f is TIY-complete.

Proof. Let X and f be given by Theorem 2.4.6. We embed X in the full
shift (B1(X)U{#1})% and make # a new spreading state for f which appears
whenever a neighborhood is forbidden in X. The complexity of the limit
set can only increase, since words not containing # have only preimages not
containing #. m

In addition to what the limit set looks like, it is also interesting how
the limit set is approached, often called the transient behavior. One precise
property qualifying the transient behavior is whether the CA is stable or
unstable, that is, whether, for a CA f: X — X, f*(X) is equal to the limit
set of f for large enough n. As usual, the first thing we should ask is of
course whether this concept even makes sense in the countable case, that is,
whether it is trivial.

Example 2.4.8 Cellular automata on countable SFTs can be stable or un-
stable: The identity automaton always has a stable limit set. For an example
of an unstable limit set, see the automaton fincrement 0 Example 2.2.4.

An example is known of a subshift which is the limit set of both stable
and unstable cellular automata on the full shift [BGK11]. We show that
this can also happen on a countable sofic shift.
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Example 2.4.9 Let X be the union of the countable sofics B~1(0*10%20%)
and Y = B7Y(0*(1* 4+ 2*)0*). Then X is also a countable sofic shift. Let
f X — X be the radius-1 CA for which 0 is a spreading state, and let
g: X — X be the CA that moves every lone 1 to the left, and otherwise acts
as the identity map.

Consider the set f(X). It clearly contains the set Y, but points of the
form 22010720 have no preimage under f. Also, f2(X) = f(X), so Y is
the limit set of f reached in one step.

Consider then the limit set of g, which also clearly contains Y. For all
n, the point 010720 has a preimage under g", but not ¢" . Thus the
limit set of g is also Y, and g is unstable.

For cellular automata on countable SF'Ts; on the other hand, an example
like this is impossible:

Theorem 2.4.10 Let X be a countable SFT and f : X — X a cellular
automaton. Then f is stable if and only if its limit set is an SFT.

Proof. It is true on every SFT that if the limit set is an SFT, then f
is stable: the finitely many forbidden patterns defining the limit set must
already be forbidden in some f"(X).

For the other direction, assume the contrary, so that f is stable but
the limit set is not an SFT. Let k& be such that f reaches its (necessarily
sofic) limit set Y in k steps. Without loss of generality, we may assume
k = 1, since f™ has the same limit set as f for all m, and f is stable if
and only if f™ is. Also, since all (finitely many) spatially periodic points
are temporally eventually periodic for f, we may assume without loss of
generality that all spatially periodic points of X are mapped in one step
into a spatially periodic fixed point of f. Let p be a common spatial period
for all the spatially periodic points.

First, we show that, within Y, the only preimage of a periodic point is
itself. That is,

z,y €Y A f(x) =y Ay periodic = z =y.

It is clear that at least a periodic point cannot have another periodic point
as a preimage, since by the assumption every periodic point in Y is mapped
to itself by f. But in general, x will have periodic left and right tails. This
means that x is actually left and right asymptotic to y. It follows that if
x # y, then X is uncountable, a contradiction.

Now, let n be a window size for X. Clearly, if there exists m such that
for all w with [w| > m forbidden in Y, either wyy |,|—1] OF wia,|,)) is forbidden,
then Y is an SF'T, so suppose this is not the case. For all i > n we may
then take a word w; T X of length at least i such that for u; = (w;)[1,juw;|-1)
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and v; = (wi)[27|wi”, we have u;,v; C Y, but w; is forbidden in Y. Since Y is
sofic, there exists m such that any p-periodic prefix or suffix of any w; has
length at most m.

Since u; T Y, there is a preimage u; C Y for it, and similarly there is
a preimage v, C Y for v;. Since X is countable, w; must contain a long
periodic sequence, which then occurs in both u; and v; as well, in the sense
that we find arbitrarily large jo — j1 such that (u;)j, jo) = (Vi)[;—1,4o—1
is periodic. The only preimage for this sequence is itself, and thus, if the
sequence is long enough, u} and v} can be glued along this sequence to obtain
a preimage for w; in X (evenin V). m

Theorem 2.4.11 It is undecidable whether a CA on a countable SFT is
stable.

Proof. From Lemma 1.4.3, it easily follows that given a deterministic
and reversible counter machine M, it is undecidable whether M halts on
¢ =1(qo,0,...,0), even when restricted to machines where this configuration
has no preimage.

Now, given M, construct the countable SFT Y;; and the CA gj; running
M in both directions. Recall that gps is bijective, so that the limit set is Y.
Now, we modify gps so that the points in the orbit of ¢((q0, —,7),0,...,0)
(modifying the ¢-map in the obvious way) become fixed points, but no other
point is affected, and call the automaton obtained g. We now claim that g
is stable if and only if M halts from c.

Suppose first that M does not halt from c¢. Then ¢"(¢((q0,—,4))) has
a preimage chain of length at least n, but this preimage chain cannot be
extended. Thus, g is unstable.

Suppose then that M halts from . Then in the computation starting
from = = ¢((qo0, —,4),0,...,0) the simulation of fj; is eventually reversed,
and thus for some n, we have

gn(x) = ¢((qo, -, T)v 0,... ’O)a

which is a fixed point. The finitely many points on this path do not have
infinite preimage chains (except for ¢((qo,—,7),0,...,0)), but the orbit
of no other point in Yj; is affected by our modification of g,s, since the
bijectivity of gjs guarantees that orbits are disjoint. Thus, ¢"(Yas) is the
limit set of g, so g is stable. m

From the previous theorems, we also obtain an undecidable property of
the limit set:

Corollary 2.4.12 It is undecidable whether the limit set of a CA on a
countable SFT is an SFT.
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Of course, a fortiori, both problems are undecidable on countable sofic
shifts, even though Theorem 2.4.10 does not hold on countable sofics in
general.

2.4.2 Asymptotic Sets

The limit set is not the only notion corresponding to ‘where points eventually
go’. Another such concept, studied at least in [GR10a], is the asymptotic
set. We show that such sets can be interesting in the countable sofic case as

well. Recall that the asymptotic set of a CA f: X — X is

UNT@inz 7

zeX JeN

A point y € X lies in the asymptotic set if and only if there exists another
point z € X and a subsequence of the orbit (f"(z))nen which converges to
y. Note that the asymptotic set contains all temporally periodic points of f,
but not necessarily all the spaceships, unlike the limit set. Asymptotic sets
have much stronger computational capabilities than limit sets, and turn out
to live in X9, a few steps north of I19, the home of limit sets.

Lemma 2.4.13 The asymptotic set Y of a CA f on a countable sofic shift
X is 29,

Proof. Given a word w, it is clearly in X9 to check that
Jr e X :Vn:3m>n: () ) = w,

which is equivalent to w € B(Y'). Note that the values x of the first quantifier
can easily be enumerated by a Turing machine. =

Theorem 2.4.14 There exists a countable SFT X and a CA f: X — X
such that the language of the asymptotic set of f is Eg—complete.

Proof. By Lemma 1.4.4, there exists a recursive set L such that solving
Ir 30 (r,l,w) € L

for given w € N is ¥J-complete. We say that such a w is a solution to L.
We will many-one reduce any such set to the language of the asymptotic set
of a CA.

Let M be a deterministic counter machine that always halts and accepts
the language L. That is,

(g0, 7,4, w,0,...,0) =7/ (Gace,0,0,0,0,...,0)
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if (r,¢,w) € L and
(g0, 7,4, w,0,...,0) =7/ (¢rej, 0,0,0,0,...,0)

if (r,¢,w) ¢ L, and there are no transitions from gacc Or Grej-

We construct a counter machine M’ with state set {s1, so, . .. , Sp}, coun-
ters Cy, C, Cp, and a suitable set of auxiliary counters, having the property
that when started from the configuration (si,w,2" - n,¢,iy,...,1p) for odd

n (w, 2" -n and £ being the values of counters C,,, C, and Cy, respectively),
M’ enters the state s; infinitely many times if and only if w is a solution to
L for that choice of r, no matter what the values of i; are. The counter C,,
will always contain the value w and is never modified. The counters C, and
Cy play the role of quantifiers, and C,. contains the value 2" - n instead of r
since we want to have its value tend to infinity while preserving the choice
of r. The counter Cy contains the value ¢, and it also tends to infinity, one
step at a time.

The states s; and s9 are identical in the sense that (s1,i,7,q) € 6 <
(s2,1,7,q) € § where ¢ is the transition function of M, that is, computation
proceeds exactly the same way from either state. When started from the
state (s1,w,2" -n, L i1, ..., 1) (or (s2,w,2" -n, L, i1,... 1)) for odd n, the
machine M’ multiplies the value in C, by 3, increments C;, and then checks
if (r,¢,w) € L by computing r and simulating a computation of M without
using the states s1 or s3. Once the check is finished, all counters except C,,
C, and Cj are set to 0, and M’ re-enters the state s1 if (r,¢,w) € L, and s9
otherwise. It follows that the state s; is visited infinitely many times if and
only if r was a correct guess for w.

Now, construct the countable SFT X, and the CA fy : Xy — X
as usual. We claim that the point

Ty = lim ¢((s1,—),0,w,n,n,0,...,0)
n—rr~oQ

is in the asymptotic set of the CA if w is a solution to L, and otherwise no
central pattern of this point containing the zig-zag head and the value of the
counter C,, occurs in a point in the asymptotic set. First, suppose w is indeed
a solution. Then, letting r be such that 3°°¢ : (r, ¢, w) € L, the point x,, is in
the asymptotic set because it is a limit point of ¢((s1,—),0,w,2",0,0,...,0)
(for this, note that the values in the counters C, and Cy tend to infinity).

Now, suppose w is not a solution to L. Suppose that the asymptotic
set contains a point y € X containing a central pattern u of z,, showing
the counter C\, and the zig-zag head. Suppose y occurs as a limit point of
x € X, and consider the computation that follows after u has occurred in
f™(x). Clearly, f™(x) must be a good point, or the zig-zag head will never
return from its next sweep (so that y is not a limit point of f). But then, a
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computation of M’ is simulated by fjs/, and the state s; will not be entered
infinitely many times. m

As in the case of limit sets, the corresponding result follows also on the
full shift: by adding a spreading state, we obtain a CA f on the full shift
such that the asymptotic set of f is Zg-complete. However, this is not very
interesting, since in [Sal13] we show that asymptotic sets can be E%—complete
in the case of the full shift (with essentially the same proof). The complexity
of the asymptotic set has also been investigated from another point of view
in the literature: in [DP09], a cellular automaton with a maximally high
Kolmogorov complexity in the asymptotic set was constructed. We cannot
hope for a result mirroring this, as the Kolmogorov complexity of any point
in a countable SFT is 0: By Lemma 2.1.10, all configurations are even
computable.”

By Theorem 2.4.14, not every asymptotic set is the limit set of a cellular
automaton. Besides the computational, there is a topological reason for this:
the limit set must necessarily be a subshift, but asymptotic sets need not
be closed in general. We show that this can happen in the countable case
as well.

Example 2.4.15 Let X = B71(0*1*(¢ +7)2*3*). Let f : X — X be the
bouncing ball CA defined by

F(°0.1%¢2F 3%) = o001+~ 1 gk +13%0
if k>0, and
£(°°0.02%'3%) = °°0.r2¥ 3%,
and symmetrically
F(>0.1Fr2k 30¢) = 00,1k pok ~1g%0
if k' >0 and
£(°°0.1%73%°) = °0.1k¢3%°
if K = 0. The asymptotic set of f is

Y = O(01" (£ 4 r)2%3%°}) U O(°01°) U O(>°23%°),
which is not topologically closed, since 102 &Y is a limit point of Y.

Conversely, we show that starting from a fixed sofic shift, asymptotic
sets do not necessarily form a larger class than limit sets. We note that such
an example does not exist for mixing SFTs (see Corollary 33 in [GR10a] for
the case of full shifts).

"More generally, countable subshifts have topological entropy 0, and Lemma 5.1 in
[Sim11] shows that this is an upper bound on the Kolmogorov complexity of the points.
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Proposition 2.4.16 There exists a countable sofic shift X and a CA f :
X — X such that the limit set of f is not the asymptotic set of any CA on
X.

Proof. Let
X = B0 0*#0* r0* + 0*/'0*#0*r'0*)

and g the CA on X which moves ¢ and r towards #, and moves ¢ and 7’/
away from #, changing (#r to £'#r', but £#0 and 0#r to 0#0. It is clear
that the limit set of g is

Y = BH(0"0"#0"r0" + ] (0%€'0"#0"1'0%)).
neN

We claim that no CA f on X has Y as its asymptotic set. Assume
on the contrary that this is the case, and let f have radius R. In general,
it is clearly true for asymptotic sets that for all N and x € X, the word
f"(z)[—n,n) must occur in Y for sufficiently large n. In particular, words of
Y must map to words of Y and points in Y have preimages in Y.

Since points of the form y(M,M’') = ©000M#0M 0> appear in the
asymptotic set with no restriction on M and M’, but the point z(M, M') =
000" 0M #0M'10% only appears for M = M’, a simple case analysis shows
that for large M and M’, such points map to points of the same form.

Since z(M, M) is isolated in X, and in the asymptotic set, it must be
f-periodic. It must also map to a point of the form z(N, N). If for some
M, no point of the form z(N,N) with N < 2R — 1 were to appear in the
orbit, then z(M, M + 1) would also be periodic. Therefore, there exists a
point z(N,N) with N < 2R — 1 such that z(M, M) appears in its orbit
for arbitrarily large M. But this is a contradiction, since z(NN, N) must be
f-periodic as well. m

We sketch in [ST12a] the proof of the following result, showing that any
bounded ¥ subshift can be implemented as an asymptotic set. In particular,
according to the result, in contrast to Proposition 2.4.16, every limit set on
a countable sofic shift is also an asymptotic set of some CA, if we are allowed
to change the countable sofic shift on which the CA is running.

Theorem 2.4.17 Let Y be any bounded Eg subshift. Then there exists a
countable sofic shift Z DY and a CA f: Z — Z such that the asymptotic
set of f from Z 1is exactly Y.

Theorem 2.4.10 is an example of a property that is specific to countable
SETs, and not true for general countable sofic shifts. We end this section
with another such result, by proving that asymptotic nilpotency is undecid-
able on countable sofic shifts. In fact, we show that — in stark contrast with
the decidability result Corollary 2.2.6 for countable SFTs — it is Hg—complete.
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Theorem 2.4.18 Given a countable sofic shift X and a cellular automaton
f:X —= X onit, itis Hg—complete to decide whether f is asymptotically
nilpotent.

Proof. First, it is easy to see that asymptotic nilpotency is in I3, by
form:

Vee X :3dm:Yn>m: f"(x)y = 0.

Let L be a recursive set such that
{weN|IreN:3%: (w,r () € L}.

is Eg—hard, let M be an always halting deterministic counter machine ac-
cepting L. Similarly as in the proof of Theorem 2.4.14, we construct a
counter machine M’ with counters Cy,, C, and Cy;. The counters C,,, C,
and Cy again correspond to the variables w, r and ¢, but this time we do not
need a fancy encoding for r. As in the proof of Theorem 2.4.14, the machine
repeatedly checks (w,r,¢) € L, and increments ¢ between checks, keeping r
and w fixed. If (w,r,¢) € L, M’ visits the state s;.
Let

X C B7HO*#0*(0 + « + —)0%#,0%) x X}/,

where the component X}, is a copy of Xy with a small modification:
we remove the symbols a and b that tell in which direction the counters,
root and zig-zag head are, in the sense of setting a = b = 0. We make
the corresponding change to the ¢-map of X to obtain the map ¢’. We
restrict the points of X so that roots of points in X’,, must occur on top of
the #, symbol (but make no other restrictions). Now, given w, we construct
a CA f: X — X which is not asymptotically nilpotent if and only if w € L.

The CA f on X behaves as follows. The symbol #, moves to the left
by two cells each step, and #, and the X/ ,-point are similarly shifted two
steps to the right on every step. The symbols < and — are called the potent
arrows. They move three cells each step. The symbol < moves to the left,
and turns into — when it reaches #,. Symmetrically, — is moved to the
right. However, when it hits #,, it does not turn into <—, but simply starts
following #,. On the component X}, f simulates fyy if the counter C,,
has value w, and otherwise halts the computation, staying in some state
q # s1. The potent arrow reacts to the zig-zag head, so that if the state s;
is entered, and the potent arrow is next to #, in state —, it turns into +.

Now, we claim that f is not asymptotically nilpotent if and only if w is
a solution to L. If it is a solution, we can guess the correct r and start f on
the point

04— #,.0%° X ¢((s1,—),0,w,7,0,...,0).
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The zig-zag head will enter the state s; infinitely many times so that —
is next to #,, and thus the trace at the origin contains the potent arrow
infinitely many times. Thus, f is not asymptotically nilpotent.

If w is not a solution, then we first note that it is clear that the only
possible reason for non-asymptotic nilpotency is the potent arrow: every
other symbol is moving steadily in one direction, so that, apart from the
potent arrow, only 0 will be visible on all tracks given enough time. On
the other hand, as in the proof of Theorem 2.4.14, the state s; is entered
infinitely many times only if the point on the X} ,-track is good, C', contains
the value w, and C). contains a correct guess of r for the word w. Thus, the
potent arrow can only make infinitely many sweeps if w is a solution to L.
]
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Chapter 3

Minimal Subshifts

3.1 Cellular Automata on Minimal Subshifts

In this section, we study minimal subshifts. These are just the dynamical
systems with no proper subshifts. More concretely, X is a minimal subshift
if and only if it is uniformly recurrent: for every word w that appears in a
point of X, w in fact appears with bounded gaps in every point of X.

It is hard to say much about endomorphisms of general minimal sub-
shifts, but we mention some easy observations and constructions. The fol-
lowing is folklore, although we do not know a reference.!

Lemma 3.1.1 [f the language of a minimal subshift X is I1Y, then it is also
30, and hence recursive.

Of course, the shift map o is predictable on all minimal subshifts by
the definition of predictability: given any pair of words u,v € B(X), the
algorithm says ‘yes’. By Lemma 3.1.1, if X is TI{, we have a stronger decid-
ability result, as we can check whether u, v are in the language and whether
v is reachable from u. We can also show, in general, that shift maps are
predictable on minimal 19 subshifts.? This also follows easily from Theo-
rem 4.40 in [GH55], and more explicitly from Proposition 8 in [DKVBO06],
but we give a direct proof.

Lemma 3.1.2 If the X is minimal and 119, then the class of shift maps
{o™ | m € Z} is predictable (uniformly in m).

Proof. Again, we may assume X is nonempty. Suppose we are given
m € Z and u,v € B(X). Of course, if there exists z € X such that

!The SFT case is proved in [Hoc09] with the same proof.
2Thanks to Pierre Guillon for telling me this.
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Tl itlul—1] = W T jigl-1 = v, § < j and j' —j = 0 mod m, then
we will find such x, and this is equivalent to reachability.

First, suppose that z[|,-1] = u for some z € X. We show that
T, km+|u|—1] = @ for some k > 0. For this, let j; = |u[ — 1, and con-
tinue by induction as follows: if j; is defined, we let j; 11 > j; be such that
Tjii1—jijira] = T[0,j,] (using minimality). Define J; C Zp, to be the set of
h € Zy, such that Tk, n kmthiju/—1) = v for some k € N, km + h > 0 and
km + h+ |u] — 1 < j;. We clearly have J; C J;+1. Let i be minimal such
that J; = J;11. Clearly, h € J;+1 always holds for h = j;11 — j; mod m, and
Ji +h C Jir1. We now have

{h} U (JZ + h) C Jiy1 = J;,

and it follows that ¢h mod m € J; for all £ > 0. In particular, mh =0 € J;,
and the claim again follows.

Since recurrence is uniform, it is easy to extend the argument of the
previous paragraph to find a uniform bound n such that if x|, —1) = u,
then @ (g, kmju|—1) = u for some 0 < km < n. Now, suppose z(; j4|u|-1] = U,
Tt giol—1) = v, § < j§', j' —j =0 mod m, and j' — j is minimal. Then
j' = J < n, as otherwise X[ km j+km-+jul—1] = U [ jr4+v|—1] = v for some
Jj+ km < j'. Tt follows that v is reachable from u by ¢™ if and only if it
is reachable in the first n/m steps. Since n can be easily computed from X
and u, reachability is decidable. m

Of course, if there are no computability restrictions, the endomorphism
monoids of minimal subshifts can be unpredictable for rather boring reasons
(even if we restrict to shift maps):

Proposition 3.1.3 There exists a minimal subshift X whose endomorphism
monoid 1s unpredictable.

Proof. To each sequence s = (s1, s2,...) € 2V we associate a minimal
subshift, such that for two distinct sequences, the prediction problems of the
associated subshifts are distinct. Let W§ = {a,b}. Given W7 = {w;, ws}
where |w| = |wa| = k;, and w; and wy mutually unbordered, we define two

0 1 .
sets of words UZ-Jrl and Ui+1.
0 5 5
Ui+1 = {w1w2w1w1w2w27w1w2w1w2w2w2},
and
1 5 5
Uip1 = {wijwawowiwaws, wiwawrwswaws .

We set W, = U;t'. Note that W7, contains two mutually unbordered
words of the same length, so that we may continue constructing such sets

by induction.
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We define X as the subshift generated by the words in the sets (W7);.
Now, suppose (s1,s2,...) # (t1,t2...), and let j be the minimal coordinate
such that s; 1 # tj41; suppose sj41 = 0 and ¢j41 = 1. Then Wy = th =
{w1, w2} with |wi| = |wa| = k;j, but

s 5 5
W2 = {wjwawiwiwaws, wwew wewaws },

and
t 5 5
Wi = {wiwawawwows, wiwewowawows }.

It follows that (no matter how the inductive word building process contin-
ues), the words w} and w2 occur in both X and X, and w3 is reachable
from w? by 0% in X;, but not in X;. However, the local rule of 6°% can
be specified the same way for both subshifts, so their prediction problems
are distinct.

The subshift X, is minimal for any sequence s € 2N: By definition, a
word v that occurs in X, is a subword of one of the two words in W/.
Then, v is a subword of both words in W} ;, and every point in X; is
an infinite concatenation of words in W7 ;. Thus, the map s — X; is an
injection from the uncountable set 2N to the set of prediction problems for
minimal subshifts. Since there are only countably many Turing machines,
uncountable many of these prediction problems are undecidable. m

Note that Proposition 3.1.3 does not give an example of a minimal sub-
shift with a single unpredictable CA, although I do not believe finding such
an example would be very hard.

A more interesting question is what can happen for IIY subshifts in gen-
eral. I'm not aware of minimal subshifts supporting CA which are not very
closely related to shift maps (for example, I do not know minimal subshifts
supporting automorphisms which are not roots of shift maps). The ex-
amples in Section 3.2, and the examples I know of in the literature, have
endomorphism monoids that ‘virtually’ consist of shift maps only, in the
sense that the endomorphism monoid is a group, and the subgroup of shift
maps has finite index in it. The example given in Section 3.3 has a self-
similar structure, and the endomorphism monoid consists of the shift maps
on each level of the self-similar structure. In such cases, Lemma 3.1.2 or a
modification thereof shows the predictability of the endomorphism monoid.
However, for all I know, there could be minimal subshifts supporting much
more complicated endomorphisms.

Question 3.1.4 Does there erxist a minimal 119 subshift whose endomor-
phism monoid is unpredictable?

It is well-known that a minimal subshift need not have zero entropy in
general. Some constructions can be found in [Gri73, Bru01, HK67, Kur03,
Wilg4].
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Proposition 3.1.5 There exists a minimal subshift with positive entropy.

This raises the natural question of whether the endomorphism monoid
needs to be sparse. We conjecture that it need not.

Conjecture 3.1.6 There exists a minimal subshift whose endomorphism
monoid s not sparse.

In Section 3.2 and Section 3.3, we concentrate on accessible and natural
classes of minimal subshifts: those defined by letter-to-word substitutions,
and those defined by Toeplitz substitutions.

For letter-to-word substitutions with the additional properties of prim-
itivity and balance (in particular uniformness or the Pisot property), we
obtain that all cellular automata on the associated subshift are rather triv-
ial, and in particular we show that the endomorphism monoid is finitely
generated and predictable. Special cases of our results have been proved at
least in [Cov71, HP89, Oll13, dJRS80, Sonl4| (with stronger assumptions
and stronger conclusions). For Toeplitz substitutions, we do not aim at a
characterization, but simply show by (natural) example that the automor-
phism group need not be finitely generated.

3.2 CA on Subshifts Generated by Substitutions

In this section, we show that subshifts X associated with primitive balanced
substitutions — in particular Pisot substitutions — have a very simple endo-
morphism monoid. It satisfies our three criteria of simplicity, and more: it
is a group, and virtually Z, in the sense that the shift maps form a subgroup
which has finite index in Aut(X).

This section is mostly based on [ST13a).

Definition 3.2.1 A substitution is a function 7: S — S+.

While we take this as the definition, the term ”substitution” implies a
more robust domain for the function, in the following sense: A substitution
7:S — ST can also be applied to words w € S*, by (uniquely) extending
it to a monoid homomorphism (in the monoid of words with respect to
concatenation) by 7(uv) = 7(u)7(v). We can also apply 7 to points z € SN
by 7(2) = r(z0)r(@1)7(z2) .

The associated matriz of a substitution 7 is the |S| x |S| matrix M7
defined by M7, = |7(b)|o. If ¥ is a column vector containing the number
of occurrences of each letter in a word w, then M7 - ¥/ is the corresponding
column vector for 7(w).

A substitution 7 is called
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o uniform if |7(a)| = |7(b)| for all a,b € S,

e injective if 7(a) # 7(b) for all a A b € S,

e primitive if a C 7"(b) for all a,b € S and large enough n € N,

e Pisot, if the eigenvalues of its associated matrix are Ay, ..., \r, where

A1 > 1 and |\;| < 1 for all ¢ > 1.

To a primitive substitution 7 : § — ST such that 7"(a); = a for some
a € 5, n €N, we assign the subshift

X, = O(lim 7#n(a)) c SN,
k—o0
and its two-way extension X" C S%. We say that T generates the subshifts
X; and X7 It is well-known that X is independent of the choices of n and
a, and it is minimal. In this section, we study the endomorphism monoids
of such subshifts, when 7 satisfies some technical conditions. A substitution
7 is called aperiodic if X, does not contain a periodic point.

A primitive substitution has good recurrence properties. It is easy to
see that if 7 is a primitive substitutions, then X, is indeed minimal, that is,
uniformly recurrent. Namely, if w T X, then w T 7"(a) for some a € S and
n € N. Since 7 is primitive, 777#(b) then contains w for all b € S. Every
point in X, is a concatenation of these words. By a more quantitative
analysis, one can show that the recurrence is even linear:

Definition 3.2.2 A subshift X C S% is linearly recurrent if there exists C
such that for all w C X we have w T u whenever v C X and |u| > Clw|.

Lemma 3.2.3 ([DHS99]) Let 7 be a primitive substitution on S. Then
X is linearly recurrent.

In fact, [DHS99] exactly characterizes linearly recurrent subshifts in
terms of substitutions. An important result for primitive substitutions is
Theorem 2.4 of [Mos92], which we give as a lemma below. This follows as
a corollary from Lemma 3.2.3, although the direct proof in [Mos92] is also
clear.

Lemma 3.2.4 ([Mos92]) Let 7 be a primitive aperiodic substitution on S.
Then there exists N € N such that w™ i X, for all w € ST.

In the case of the previous lemma, we say X, has bounded powers.

A disjoint, but equally interesting notion is wunique ergodicity, which
states that in every point, every word appears with the same asymptotic
frequency.
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Lemma 3.2.5 ([Mic76], [Que8T7]) Let T be a primitive substitution on S.
Then X, is uniquely ergodic.

For linearly recurrent subshifts, we have a useful result from [Dur00].

Lemma 3.2.6 Every endomorphism of a linearly recurrent subshift is an
automorphism.

Proof. This is Corollary 18 in [Dur00] — the corollary only talks about
surjective maps, but since a linearly recurrent subshift is minimal, every
endomorphism is of course surjective. m

In particular, all endomorphisms of subshifts generated by primitive sub-
stitutions are automorphisms. Subshifts whose endomorphisms are injective
are called coalescent in the literature. Examples of minimal subshifts sup-
porting surjective and non-injective cellular automata are known [Dow97].

Our main results, Theorem 3.2.50 and Theorem 3.2.51 state that if 7 is
primitive and has the balance property (see Definition 3.2.31) — in particular
if it is Pisot or uniform — then the endomorphism monoid is roughly as simple
as one could hope (although it need not consist of the shift maps only): it
is sparse, finitely generated and predictable.

Endomorphism monoids (rather, automorphism groups) of minimal sub-
shifts have been studied to some extent in the literature, although most
references have concentrated more on structural aspects of the subshifts.?
Perhaps the first result explicitly about this problem was proved in [Cov71],
where it was shown that all primitive uniform binary (having alphabet
S = {0,1}) substitutions generated a subshift with only shift maps as en-
domorphisms, unless 0 and 1 are in symmetric roles in the substitution, in
which case also the bit flip b — 1 — b is an endomorphism. In [HP89], this
was generalized to all uniform primitive substitutions, and a result analo-
gous to ours was obtained about the larger class of all measurable, almost
everywhere shift-commuting maps. In [Oll13], it was proved for a general
class of Sturmian systems (including for example the subshift generated by
the Fibonacci substitution), that the endomorphism monoid consists of the
shift maps only.

Further such examples follow from the fact that a system with minimal
self-joinings cannot have automorphisms other than shift maps;* minimal
self-joinings have been proved for many substitutions in the literature, al-
though the automorphism group is usually not mentioned. We skip the
formal definition of minimal self-joinings, and details of the proof, to avoid
a detour in measure theory. We only give the following description [Son14]:

3Moreover, in the study of substitutions, it is not uncommon for authors to restrict to
particular examples instead of considering large classes of substitutions.
4Thanks to Tom Meyerovitch for telling me this.
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By a (two-fold) self-joining of a Z-dynamical system (X, T) with a fixed er-
godic measure 1, we mean a measure on X x X invariant under T x T whose
left and right marginals are both p. We say X has minimal self-joinings if
the only self-joinings are images of p in the maps = +— (z,7"(x)) where
n e’z

Lemma 3.2.7 If (X, T) is uniquely ergodic, and has minimal self-joinings,
then X has no automorphisms other than the shift maps.

Proof sketch. Suppose f : X — X is an automorphism. Since X
is uniquely ergodic, there is a unique shift-invariant measure p, which is
ergodic. Define fu by fu(S) = p(f~1(S)). A direct computation shows
that this is an shift-invariant measure on X, and thus fu = p. It follows
that f is a measure-theoretic isomorphism (because the previous argument
also applies to f~1). Now, the image of y in the map z + (x, f(x)) is clearly
a self-joining, hence it is the image of p by a map = — (z,0™(z)) for some
m € Z. This is a contradiction, as these measures are separated by the set
{(z,0™(x)) |z € X}. =

Combining this with Lemma 3.2.3, Lemma 3.2.6 and Lemma 3.2.5, we
see that if the subshift generated by a primitive substitution has minimal
self-joinings, then its endomorphism monoid consists of the shift maps. In
[Son14], it is shown that the substitution 0 — 001,1 — 11001 and the
substitution 0 — 001,1 — 11100 have minimal self-joinings, and thus only
shift maps in the endomorphism monoid. Note that these substitutions,
although primitive, are not uniform or Pisot (and thus not even balanced by
Lemma 3.2.35). It is also known that the famous Chacon substitution 0 —
0010, 1 — 1 has minimal self-joinings [dJRS80], and thus its automorphism
group consists of only the shift maps.

The proof of our main theorem is based on the following simple analytical
lemma.

Lemma 3.2.8 There exists a function o : [0,1) x R — R such that for any
sequence of real numbers (z;)ien such that ;11 < ax; + b for all i, we have
x; < afa,b) for large enough i. Furthermore, v < a(a,b) = azx +b <
a(a,b).

Proof. It is enough to prove the claim for a fixed pair a € [0,1) and
b € R, and it is enough to consider the sequences where xg = ¢ and z;11 =
az; + b for i > 0, for arbitrarily large ¢ € R. Let (z;); be such a sequence.
Since the map = — ax + b is contracting, it has a unique fixed point 3(a, b),
and z; — [(a,b) (see for example Theorem 2.2 in [KSO01]). We can now
take a(a,b) = B(a,b) + € for any € > 0. =
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3.2.1 Recognizability

We discuss the important notions of unilateral and bilateral recognizability.
Recognizability refers to the ability to deduce the structure of the fixed
point of a substitution and to ‘desubstitute’ it with a local rule. Slightly
more precisely (we give a formal definition later), if 7(z) = x, then z has
the natural decomposition

x = 71(x0)T(21)7(22) . ..

Now, given the word z|; ;1 g) or Z[;_g yr], We obviously cannot determine
the values of ¢ and j, since x is recurrent. Thus, we ask the next best thing,
namely how xz; ; splits into 7-images of symbols of X in the decomposition
above. If we can do this given z|; ;; g (but without knowing i and j), then
we say the substitution is unilaterally recognizable. If we can do this given
T[;-R,j+R), then it is called bilaterally recognizable. We make the idea of
desubstitution concrete in Section 3.2.4, where desubstitution rules are used
as actual inverse maps to substitutions, making them bijective on orbits.

The present notion of unilateral recognizability was first defined in [Hos86],
and bilateral recognizability was defined in [Mos92]. In [Hos86], this was
used as a simplifying assumption, and results about the eigenvalues of the
matrix associated with such a substitution were proved. The fact that
all primitive substitutions are bilaterally recognizable was first proved in
[Mos92]. In [Mar73], a predecessor of these notions was considered. Namely,
a stronger decoding property was shown to hold for primitive substitutions
on two letters, and claimed to hold with a similar proof for a larger alphabet.
Unfortunately, no one seems to be convinced of the proof even in the binary
case; at least [Hos86, Mos92, DHS99] state that the proof is not convincing,
although I am not aware of counterexamples.

The following definitions of recognizability are direct generalizations of
the ones from [Mos92] and [Mos96] (although the term ‘strictly recognizable’
is nonstandard), where the accepted version of the result and proof is given.

Let 7 be a substitution on S with aperiodic fixed point z € SN in which
all elements of S occur. We denote E(0) = 0 and E(p) = |7(z[p,—1))| for
p>0,and Ey = {E(p) |p>0}. If

W= Lliitw|=1] = P[jj+w|-1]
then we say w has the same 1-cutting at i and j if
Eynfiyi+w| =1]+ (G —1) = By N[5, 7 + [w] — 1.
We say that w comes from the word v at i if v = [, ;1) for the unique p and

g such that i € [E(p), E(p+1)—1] and i+ |w|—1 € [E(¢—1), E(q) —1]. We
say that 7 is bilaterally recognizable (or simply recognizable) if there exists
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L € N such that if x;_y, ;1) = @jy_r j41), then x; (= 2y ;) has the same
1-cutting at 7 and 4'. If in addition x[; ;) comes from the same word at ¢ and
i', we say T is strictly recognizable.

One of the main results of [Mos96] is that strict recognizability is in fact
implied by primitivity.

Lemma 3.2.9 (Theorem 2 of [Mos96]) FEvery primitive aperiodic sub-
stitution is strictly recognizable.

Lemma 3.2.10 Let 7 have a one-sided fized point v € X,, and let ' € X7
be such that ©, = x; for alli > 0. Then T is recognizable if and only if there
exists a block map R° = R° : X7 — {0,1}% such that for large enough
i €N, R°(2'); = 1 if and only if i € Ey. It is strictly recognizable if and
only if there exists a block map R = R, : X — ({#} U S)? such that for
large enough i € N, R(z"); # # if and only if i € Ey, and then x; comes
from the letter R(z'); at i.

Proof. Suppose 7 is recognizable, let L € N be as in the definition of
recognizability, and set L as the radius of R°. Then for all w C z with
lw| = 2L + 1, either i € Ey whenever w = x|;_r,; 1), or i ¢ Ej for all such
7. In the first case, the local rule of R° outputs 1 on input w, and in the
second, 0. If 7 is also strictly recognizable with the same L, then x; always
comes from the same letter a € S at @ when w = z[;_r, ;1 7). If the local rule
of R° outputs 0 on input w, then R outputs #; otherwise, it outputs the
above a.

Conversely, if r is the radius of R° (R, respectively), then one can take
r + max{|7(a)] | a € S} as L in the definition of recognizability (strict
recognizability, respectively). m

If the map R° (R, respectively) in the previous lemma can be taken to
have one-sided radius, then 7 is said to be (strictly) unilaterally recognizable.

3.2.2 The Special Case of Uniform Primitive Substitutions

As the special case of endomorphisms of the subshift generated by an in-
jective uniform primitive substitution is easy to establish, we begin with a
relatively self-contained treatment of it. As the proof of Lemma 3.2.9 is quite
complicated, we give a simpler proof of this in the injective uniform case in
Lemma 3.2.12. This section is mainly pedagogical, and its aim is to explain
our proof technique: the main result of this section, Proposition 3.2.14,
follows both from the results of [HP89], and those of Section 3.2.5, which
generalize it in different directions.

For the rest of this section, fix an alphabet S, an injective primitive
uniform aperiodic substitution 7 on S, so that |7(a)| = m and 7(a) # 7(b)
for all a,b € S, and suppose 7 has a fixed point x € X,. Only primitivity and
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uniformness are essential for our proof technique, and injectivity simplifies
our proof. Ensuring the existence of a fixed point on the other hand is a
matter of taking a power of .

For example, the Thue-Morse substitution 7(a) = ab, 7(b) = ba satisfies
the assumptions.

In the following, an h mod m-factor of a word w« is another word v such
that v = uf; ;4|y|—1] for some ¢ with ¢ = h mod m.

Lemma 3.2.11 Suppose that for all h € [1,m — 1], there exists w, € ST
which is a 0 mod m-factor, but not an h mod m-factor, of the fized point x
of 7. Then T is recognizable.

Proof. Let w be a prefix of the fixed-point z such that each wy, appears
in w as a 0 mod m-factor. Then w can only appear as a 0 mod m-factor in z:
if Z(; j4|w|-1] = w and j = h mod m, then wy, would be an h mod m-factor
in z. Since w appears with bounded gaps, recognizability follows easily. m

We restate, and prove, Lemma 3.2.9 for the injective uniform case, as
this is substantially easier than the general primitive case. See [Mos96] for
a proof in the case where 7 is not necessarily uniform.

Lemma 3.2.12 The substitution T is recognizable.

Proof. Suppose on the contrary that 7 is not recognizable, so that
Lemma 3.2.11 gives an h € [1,m — 1] such that every 0 mod m-factor of x
is also an h mod m-factor. Let w(®) € F(z) with [w(®| = 2 be arbitrary.
For all i > 1, define w® = 7(w(~1). Denote by N; C [0, m’ — 1] the set of
[(:L),n—l-mi—l]

We now claim that |N;| > i + 1. For ¢ = 0, this is clear, so suppose
that ¢ > 1, so that by the induction hypothesis we have |N;_1| > i. By the

definition of 7, for each n € N;_1, we have (w(i))[mn,mn—f—mi—l] = 7%(a) for

coordinates n such that w = 7i(a) for some a € S.

some a € S, hence mn € Nj. Since w® is the 7-image of a factor of z, it
is a 0 mod m-factor of z. But then it is also an h mod m-factor, and since
lw®| = 2m?, some 7%(a) is a (—h) mod m-factor of w®. Namely, w® occurs
in an h mod m coordinate of z, and some 7¢(a) in the natural decomposition
of x overlaps this occurrence in a 0 mod m coordinate of x, which is then a
(—h) mod m-coordinate of w(?). Thus km—h € N; for some k > 1, and since
it is not divisible by m, it is not one of the factors introduced previously, so
|N;| > i+ 1.

Let now K > 2 be arbitrary. We will show that u® = x for some u € ST,
contradicting Lemma 3.2.4 and finishing the proof. Let i = (K + 1)|S| — 1,
and consider the word w(®. Denote

I={nefo,m —1]|w) . =)}
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for each a € S, so that N; = (J,cgla- By the above, we have ||J, l.| >
(K + 1)|S|, implying that |I,| > K + 1 for some a € S. Then there exist
ni,ng € I, with 0 < k = |ngp — ng| < %Z But then T"(a)[()’mi,k,l] =
Ti(a)[kymi,l], from which it easily follows that 7%(a) is periodic with period
k, and then Ti(a)[[g,k—l] C x, which is the desired contradiction. =

In fact, combining the previous result with our proof of Lemma 3.2.11
shows something slightly stronger: that 7 is ‘recognizable from the right’,
in the sense that we only need to look at wy; ;4 s, and not wy_nri4 a1, tO
determine whether the coordinate ¢ is in F;. This property is not shared by
primitive substitutions in general.

Since T is injective, recognizability of course means that it is also strictly
recognizable®. Let R: X — O(®(S#™ 1)) be as in Lemma 3.2.10. To
access the image of R, we define the map 7, : (SU{#})% — (SU{#})% by
Tm(2)j = Tjm. Using recognizability, it is easy to see that X7 is a disjoint
union (Jy<,«,, X¥ where X0 = 7(X#) and XP = oP(X?) for all p# 0. The
p € [0,m — 1] such that y € XP is called the period class of y.

In the following proof, it is convenient to apply cellular automata to
words, according to Definition 1.3.10.

Lemma 3.2.13 Let f: X — X5 be a block map. Then f(X°) C XP for
some p € [0,m — 1].

Proof. By composing f with a shift, we may assume it has neighborhood
[0,7] for some 7 € N. Let 3,9/ € X° and let w = X be long enough
that |R(f(w))| > m (and thus also |R(w)| > m). We have yj;;i|w—-1] =
w = yfj7j+|w|_1] for some 4,7 € Z by uniform recurrence of X:*. By the
structure of z, it is easy to see that R(X) € B~1((S#™~1)*). Thus, since
|R(w)| > m, the word R(w) must contain a letter different from #, and we
then have j — i = 0 mod m. Because the neighborhood of f is [0,7], we
have f(y)(ii+|fw)-1) = (W) = F (W) j+17(w)-1)> and since [R(f(w))| > m,
R(f(w)) again contains a letter other than #, so f(y) and f(y') must have
the same period class. m

We can now prove the main result of this section, the following special
case of Theorem 3.2.45.

Proposition 3.2.14 There ezists a finite set P of block maps on X7 such
that if f: X7 — X is a block map, then f = o% o f' for some k € Z and
' eP.

Proof. Let p € [0,m — 1] be such that o?(f(X?)) C X, and define
fo = oP o f. Now, suppose the block map f; : X — X is defined and

5 A simple proof of this implication in the non-injective case is given in [Mos96].
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fi(X%) c X° We will ‘conjugate’ f; by 7 to obtain f;11 with a (hopefully)
smaller radius: For y € X9, let

fz‘l—i-l = CT(f’L) =mpoRo fioT.

By the assumptions on R and f;, the function f;, is shift-commuting and

K3
continuous, hence a block map on X:7. We again let fi;1 = 0?0 f/ 4y for
some ¢ such that f;,1(X°) c X0,

We show that there exists some number N € N depending on 7 such
that if ¢ : X — X satisfies g(X°) C X% and has radius r > N,
then C;(g) has radius ' < r: Let rg be the radius of R. Then, to deter-
mine Cr(g)(z);, by the definition of m,, it is enough to determine the word
R(g(7())){im,im+m—1]- To determine this, by the definition of R and g, it is

enough to determine 7() (i —r—rp im+m—14r+rz]- L0 determine this, by the

m]_

definition of 7, it is enough to know the word z[;_ ;.4 where s = { -

The claim then follows by Lemma 3.2.8.

We may assume without loss of generality that if » < N, then ' < N—m,
by increasing N if needed. We let P be the set of radius-N block maps on
X5, In the process of repeated conjugation, the radii of f; will decrease
until they reach the size N, and thus f; € P for some ¢ > 0.

We define the equivalence relation ~ on block maps on X by g ~
g <= g =o0"og for some n € Z, and note that f;11 ~ C-(f;) holds
for all i € N. Now, for all block maps g : X7 — X7 define the map
C-Y(g) =TogommoR from XU to itself, and extend it to all of X in the
natural way to obtain a shift-commuting map.

We extend C to the whole class of endomorphisms by C;(g) = C(cPog)
where 0 < p is minimal such that o?(g(X?)) € X°. It is then easy to see that
both C; and C;! are well-defined on o-classes of endomorphisms. Clearly,
if g(X%) c X9, we have
CYCr(g)) =TommoRogoTomuoR=g

T

on XY since 7 o 7, o R = idyo, and otherwise at least C-1(C;(g)) ~ g.
Similarly, we always have have

C.(C7Yg) =mmoRoTogomuoRoT =g,
since T, 0o RoT = idxe.

Thus, up to ~-equivalence, conjugation by 7 is actually an action of the
group Z on the set of block maps on X. If f: X — X is a block map,
then f; = fi1n, € P for some ¢,n > 0 in the process of repeated conjugation,
and then f ~ f;yy € P where it + =0 mod n. m

We show that this result is optimal in the sense that one can construct
arbitrarily many nonequivalent block maps with arbitrarily large radii on the
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subshift of a primitive uniform substitution. Contrast this with the result
of [CovTl], stating that the endomorphisms of subshifts of binary uniform
substitutions are symbol maps.5

Example 3.2.15 Let m € N and n > 4, and consider the substitution T on
the alphabet S = {a;, b; | 0 < i < m} defined by 7(a;) = biy1a? ' and 7(b;) =
bia?_l, where the indices are taken modulo m. This is a uniform primitive
substitution whose subshift has the symbol map f(a;) = aj+1, f(bj) = bit1
and its powers as endomorphisms. We perform a state-splitting on the letter
ag, obtaining the substitution 7 on the alphabet S=5u {c} defined as

7(a;) = 1(a;) for 0 <i < m,
7(c) = 7(ao),
?(bo) = boc™ ',

)

The letters ¢ and ag of T together represent the letter ag of T, with the
extra information of whether its preimage is ag or by. The subshift X7
is isomorphic to the two-sided subshift X" wia an obvious isomorphism
¢: X7 — X (induced by the state-splitting) with neighborhood [—n+1,0],
such that =% has neighborhood {0}. In particular, f induces an endomor-
phismf:gbofogb_l on X7

We claim that the endomorphism f cannot be defined by a contiguous
neighborhood [d,d +mn — 2] C Z. First, ifd>n ord+n —2 <0, then f =
o to fo ¢ (and thus the identity morphism) can be defined by a contiguous
neighborhood not containing 0. Since X7 is not a periodic subshift, this is
a contradiction. Thus we may assume d <n and d > —n + 1.

Let then © € ¢(XL') be such that rjg3 = bp-1am-1Gm—1am-1, and
denote y = o(x). Then

n—1 n—1 n—1
(:C)[O,Zin—l] = bm—10y, 1 boay,, 1 boa,, ",

ol — n—1 n—1 n—1
T(W)0,3n-1] =bo  ay,_1boay,_1boay, .

>

Due to d > —n + 1, the local rule of f, applied at coordinate n — 1, cannot
see the coordinate 0. Thus, f(7(2))n_1 = f(7(y))n_1. However, we should
have f(#(x))n-1 = ao and f(7(y))n-1 = ¢, a contradiction.

An analogous argument can be applied to all powers of f, except the iden-
tity map. All in all, the subshift $(X57) has at least m — 1 endomorphisms
that are pairwise distinct even modulo powers of the shift, and cannot be
defined by contiguous neighborhoods of size less than n — 1.

SThanks to Timo Jolivet for the idea of using state-splitting to find such an example.
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3.2.3 Orbit-preserving Maps and Dill Maps

The proofs of our main results are based on the study of a larger class of
maps than just cellular automata: the orbit-preserving maps, that is, con-
tinuous functions that map orbits to orbits. There is extensive literature
on orbit-equivalence of Cantor dynamical systems, that is, the existence of
orbit-preserving homeomorphisms; see for example [GPS95, BT98, GPS09].
Our perspective is a bit different, as we do not compare different subshifts,
but instead try to understand the endomorphism monoids of individual sub-
shifts.

Unlike in Section 3.2.2, it is now more convenient to consider one-way
subshifts X € SN, as this makes indexing slightly less taxing. We note that
when studying block maps from one-way subshifts to one-way subshifts, we
are simultaneously studying the block maps between the corresponding two-
way subshifts, as if f: X — Y is a block map between two-way subshifts,
then for large enough r, we have

Z10,00) = xl[O,oo) = f(x)[r,oo) = f(wl)[r,oo)a

so that o" o f is well-defined between right tails of points.

Definition 3.2.16 Let X,Y C SN be subshifts, and let f : X — Y be a
function. If s : X — N satisfies

flo(x)) = o*@(f(x)
for all x € X, then we call s a cocycle for f.

Definition 3.2.17 Let X,Y C SN be subshifts. A continuous function
f X — Y is said to be orbit-preserving if f(O(z)) C O(f(x)). If f is
continuous and has a continuous cocycle s : X — N with the property

Vee X :dneN:s(o"(x)) >0, (3.1)
then we say f is a dill' map, and s is a nice cocycle for it.

Clearly, a continuous map is orbit-preserving if and only if it has a cocy-
cle, so that in particular a dill map is orbit-preserving. Note that a continu-
ous cocycle has a finite image: since X is compact, its image in a continuous
map is compact as well. Note also that if f: X — Y is a dill map, and Y
contains no periodic points, then the cocycle of f is unique.

The word ‘dill’ comes from the theory of L systems: a dill map corresponds to a DIL
system, that is, a Deterministic Lindenmayer system with Interactions. We add an extra
‘I’ since we are interested in the action of these maps on Long (infinite) words.
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Lemma 3.2.18 Let X,Y C SN be subshifts, and let f : X — Y be a block
map. Then f is a dill map.

Proof. Since foo =oco f, s(x) =1 is a nice cocycle for f. m

Define a substitutive map to be a function 7: S — TF. Just like substi-
tutions, we also apply substitutive maps to general points, by applying the
map cellwise and concatenating the results.

Lemma 3.2.19 Let 7: S — T* be a substitutive map such that |T(a)| > 0

for some a € S, and let X C SN be a uniformly recurrent subshift with
Bi(X) = S. Then the extension 7 : X — 7(X) is a dill map.

Proof. Clearly, s(z) = |7(x0)| is a nice cocycle for f. m

Lemma 3.2.20 Suppose f : X — Y and g : Y — Z are dill maps. Then
gof: X — Z is a dill map.

Proof. Let s; be a nice cocycle for f, and s9 for g. Of course, go f is
continuous. Now, it is easy to see that

s1(z)—1

9(f(o(@))) = g0 (f(2)) = oZi=0 =IO (g(f(a)).

Thus, s(z) = Zjlz(g)_l s2(a7(f(x))) is a cocycle for go f. It is easy to check
the continuity of s, and that (3.1) holds. m

By the three previous lemmas, the composition of a block map and a
substitutive map is a dill map. Next, we show a kind of converse to this:
every dill map is obtained as a composition of a block map and a substitution

(although we have little control over their codomain and domain).

Lemma 3.2.21 Let X, Z C SN be subshifts, and ® : X — Z a dill map
with nice cocycle s. Then there exists a subshift Y, a block map f: X =Y
and a substitutive map 7 :Y — Z such that ® =710 f.

Proof. Since s is nice, there exist r,m € N and a function s : S"*! —
[0,m] such that s(z) = s'(x[o,) for all z, that is, [, uniquely determines
the image of s on x. Similarly, since ® is continuous, there exists r’ such that
[0, determines ®(x)(g,,. Let R = max(r,7’), and define Y = (SRAHN,
that is, Y is the full shift over the alphabet ST*!. Define the block map
f X =Y by f(z)o = z|o,r), and the substitutive map 7 : ShE+L g
(where ST is considered an alphabet) by 7(w) = ®(2) [ 5(s)—1), When z is
a point with g g = w (and 7(w) is arbitrary when w ¢ B(X)). It is easy
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to see that 7 is well-defined and the choice of x does not matter. It is then
easy to see that

T(f(z)) = T(w[O,R])T(x[LR-H])T<$[2,R+2]) T
(2)[0,5(2)-1]P((2)) 0,5(0(2))-11 2 (0 (%)) 0,5 (02 (2)) 1] * * -
(z).

P
P

]

Thus, dill maps are, in some sense, the closure of substitutive maps and
block maps under composition. This was also the original motivation for
them, as for the proof of Proposition 3.2.14 to generalize to non-uniform
substitutions, we need a class of maps which is closed under conjugation by
substitutions, and contains all cellular automata. However, for the direction
that all dill maps are indeed the composition of a block map and a substi-
tutive map (as shown in Lemma 3.2.21), note that even if & : X — X is a
dill map, f usually can not be taken to be a CA on X, or 7 a substitution
on X, and we really need the extra subshift Y.

The maps f and 7 given by the previous lemma are important in later
sections: In Section 3.2.2, we showed that the radius of the local rule of a
block map becomes small as it is conjugated by a substitution. Similarly, to
prove the main theorem, we will show that when a dill map is conjugated
by substitution, both components f and 7 in the representation given by
Lemma 3.2.21 become ‘small’. To formalize this, we define an analogue of
radius for dill maps. Namely, the radius pair.

Definition 3.2.22 Let & : X — Z be a dill map, and let f : X — Y and
7 :Y — Z a decomposition of ® into a block map and a substitution. If
the radius of f is r and m = max,es(|7(a)|), then we say ® has radius pair
(r,m).

Of course, a dill map can have multiple radius pairs.

Another way to state the previous lemma is that if & : X — Y is a dill
map between subshifts X,Y c SN, then there exists a continuous function
called an implementation ¢ : X — S* such that

®(z) = p(x)p(o(x))p(0*(x)) -, (3.2)
We usually write "¢(z) = ¢(z)p(o(x))---¢(¢" (z)), and (abusing nota-

tion), we then have

() = lim "é(z) = ©é(x).

n—o0

Such a map ¢ is of course obtained from the maps f and 7 given by
Lemma 3.2.21, by ¢(z) = 7(f(2)o)-
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Definition 3.2.23 A continuous function ¢ satisfying (3.2) is called an
implementation of ®.

The radius pair of an implementation ¢ is, correspondingly, (r, m), where
r is the number of coordinates (minus one) ¢ needs to look at before deter-
mining its image, and m is the maximal image size of ¢. We write I(¢) = r
and O(¢) = m, and say r and m are the in-radius and out-radius of ¢,
respectively.

Finally, we can also compose two dill maps by composing their imple-
mentations:

Lemma 3.2.24 Suppose 1 : X — Y and o : Y — Z are dill maps with
implementations ¢1 and ¢o. Then

d(a) = 1710y (%1 () (3.3)
s an implementation for ®5 o0 &1. Also,
("¢)(w) = "Gy (> ¢y () (3.4)

holds for all x € X and n € N.

Now, what we are interested in is how I(®) and O(®) behave as dill maps
are composed. It turns out that little can be said about this directly, since
O(®) does not capture enough information about the dill map. Namely, the
information O(®) gives us is only the rough upper bound |("¢)(x)| < O(®)n;
we need much more.

Our solution is to turn O(®) into a pair of invariants A and D, which
together give strong analytical information about the growth of words in the
dill map. For ¢ : X — §%, the invariant A is the limit of W when this
exists and is independent of x € X, and thus measures the average’ size of
¢(x). The invariant D measures the maximum of the absolute differences
between |("¢)(x)| and n - A(¢) for x € X, so that D and A together tell us
the length |("¢)(z)| up to a constant error. The invariants A and D of course
also give an upper bound for the out-radius O(¢) when we take n = 1.

We now define these invariants more formally, and discuss their be-
havior in the composition of dill maps. These inequalities — in particular
Lemma 3.2.30 — are the main technical tool in the proof of the main theorem.

While A exists for all dill maps on uniquely ergodic subshifts, the exis-
tence of D is quite a strong assumption. However, both exist for both block
maps (on any subshift) and primitive Pisot substitutions (on their associ-
ated subshifts). The claim is trivial for block maps, and it is proved for
substitutions in Section 3.2.4.

"Rather, it measures the time average. Of course, our interest is in uniquely ergodic
subshifts, so that the time average is equal to the space average by Birkhoff’s Ergodic
Theorem, see Lemma 3.2.26.
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Definition 3.2.25 Let ¢ : X — S*. We define \(p) = X € R, if for all

x € X, we have hmnl("LT)L(x)l =\

Lemma 3.2.26 If X is uniquely ergodic and ¢ : X — S* is a dill map,
then \(¢) exists.

Proof. We have
CON] _ g, 20 TN 104

lim
n n
by unique ergodicity, since x +— |¢(x)| is continuous. m

In what follows, the notation A(®) implies that the quantity is well-

defined, unless otherwise noted. The invariant D(¢) is defined in terms of
A(¢) as follows:

Definition 3.2.27 Let A(¢) = X\. We define D(¢) as the smallest D € N
such that for all x € X and for alln € N, we have |("¢)(x)| € [A\n— D, An+
D] (when such a D ezists).

Lemma 3.2.28 Suppose X and Y are subshifts, Y contains no periodic
points, and ® : X — 'Y is a dill map such that \(®) and D(®) exist. Then
the first A\(®)~1(m + D(®)) + I(®) coordinates of x determine the first m
coordinates of ®(x).

Proof. We prove that the first n coordinates of = determine (at least)
the first \(®)(n — I(®)) — D(®) coordinates of ®(x): The in-radius of ¢
can be taken to be I(®), so the first n coordinates determine that ®(z)
begins with "~/(®)¢(z). By the definition of A(®) and D(®), the length of
this word is at least A(®)(n — I[(®)) — D(®). The claim follows by setting
n=XN®) " Ym+ D(@))+ (). =

We now do some computations about how the invariants behave in com-
position. To avoid clutter in the statements of the lemmas, we make the
standing assumptions that X, Y and Z have no periodic points, ®; : X — Y
and @y : Y — Z are global dill maps for which the invariants in question
are defined, ¢; and ¢9 are their implementations, ® their composition, and
¢ the implementation of ® given by (3.3). We also denote H; = H(®;) for
each invariant H.

Lemma 3.2.29 With the standing assumptions, we have

)\((I)Q o) <I>1) = )\1)\2
D((I)Q o <I>1) < XoDi+ Dy
I((I)Q o <I>1) < AI1(2D1 + _[2) +11+1
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Proof. Let z € X. Using (3.4), we have

|("¢) ()] = [TV go) (1) ()]

= (1) () ()] ki € [=Dn, D1]
= )\2()\171 + k‘l) + ko ko € [—DQ, DQ]

where the k; are taken among reals. Dividing by n and taking the limit
n — 00, we see A(®) = AgA1. The claim for D(®) is then obvious.
As for I(®), we need to bound the in-radius of

z— p(z) = \¢1(x)|¢2(oo¢1(x))7

that is, we need to bound the number of coordinates of x we need to know
in order to determine the word ¢(z). To compute ¢(z), it is enough to know
the value of |¢1(x)| and to know the first |¢1(x)| + I(P2) coordinates of
*©¢1(x). The value |¢1(x)| is determined by the first I(®1) + 1 coordinates.
By Lemma 3.2.28, the first A(®1)~'(m + D(®1)) + I(®;) coordinates of z
uniquely determine the first m coordinates of ¢ (x). Setting m = O(®1)+
I(®3), we thus have that the first

A= XN®)"HO(®,) + I(D2) + D(®1)) + I(D1)

coordinates of x determine at least the first O(®1) +1(P2) > [¢p1(x)|+1(P2)
coordinates of *°¢;(x). Since A is greater than I(®;), |¢1(z)| is also deter-
mined. Finally, O(®1) < A(®1) + D(®P1) by taking n = 1 in the definition of
D(®,). Substituting this into the expression for A gives the formula in the
claim. m

In fact, we need such formulas for compositions of three dill maps. Prov-
ing these inequalities is of course a matter of applying the previous lemmas
twice.

Lemma 3.2.30 Let X =Y = Z, so that ®1 and P2 are dill maps on X.
Then for some function C : D x R x D — R, where D 1is the set of dill maps
on X, we have

D((I)g o®dyo0 (I)l) < A3AoD1 + A3D9y + Dg
< A3Dg + C(®1, A, ©3)
I(®30Pg0®1) <A1 (2D1 + M\ 2Dy + I3) + I +1) + I + 1
< )\1_112 + 2)\1_1)\2_1D2 + C((I)l, Aa, (193)
In particular, if A\; > 1, Ay = 1 and A3 < 1 (which will be the case in

our application), the invariants Do and I contribute to the corresponding
invariant of ®3 o ®5 o ®; with a coefficient less than 1.
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3.2.4 Back to Block Maps and Substitutions

We define notions of balance, almost equivalence and almost invertibility for
global dill maps. A dill map is balanced if all words ‘blow up’ by roughly
the same amount in the application of its local rule. Almost equivalence
of two dill maps ®; and ®5 means that the ®;-image and the ®5-image of
each point differ only by a shift. By almost invertibility, we mean invert-
ibility up to almost equivalence. For substitutions, we show that almost
invertibility follows from primitivity, and balance from both uniformity and
the Pisot property. Using these ideas, we then generalize the arguments of
Section 3.2.2.

Definition 3.2.31 A global dill map is balanced if the invariants A and D
are well-defined for it. We say that a substitution 7 : S — ST is balanced if
the corresponding dill map 7 : X; — X, is balanced.

This notion of balance has nothing to do with the notion of balanced
cellular automata on the full shift.

We note that A exists for all primitive substitutions, and corresponds to
a well-known property of the substitution.

Lemma 3.2.32 For every primitive substitution 7 : X; — X, X(7) is well-
defined and equal to the dominant eigenvalue of T.

Proof. By Lemma 3.2.5, X is uniquely ergodic, so that Lemma 3.2.26
applies, and thus A(7) exists. Therefore, we only need to show that it is
indeed equal to the dominant eigenvalue A. Let M be the associated matrix
of 7, where M, = |7(b)|, for a,b € S. For a € S, define

,u(a) — lim |1"[0,n71]|a
n n
where z € X;. By the proof of Proposition 5.8 in [Que87|, this is well-
defined for all @ € S, and independent of the choice of x, )", u(a) = 1, and
p = (p(a))aes is a right eigenvector of A for M. Writing |v| = >, v, for
v € RS, for any r € X, and some lim, €, , = 0, we have

C7)E) _ ol 5~

n

+ €x n)
a€esS

— Y Ir(@)|ula) = [Mp| = Alp| = \.
a€esS

]
Note that while Lemma 3.2.29 shows that Z behaves nicely in the com-
position of dill maps, we cannot conclude from the previous lemma that

96



the dominant eigenvalue behaves nicely in the composition of two primitive
substitutions. This is because the well-definedness of A for primitive substi-
tutions comes from the subshift X, more than from the action of 7: We do
not iterate 7 in the definition of A\(7), but only in the definition of X,, and
this iteration is what connects A(7) to the dominant eigenvalue.

It is obvious that uniform substitutions are balanced as dill maps, and
we next show that Pisot substitutions are also balanced.

Lemma 3.2.33 (Part of Corollary 2 in [Ada04]) Letx € SN be a fived
point of a primitive Pisot substitution, and let pu(a) = limy w for all

letters a € S. Then there exists C > 0 such that for all a € S and N € N,
we have ||zjg n_1)la — Np(a)| < C.

Actually, Corollary 2 of [Ada04] completely characterizes the substitu-
tions for which the conclusion holds, and in particular shows that they form
a larger class than Pisot substitutions. However, the condition is quite in-
volved, so we do not state it here. The balancedness of primitive Pisot
substitutions is an easy corollary of this lemma.

Lemma 3.2.34 Every primitive Pisot substitution 7 : X; — X, is bal-
anced.

Proof. By Lemma 3.2.32, A(7) is well-defined. By Lemma 3.2.33, apart
from a uniformly bounded error, x| ,_1j and y ,,—1] contain the same num-
ber of each letter for all x,y € X,. It is then easy to see that for some
C € R, we have

") @) = 1T = 7 (@on-1)] = [T (Yon-u)ll < C

for all n € N and z,y € X,. Since the limit of |(”7'77)L(x)| is A(7), it is easy
to see that for each n, there exist points x,y such that |("7)(z)| < M(7)n <
|("7)(y)|. From this, the claim follows. m

It is well-known that no substitution is both uniform and Pisot, so that
balanced dill maps are a common generalization of the two. In the binary
case, the balanced substitutions are precisely the disjoint union of uniform
or Pisot substitutions.

Lemma 3.2.35 A binary substitution is balanced if and only if it is uniform
or Pisot.

Proof. We have already seen that both uniform and Pisot substitutions
are balanced. Now suppose 7 : {0,1} — {0,1}* is not uniform and not Pisot.
Since 7 is not Pisot, by Theorem 1 of [Ada04], there exist arbitrarily large
n such that for some pair u,v C X, we have |u| = |v| and ||ulp — |v|o] > n.
Then of course ||7(u)| — |7(v)|| > n, since |7(0)] # |[7(1)]. =
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Definition 3.2.36 Let &,V : X — Y be dill maps with X uniformly recur-
rent. If ' '
Vee X :3i,j e N: o' (®(x)) =0’ (¥(x)),

then we write ® ~ U, and say ® and ¥ are almost equivalent. If ®; : X —
Y, ®y:Y = X and $90 D ~ idx, then we say P9 is an almost left inverse
of ®1, and it is an almost right inverse if ®1 o &5 ~ idy. An almost right
and almost left inverse is called an almost inverse. A dill map is almost
invertible if it has an almost inverse.

To make sure that it is safe to talk about dill maps ‘up to almost equiv-
alence’, we need to check that almost equivalence is an equivalence relation,
and behaves well under composition of dill maps.

Lemma 3.2.37 Almost equivalence is an equivalence relation, that is,
D~ Py NPy~ Py = P ~ Dy,
Almost equivalence is a congruence with respect to composition, that is,
O~ U APy~ Uy = PyoDy ~ Ty0U.
Proof. If 0% (®1(x)) = 071 (Py(x)) and 02(P(z)) = 072(P3(z)), then
o2 (@ (2)) = 072 (Ry(z)) = 0712 (P3(2)),

so (~) is an equivalence relation.
We also need to show that if &1 ~ ¥y and ®5 ~ ¥y, then &5 0 &1 ~
Uy 0 ¥y, We have 091 (®1(x)) = 0" (¥ (z)) for some ji, k1, and thus

072 (D2(07 (@1(2)))) = 0™ (T2(0™ (V1 (2))),

for some jo, ko. The claim follows by applying the cocycles of &5 and Vo
appropriately. m

In fact, the reason we call these maps ‘almost invertible’ and not ‘in-
vertible’ is only an artifact of considering one-way subshifts.® The two-way
extensions are, in a sense, actually invertible.

Remark 3.2.38 Let ®; : X — Y be a dill map (or a general orbit-preserving
map), and let 9 : X7 — Y be its two-way extension. Then Py induces
a well-defined map @3 : X< /(~) = Y /(~), where ~ is the orbit relation
r~y <= ye Ox), by P3([z]) = [Pa(x)]. If @1 is almost invertible, then
®3 is bijective.

80n the other hand, considering two-way subshifts leads to worse artifacts, as defining
the invariants I, O, A and D is very messy.
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Next, we use the recognizability of primitive substitutions to obtain al-
most inverse dill maps for them.

Lemma 3.2.39 A primitive aperiodic substitution 7 on S is almost invert-
ible as a dill map on X,. If T is balanced, it has a balanced almost inverse.

Proof. First, 7 is strictly recognizable by Lemma 3.2.9, so let R be the
block map given by Lemma 3.2.10, and let » € N be its radius. Then the
neighborhood of ¢" o R contains only nonnegative elements, so fr =c" o R
can be thought of as a block map from X to ({#}US)N. Define ¢ : X, — S*
by

a, if fr(z)o=a € S, and
olw) = { e, if fu(z)o = #,

(where € denotes the empty word). It is easy to see that 771 = ¢ is a dill
map, and an almost inverse of 7.

By the way we defined 77!, the composition 7o 7~! has an implementa-
tion ¢ : X; — S* such that there exists C' > 0 with |("¢)(x)| € [n—C,n+C]|
for all x € X, and n € N. It is then easy to see that 7! is balanced if 7 is.
]

As an example, we give an almost inverse of the Thue-Morse substitution.

Example 3.2.40 Let 7 be the Thue-Morse substitution, and let 77 : X; —
{0,1}* be defined by

771(00101) = ¢, 771(00110) =
771(01001) =€, 771(01011) = 0
77101100) = 0, 7-1(01101) = 0
771(10010) = 1, 7~1(10011) =
771(10100) = 1, 771(10110) =
771(11001) =€, 771(11010) =

One can check that (7)o (*°771) ~idx, = (°°771) o (*°7).

Next, we characterize the almost equivalence of block maps on our sub-
shifts of interest.

Lemma 3.2.41 If f,g: X — Y are almost equivalent block maps, where X
is uniformly recurrent, then go o® = f or g = f o o® for some k € N.

Proof. Suppose f and g both have neighborhood [0, 7] for some r € N.
If z € X, then o/(f(x)) = " (g(x)) for some £, € N. Suppose £ < /'
(the other case being symmetric). Then, using shift-commutation, we have
fot(x)) = 0" (g(c'(x))). Set y = of(z) and k = ¢ — ¢, so that f(y) =
o*(g(y)). We show that f = 0¥ o g. Namely, if this is not the case, then
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there exists a point z € X such that f(z); # g(z)i4x for some i € N. Since
X is uniformly recurrent, w = z|; ;4 ,] appears with bounded gaps in y, so
f(y) = o*(g(y)) does not hold. m

Lemma 3.2.41 does not apply in the case that f ~ ®, f is a block map
and ® a dill map: for example on the Thue-Morse shift, ® could behave
differently depending on whether the input point is of the form 7(x) or
o(7(x)) for some =z € X;.

We can now generalize the conjugation argument of Proposition 3.2.14
to balanced primitive substitutions.

Example 3.2.42 We continue Example 3.2.40. The endomorphisms of the
Thue-Morse subshift are characterized in [Cov71], and they are the shift
maps, possibly composed with a bit flip. We show that the process of repeated
conjugation eventually sends each such map into a finite set of maps. First,
we consider the shift maps and show that

oo or =ol™?l

on X, for alln € N. Then, for alln € N, 77 oo™ o7/ € {id,a} for large
enough j. The odd case n = 2k + 1 is the more interesting one, and writing
0=1 and 1 =0, we have

T, o
T = ToT1T2x3* -+ > TOLTL1L1TX2X2L3T3 * - *

Onp —
— TRLp1 Dot 1 Tht 2Tkt 20k 3Tkt " -
T—l
—> 6xk+1€$k}+2€xk+3€
= " (x).

As for the bit flip g, a similar computation shows that

7'_1oa"ogoT:o"—"/ﬂog7

so that for any endomorphism f of the Thue-Morse subshift, we have
for large enough j.

We will again make some standing assumptions. Suppose 7 is a balanced
almost invertible substitution on the alphabets S, and A = A\(7) > 1.

By Lemma 3.2.39, there exists a balanced almost inverse 7—! for 7.
We will repeatedly conjugate (in the group theoretical sense, up to almost
invertibility) a cellular automaton f : X, — X, with 7, that is, apply the
transformation f — 77! o f o 7, and observe the invariants A, D, and I.
Thinking of 7 as fixed, we show the following evolution for the invariants:
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e )\ stays at 1,
e D stays bounded by a constant,

e [ decreases until it is bounded by a constant.

Lemma 3.2.43 With the standing assumptions, there exist D = D, and
I = I, such that for any CA f: X; — X,, for alli € N, for ®; = 7o for!
we have A\(®;) = 1, D(®;) < D. For large enough i € N, we have I(®;) < I.

Proof. The claim for A(®;) follows directly from Lemma 3.2.29. As for
D(®;), we have D(®() = 0 since f is a block map, and from Lemma 3.2.30,
we obtain

D(®i11) < A'D(®;) + X' D() + D(r 1),

where A = A(7), so the claim for D(®;) follows from Lemma 3.2.8. For
I(®;), we similarly obtain from Lemma 3.2.30 that

I(®ip1) < ANTH(®;) + 207 1D(®;) + C.

Since D(®;) stays bounded by the constant D, the claim for I(®;) also
follows from Lemma 3.2.8. =

When all the invariants are bounded, there are only finitely many choices
for the corresponding dill map.

Lemma 3.2.44 For any A, D and I, there are finitely many dill maps
®: X =Y with
AMP) <A\, D(®) <D, I(®) <. (3.5)
Proof. The in-radius of the implementation is at most I, and out-radius
at most A + D. The claim follows because there are at most ( QIOD |S|FyM
such functions, where M = ST+1. m

3.2.5 Description of the Cellular Automata

We are now ready to prove our main results.

Proposition 3.2.45 Let 7 be a primitive aperiodic balanced substitution.
Then there exists a finite set P of CA on X, such that if f : X; — X, is a
CA, then f =c*0qg or g=0c"o f for some g € P and k € N.

Proof. Let @ be the set of dill maps on X, satisfying (3.5) for A = 1,
D = D; and I = I.. The set @ is finite by Lemma 3.2.44.

Let f: X, — X, be a CA, in particular a dill map. Since 7 is balanced,
and almost invertible by Lemma 3.2.39, we can apply Lemma 3.2.43 to see

101



that for some n € N, the invariants D and I of ®; = 7?0 f o 7 are smaller
than the constants D, and I for all ¢ > n. Then ®; € Q for all i > n.

Since Q) is finite, we must in fact have ®;; = ®; for some i > n and j > 0.
Because the operation ® — 7~ o® o7 is reversible up to almost equivalence
(its almost inverse being ® ++ 70 ®o77!), we must (by Lemma 3.2.37) then
have f ~ @,y € @ for some ¢ € [0,j — 1].

If two block maps are almost equivalent to the same dill map ® € @,
they are almost equivalent to each other, and thus one is a shift of the other
by Lemma 3.2.41. We choose P as a set of representatives of these finitely
many almost equivalence classes. m

We mention the small subtlety that we do not choose a subset P of @),
but instead, for each dill map in @, we take in P some CA that happens
to be almost equivalent to it, if one exists. Thus, more work is needed to
obtain a computable bound on the radii of the CA in P, although we obtain
the concrete upper bound |P| < |@Q| for the size of this set.

Corollary 3.2.46 Let T be a primitive aperiodic balanced substitution. Then
there exists m such that if f: X; — X, is a CA, then f™ is a shift map.

Proof. We have f"t% ~ f" for some n € [0,|P|],k € [1,|P|] by the
pigeonhole principle. Thus, either f*** = oo f* or f* = o' o f"**. Since
f™ is necessarily surjective, in the first case we have f¥ = ¢’. In the second,
we have o’ o f¥ = id, which is impossible since o' is not injective. Thus, we
can take m = |P|!. =

Corollary 3.2.47 Let T be a primitive aperiodic balanced substitution. Then

there exists a finite set P of CA on X, such that if f: X; — X; is a CA,
then f = o* o g for some g € P and k € N.

Proof. If we have chosen a set of CA P with the property stated in
Proposition 3.2.45, and g = o* o f occurs, then this means g can be defined
by a neighborhood not containing 0. If it can be defined with neighborhood
[i,i + 7], then o’ 0 g ~ g, and we replace g in P by o' o g. If this process
of replacing the CA in P with their shifted versions never ends, then some
g € P can be defined by a neighborhood [i,7 + 7;] for all i« € N, and some
r; € N.

However, if g is such a CA, then ¢™ = ¢’ is a shift map for some m,
by Corollary 3.2.46. Clearly, any neighborhood of ¢"”* — and thus also g —
must then contain a coordinate at most i. Namely, otherwise, the identity
map can be defined by a neighborhood not containing 0, and thus factors
through a shift map. This is impossible, since a shift map is not injective.
]
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While Proposition 3.2.45 and the corollaries are interesting in themselves,
our main interest is in two-way subshifts. Since each block map between two-
sided subshifts becomes a block map between the corresponding one-sided
subshifts when composed with a large enough power of the shift, and almost
equivalence is preserved by this operation (with the obvious definition in the
two-sided case), we can apply Proposition 3.2.45 also to morphisms between
two-sided subshifts.

Theorem 3.2.48 Let T be a primitive aperiodic balanced substitution. Then
there exists a finite set of CA P on X7 such that if f : X7 — X7 isa
CA, then f = c* o g for some g€ P and k € Z.

We also obtain a new proof of Lemma 3.2.6 in our restricted case.

Corollary 3.2.49 Let T be a primitive aperiodic balanced substitution. Then
all endomorphisms of X7 are automorphisms.

Proof. Let f € End(X{"). Then, o' o f gives a CA on X, for large
enough i. Since (0% o f)¥ = o™ o f¥ is a shift map on X, for some k by
Corollary 3.2.46, f* must be a shift map on X7, Thus, f is bijective. m

In the following, if a group G has a subgroup of finite index isomor-
phic to another group H, then we say that G is wvirtually H. Using the
observations and terminology above, we obtain the following restatement of
Theorem 3.2.48:

Theorem 3.2.50 The endomorphism monoid of the two-sided subshift of a
primitive aperiodic balanced substitution is a group, and is virtually Z (the
subgroup isomorphic to Z being the subgroup of shifts).

Now, we can easily prove our simplicity properties of interest for these
substitutions.

Theorem 3.2.51 The endomorphism monoid of the two-sided subshift X
of a primitive aperiodic balanced substitution is finitely generated, sparse and
predictable.

Proof. The endomorphism monoid is finitely generated since it is gen-
erated by the shift map and representatives of each of the finitely many
cosets.

To see that the endomorphism monoid is sparse, simply note that the
entropy of a substitutive subshift X is 0; see for example [Kur03].

To see that the endomorphism monoid is predictable, we observe that
because the endomorphism monoid is virtually Z = (o), (or by extending
Corollary 3.2.46 directly), there exists n such that for any CA f: X — X
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we have f™ € (o). The claim then follows from Lemma 3.1.1, Lemma 3.1.2
and Lemma 1.5.5. =

Note that even though X is minimal, (X,0c™) need not be uniformly
recurrent. For example, by recognizability, (X, 02) is not uniformly recurrent
if X is the subshift of the Thue-Morse substitution. Thus, f™ = ¢™ does not
immediately tell us everything about reachability unless m = 1 (in which
case the answer is always yes by minimality).

Note that it is not true for all substitutions that all endomorphisms are
surjective, as the subshift generated by the substitution

0+~ 010,1 — 11

has the non-surjective endomorphism z +— *°1°°. In particular, the assump-
tion of primitivity is needed in Theorem 3.2.50.

Recall Example 3.2.15 from the uniform case, where we constructed an
arbitrary number of not almost equivalent endomorphisms with arbitrarily
large radii on the subshift of a primitive uniform substitution. One might
ask whether the finitely many maps must in fact be symbol maps in the
non-uniform case. However, there are examples where the maps have a
larger radius, and in fact, we can construct arbitrarily large radii also in the
non-uniform case.

Example 3.2.52 Recall the notation of Example 3.2.15 from the uniform
case. Let again m € N and n > 4, and define 7(a;) = biy1a?"" and
7(b;i) = bial. Now T is not uniform, but the original argument can be directly
applied, providing a non-uniform primitive substitution and m — 1 pairwise
~-nonequivalent endomorphisms with large neighborhoods.

The substitution in the previous example is not Pisot, and we do not
know examples of Pisot substitutions with large numbers of nonequivalent
endomorphisms. For example, Sturmian subshifts are a subcase of Pisot
substitutions, and all their endomorphisms are shift maps by the result of
[O1113].

While the Pisot property (or rather, balance) is strongly depended on
in our argument, we believe it is not needed for the result that the au-
tomorphism group is virtually Z. One can also ask if, more generally, the
automorphism group of a linearly recurrent subshift is virtually Z. We would
not be particularly surprised if this were the case, but it does not seem likely
to us that our method can tackle this problem.

Conjecture 3.2.53 The automorphism group of the subshift of a primitive
aperiodic substitution is virtually Z.

Question 3.2.54 Is the automorphism group of every linearly recurrent
subshift virtually Z?
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Our result could also be generalized in another direction, namely, for
measure-preserving” maps between subshifts generated by primitive substi-
tutions. The uniform case has been partially solved in [HP89], where it was
shown that there are only finitely many (up to shifting and almost every-
where equivalence) measure-preserving, almost everywhere shift-commuting
maps between two subshifts generated by uniform primitive substitutions
satisfying certain injectivity conditions.

Question 3.2.55 Does the result of [HP89] hold in the Pisot case? The
general primitive case?

3.3 Cellular Automata on Toeplitz Subshifts

Given that a minimal subshift necessarily has a restricting global structure,
one could ask whether in fact there even exists a minimal subshift with
interesting self-maps. We can at least show that there exists a minimal
subshift whose endomorphism monoid is not finitely generated, so that in
particular the analogue of Theorem 3.2.45 does not hold in general on min-
imal subshifts. Finding such an example is the purpose of this section. We
will develop basic tools for computing endomorphism monoids of Toeplitz
subshifts, and compute them for some examples where the endomorphism
monoid is not finitely generated. As in Section 3.2, we prove our results
for one-sided subshifts, and extract two-sided corollaries in the end of this
section.

A Toeplitz point is a point x € SN such that for all coordinates i there
exists a period p > 0 such that z;1;, = x; for all & € N. Then, for all
intervals [7,j'], we also find p > 0 such that have x[; j14r, = ;1 for all
k € N, and we similarly say p is the period of [, j'] in . A Toeplitz point is
clearly uniformly recurrent, so the subshift X C SN it generates is minimal.
A Toeplitz subshift is any subshift generated by a Toeplitz point. Not every
point in a Toeplitz subshift need be Toeplitz, but the Toeplitz points are
necessarily dense, since the orbit of the point generating the subshift is dense,
and contains only Toeplitz points. Note that periodic points are Toeplitz
with our definition, and they generate Toeplitz subshifts conjugate to finite
systems (Z,, (z — = + 1)). In fact, these finite systems are important in
what follows. Thus, in this section, we will consider Z,, a dynamical system
with dynamics x — = + 1, and it is often considered synonymous with the
subshift (10"~1)%. However, when used as an invariant, its dynamics will
be idzn.

One way to generate Toeplitz sequences is the following type of substi-
tution process. Let w € (SU{_})*. We say w is a partial word over the

9Measure-preserving with respect to the unique measure that is preserved by the shift-
map.
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alphabet S, and _ represents ‘missing’ coordinates. Let ¢ be the map that,
given y and z in (SU{_})N, writes z in the ‘unknown coordinates’ of y. More
precisely,

zp—1 ik =y l.Ay; = - and

yR)j = .
P(y,2); { yj if y; # o
If wg € S, then writing ¢, () = ¢(w>, z), we define

2(w) = lim Y7(-).

It is easy to see that z(w) € SN is a Toeplitz point. We write X,, ¢ SN for
the subshift O(z(w)) it generates.

We will, in particular, compute the endomorphism monoid of the two-
way extension X{j o of Xjo_o_: as in the previous section, this again con-

sists of automorphisms only, and it is isomorphic to the additive subgroup
<(%)l | i€ N> of Q, which is not finitely generated.

3.3.1 Preliminary Results

We begin with a general discussion of Toeplitz subshifts. Our methods
are very elementary, and we do not need much of the theory of Toeplitz
subshifts — in particular, while the discussion below is strongly based on the
maximal equicontinuous factor of a Toeplitz subshift (which is an odometer),
we will not discuss this factor explicitly, but only its finite factors.'® The
lemmas 3.3.2 and 3.3.3 can be extracted from any reference that discusses the
maximal equicontinuous factor of a Toeplitz subshift [Kur03, Wil84, Dow05],
but we prove them directly.

Definition 3.3.1 Let x be a Toeplitz point which is not periodic. For each
k, define the k-skeleton of x as the point

Sk(k, 2); = i, ifVm E N : Zijtmi = 25, and

-, otherwise.
The number k is an essential period of z if o¢(Sk(k,x)) # Sk(k,z) for all
0<tl<k.

Lemma 3.3.2 Let © be a Toeplitz point, and X the subshift it generates.
Then Z,, is a factor of X is and only if n|k for some essential period k of x.

Proof. We first show that if &k is an essential period, then Zj is a factor
of X. Clearly every coordinate of Sk(k,x) containing a symbol other than

10The maximal equicontinuous factor of a Toeplitz subshift is just an inverse limit of
the finite factors, so the difference is small.
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. has period k. On the other hand, it is not hard to show that there exists
m such that if ; = x;41 = -+ = Zj4mk, then Sk(k,x); = ;. This, and the
fact that of(Sk(k,x)) # Sk(k,z) for all 0 < ¢ < k, imply that T{j it (m+1)]
‘matches’ Sk(z, k)(o,(m+1)s (in the sense of being equal to it in the non-..
coordinates) if and only if « = 0 mod k, and from this, we obtain a block
map from X to Z, so that also Z,, for n|k are factors of X.

Next, suppose f : X — Z, is a factor map. By continuity, yo,) deter-
mines the image f(y) for y € X. Let w be such that f(y) = 0 whenever
Y[o,jw|-1] = w. Then w occurs at [ ;y|y|—1) only if ¢ = 0 mod k. Let k be
minimal such that w occurs in Sk(z, k). Then it is easy to see that k is an
essential period, and n|k. =

Lemma 3.3.3 If X is a Toeplitz subshift, x € X is Toeplitz, and the least
period of [i,j] in x is k, then Zy, is a factor of X.

Proof. Clearly, Sk(x, k) ;) = zj; 5. If o’(Sk(k,z)) # Sk(k, x) for some
0 < ¢ < k, then ¢ is a smaller period of [i,j] in . Thus, k is an essential
period, and the result follows from the previous lemma. =

We now define the notions of disjointness and independence. Disjointness
is a relatively well-known concept in the theory of dynamical systems, and it
was introduced in [Fur67]. We do not know if independence has been studied
previously, but it is very useful for studying the endomorphism monoid, see
Section 3.3.2. While distinct for minimal subshifts in general, we show
in Theorem 3.3.15 that the two notions, disjointness and independence, are
equivalent for Toeplitz subshifts. We give the definition of disjointness given
in [HYO05], in the case of subshifts.

Definition 3.3.4 If X,Y are two subshifts, we say that a subshift J C
X XY is a joining of X and Y if the restrictions of the projection maps
m:J = X and w1 J = Y are surjective. If each joining is equal to X XY,
we then say that X and Y are disjoint, and denote this by X LY.

Lemma 3.3.5 Suppose X and Y are minimal. Then X LY if and only if
X xY is minimal.

Proof. If X x Y is minimal and J is a joining of X and Y, then J is a
nonempty subshift of X x Y, and thus J = X X Y by minimality, so that
X1Y.

Suppose then that X 1 Y and J is a nonempty subshift of X x Y. Then
(x,y) € J for some z € X and y € Y. Since both X and Y are minimal, z
generates X and y generates Y, so that the orbit closure K of (z,y) projects
onto X through m; and onto Y through 7. By X 1L Y, we have K = X xY.
Of course, we then have J = X x Y, so that X X Y is minimal. m

In the case that one of the systems is finite, we have the following alter-
native characterization.

107



Lemma 3.3.6 Let X be minimal. Then X L Z,, if and only if (X,0™) is
minimal.

Proof. We have X | Z,, if and only if X x Z,, is minimal.

If (X,0™) is minimal, then for all e > 0 and z,y € X, if (z,n1), (y,n2) €
X x Z,, and n1 < ny (the other case being symmetric), by the minimality
of 0™, there exists k such that d(c*™(c"2~™(x)),%) < €, and then

d(o_k‘m-‘rTLQ—NI((x,nl))’ (y7n2)) _ d((akm+n2—n1 (:E),ng), (y,ng)) < €.

If X x Z,;, is minimal then for any ¢ > 0 and z,y € X, for some n € N
we have ¢"(z,0) = (z,0) where d(z,y) < e. Clearly n = km for some k, so
(X,0™) is minimal. m

Definition 3.3.7 A block map ¢ : X xY — Z is right-independent if
¢ factors through the projection map m : X XY — X. We define right-
dependence as the complement of right-independence, and left-independence
and left-dependence symmetrically. If all block maps ¢ : X xY — X are
right-independent then we say X is independent fromY . If X is independent
from'Y and Y from X, then we say the two are mutually independent.
Again, in the converse case, we say X is dependent of Y.

In general, we can define these notions in categories with products, and
in concrete categories where products correspond to set theoretic products,
X is independent from Y if there are no maps ¢ : X xY — X which actually
depend on the Y-coordinate.

The two notions have nontrivial interplay within the class of minimal
systems. We can at least construct two minimal systems X and Y such that
X x Y is minimal, but X depends on Y:

Example 3.3.8 For all u € {0,1}*, let O(u) be the word where odd co-
ordinates of u have been flipped (counting from the left, starting with 0),
and E(u) the word where even coordinates have been flipped. Let B(u) =
E(O(w)). If |u| is odd, then O(uv) = O(u)E(v) and E(uv) = E(u)O(v).

Let wo = 000, and inductively define w;11 = w;w;O0(w;)O(w;)B(w;), all
of which are of odd length. For all i, w; occurs in all of wit1, O(wit1),
E(wiH) and B(wi+1):

° O(wi+1) = O(wi)E(wi)wiB(w,-)E(wi),
o E(wit1) = E(w;)O(w;)B(w;)w;O(w;), and
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For any i, the point x = lim; w; is an infinite product of the words wit1,
O(wiy1), E(wiy1) and B(wiy1). By the previous observation, it is then
uniformly recurrent. Thus, the system X = O(x) with the shift dynamics o
is minimal. Since wyw; T X for all i and |w;| is odd, also o? is minimal.

Now, letY = O(®(01)®). It follows from the minimality of %, Lemma 3.3.6
and Lemma 8.8.5 that also X XY is minimal. By the inductive definition
of X, the map

o(z,y) =z +y,

where + is the binary XOR-operation, is well-defined from X xY to X. It
clearly depends on the Y -coordinate.

In the case of Toeplitz subshifts, the two notions are simply state that
the systems have no common finite factor. These, and some other equivalent
notions, are listed in Theorem 3.3.15.

Definition 3.3.9 A (nontrivial) invariant of a system X is a factor map
from X to a system (Z,, id).

Lemma 3.3.10 If X is transitive, then it has no nontrivial invariant.

Proof. The image of a transitive system in a factor map is transitive.
|

We give an obvious composition result. Of the two claims we prove, we
only need the first one.!!

Definition 3.3.11 A map £ : X XY — Z is right-surjective if for all x, the
function €| xy : {x} XY — Z is surjective. We define left-surjectivity,
right-injectivity and left-injectivity in the obvious way, and bi-surjectivity
and bi-injectivity as the conjunction of the respective left- and right notions.

Lemma 3.3.12 Let £ : X XY — Z and £ : X x Z — X be block maps. If
e & is right-surjective and &' right-dependent, then X is dependent of Y.
e & is right-dependent and &' right-injective, then X is dependent of Y.

Proof. Define ¢(x,y) = &' (x,&(x,y)). If either assumption holds for &
and ¢, this map shows that X is dependent of Y. m

Lemma 3.3.13 A nontrivial subshift X is dependent of every system (Z,y,, id)
with m > 1.

" There are many more symmetric versions of this lemma. We can of course replace
right by left, but we can also define a dual notion of ‘coindependence’ by considering maps
from X to the coproduct (disjoint union) X UY instead of maps from the product X x Y
to X.
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Proof. Let X be any such subshift. There exist two distinct endomor-
phisms ¢; and ¢9 of X, for example, idx and the shift map. Let 0 C C C Z,,
be any subset. Let

o(z,y) = { o1(z), ifyedC,

¢2(x), otherwise.
Then ¢ is a right-dependent map, so X is not independent of (Z,,,id). =

Lemma 3.3.14 If X is nontrivial and X XY has a nontrivial right-surjective
mwvariant, then X is dependent of Y.

Proof. Let £ : X xY — (Z,,,id) be a nontrivial right-surjective in-
variant. By Lemma 3.3.13, X depends on (Z,,,id), so that some map
¢ X x (Zp,id) — X is right-dependent. The result then follows from
Lemma 3.3.12. =

Theorem 3.3.15 Let X,Y be nontrivial Toeplitz subshifts. Then the fol-
lowing are equivalent:

1. X 1Y

X xY is minimal

X xY is transitive

X andY are mutually independent

X is independent from Y

S S L e

X and Y have no common nontrivial finite factors.

Proof. The equivalence of (1) and (2) was proved in Lemma 3.3.5. It
is clear that (3) follows from (2) and (5) follows from (4). If (6) does not
hold, then X and Y have a common finite factor Z,, through factor maps
¢1: X — Z,, and ¢3 1 Y — Z,, (since the systems systems Z,, are the
only minimal finite systems). This means &(x,y) — ¢1(xz) — ¢2(y) is a bi-
surjective invariant, so that (3) does not hold by Lemma 3.3.10, and (5)
does not hold by Lemma 3.3.14.

We now tackle the hard part, the implications (6) = (2) and (6) =
(4), which conclude the proof.

So, suppose (6). We first show that (4) follows. Let £ : X x Y — X
be a block map with (one-directional) radius R. Choose w € Br+1(X) and
u,u’ € Bry1(Y) arbitrarily. Fix Toeplitz points € X and y € Y such that
zo,r = w and yjo g) = u (using the fact that Toeplitz points are dense) and
choose j € N such that y; ;. z) = u'. Of course, z = {(x,y) € X is Toeplitz,
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since x and y are. Let [0, R] have least period k, in z, let 0 have least period
k. in z, and let [0, j + R] have least period k, in y.

By Lemma 3.3.3, there exists a factor map from X to both Z;, and Zj_,
and from Y to Zy,. This means that gcd(k.k.,k,) = 1 by the assumption
that X and Y have no common finite factors.

If ged(kyk, ky) = 1, then there exists m such that mk,k, = j mod k,,
so that

Eloc(w, u) = E(z,y)o = o™ (E(2,9))o = E(x, ™ F= (y))o = Eoc(w, u').

Because w, v and v were chosen arbitrarily, £ is right-independent. Left-
independence is proved symmetrically, and thus (6) = (4).

Next, we prove (2) assuming (6), along similar lines: Fix Toeplitz points
z € X and y € Y. Let R € N be arbitrary and let w € Bry1(X) and
u € Br11(Y') be arbitrary words. Let ji, j2 be such that z(; ; 1 p = w and
Ylja,jo+R] = U- As previously, the least period k; of [0, j1+ R] in z is coprime
with the least period k, of [0, j2 + R] in y. Thus, there exists m such that
mky; = j2 — j1 mod k. We have

O-nkmky+mkx+j1 (.27, y)[O,R] = (wv 'LL)

for all n € N. Thus, the orbit of (x,y) is dense in X x Y. Since (z,y) is
Toeplitz, X x Y is minimal. m

We also briefly discuss the groups we will implement as endomorphism
monoids.

Definition 3.3.16 For m,n € N, we define a subgroup of (Q,+) by

A(n,m) = <(;> lie N>.

Lemma 3.3.17 The group A(n,m) is not finitely generated if m { n.

Definition 3.3.18 Let G be an abelian group with generators {g; | i € N}
such that ng; = mg;+1 for all i. Then G is said to be (n,m)-lifting.

The group A(n,m) is easily seen to be (n,m)-lifting.
Lemma 3.3.19 Let (n,n’,m) € N3 satisfy
n=2n"+1,1<m<n' and ged(m,n) =1, (3.6)

and let G = (g; | i € N) be (n,m)-lifting. Then every element g € G can be
written as

g =kig1 + kago + ... + kjg;,
where k; € [—n',n'] for all i, and k; # 0. In the group A(n,m), there is a
unique such representation for each g € G. Conversely, if there is a unique
such representation, then G is isomorphic to A(n,m).
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Proof. All elements of G can be put into such form by first adding a
suitable multiple of ng; — mgos = 0 to reduce ky, then ngo — mgs = 0 to
reduce ko, and so on. This process eventually terminates because m < n'.

If the form is not unique for some element of the group, then by subtract-
ing two distinct but equivalent forms and putting the result in the normal
form, we obtain

kigj + kjt1gj+1 + -+ kjrgyr =0
where kj # 0, kj # 0 and k; € [-n/,n/] for all i. Letting G = A(n,m), the
equation above then cannot hold:
7 j j+1 i’ ,
by by = (b () s ()™ (2 ) o
= kyndm? I 4 ki I gk
= kjnjmj/_j mod n/ !

# 0 mod n/t!

since gcd(m,n) =1 and k; € [—n/,n/].

Let G = A(n,m), and let H = (h; | ¢ € N) be another (n,m)-lifting
group. We define a map ¢ from G to H by mapping g; — h;, and in general
mapping

kigi + kogo + ... + ]{ngj — k1hy + koho + ... + kjhj,

when the left side is in the normal form. It is clear that this is a bijection
between the groups, since we assumed that the representations are unique
on both sides. To see that it is a homomorphism, note that if g, h € G, then
the unique normal form for g + h is obtained by summing the components
of the normal forms of g and h, and applying the algorithm described in the
first paragraph of the proof. By applying the same transformations to the
representation of ¢(g) + ¢(h) obtained by summing the representations of
¢(g) and ¢(h), we obtain precisely ¢(g+h), and thus ¢(g+h) = ¢(g)+¢(h).
]

3.3.2 A Non-Finitely Generated Endomorphism Monoid

We can now construct our example of a Toeplitz subshift whose endomor-
phism monoid is not finitely generated: for any triple (n,n’,m) satisfying
(3.6), we will find a Toeplitz subshift whose endomorphism monoid is iso-
morphic to the group A(n,m).

We say p > 0 is a lazy period of a partial point y € (SU{_})N if y; = yirap
whenever y;, yitxp € S for i, k € N. The interpretation of having lazy period
p is that there is a way to fill the _-gaps so that the resulting point has
period p. We note that having lazy periods j and j’ does not imply the lazy
period ged(j, /). However, the following is easy to verify.
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Lemma 3.3.20 Ify € (SU{_})N has period j and lazy period j', the y has
lazy period ged(j, 7).

We make some standing assumptions for the rest of this section. We fix
a triple (n,n’,m) satisfying (3.6). We also fix a word w € (S U {_})", the
fixed point z = z(w) and the subshift X = X,,, with the properties

e w™ has least lazy period n,
o wl.=m,
e [/ w™, and

e idy is the only symbol map on X.

m02(n’—m)

For example, it is easy to check that w = 1(0.) is such a word.

Example 3.3.21 We illustrate the structure of x for w = 10_0._:

t=10x2p00211 0290231 0240251 Oxg02x71 Oxg...
=10100102000102,011000221080...
=101001010010001100029100...
=10100101001000110001100...

We write y\( 7y for the point where all but the subsequence J is turned
to .

i, ifi € J, and
(Wl)i = { y

., otherwise.

The point y|k is the actual subsequence of y along K:
()i =y if [KN[0,k]] =i+1AkeK.

Define K, = {i | ¥4 (.*); = _} and J; = N\ K;. We now prove two lemmas
about w and the point x = z(w).

Lemma 3.3.22 With the standing assumptions and notation above, for all
j there exists £ such that

11,19 € Ky = ilzig\/’il—ig‘ > 7.

Proof. Since .. [Z w®, the minimal distance between two distinct
elements of K7 is at least 2. If the minimal distance between two distinct
elements of K; is k, then the minimal distance between two distinct elements
of Kiy1 is at least 2k. Thus we can take £ = [log, j]. =

Lemma 3.3.23 With the standing assumptions and notation above, the fi-
nite factors of X are the systems Zj, where k|n® for some £ € N,
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Proof. By assumption, the point :c\(Jl) = w™ has least lazy period n.
Since it also has period n, n divides all its lazy periods by Lemma 3.3.20.
It follows that n also divides the least lazy period of x|(s,). By the self-
similar structure of x, z|(;,) having least lazy period kn means that km is
a lazy period of (z|(s,))|K,. Since x|k, = z, it follows that (z|(s,))|Kx, =
z(yy)- From ged(m,n) = 1, we then obtain k = n (or k was not minimal).
Continuing by induction, we can prove that z|(;,) has least lazy period nt.

Now, consider the point Sk(z,n?) for some ¢ € N. Tt is easy to see from
the definition of 9, that we have (z|.;,); € S == Sk(z, n®); € S. Now, if
we had o7 (Sk(z,n’)) = Sk(z,n’) for some 0 < j < n’, clearly z|(,) would
have j as a lazy period. Thus, n’ is an essential period of z, so that Zj is
a finite factor of X for any k|n’. Conversely, suppose Zj is finite factor of
X. If k divides n’ for some ¢, we are done. Otherwise, we may remove any
common divisors of k& and n’ (by considering a suitable factor of Zy), so that
without loss of generality, we have gcd(k,n’) = 1 for all £. A contradiction
can then be obtained as in the proof of Lemma 3.3.2. =

We mentioned (z|(;,))i € S = Sk(z,n’); € S in the proof. The
converse implication is true as well: If j ¢ Jy, then the sequence z; ;..
moves along an arithmetic progression of cells of z|x, = x with steps of
length m¢. Since ged(m,n) = 1 and every cell has a period of the form n,
it is easy to see that this sequence is not constant. Thus, the n’-skeleton is
what one would expect. (However, this does not automatically mean that
the numbers n’ are the only essential periods.)

Lemma 3.3.24 With the standing assumptions, we have that X 1. Z,,;. In
particular, (X,o™") is minimal for all j.

Proof. The finite factors of Z,,; are the systems Z, where ¢|m/. The
finite factors of X, on the other hand, are the finite factors of the systems Z,,:
for i € N by Lemma 3.3.2. Since ged(m,n) = 1, there are no common finite
factors, and then X L Z ; by Theorem 3.3.15. The latter claim follows
from Lemma 3.3.6. m

For f an endomorphism of X, we define the unlifted function | f which
applies f in the ‘holes’, that is, the coordinates that do not come from the
n-skeleton w>. More precisely, we specify the image of | f on x as

Lf () = du(f(,! (@) = ¢u(f(2)) € SV,

and extend this to a continuous and shift-commuting map from X to SN.
This is possible because the periodic structure contains n, so that there
exists a factor map from X to Z,, and this factor map identifies precisely
the n-skeleton w™.

Lemma 3.3.25 With the standing assumptions, for any block map f : X —
X, the unlifted map | f is an endomorphism of X.
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Proof. Since (X,0™) is minimal by the previous lemma, it is easy to
see that ¥, (y) € X for any y € X, which implies | f(z) € X. =

More generally, if we take any y € X, take its n’-skeleton, and replace
the rest of the coordinates with a point z € X, the resulting point is in X.

Lemma 3.3.26 With the standing assumptions, there exists r such that for
every endomorphism f : X — X with radius R > r, there exists a block map
h: X — X with radius less than R such that

cfof=1h
for some 0 < k < n.

Proof. Suppose R is the radius of f, and R > n. Since n is in the
periodic structure of x, there exists a map © : X — Z, giving the phase
of the n-skeleton w™. It is easy to see that there exists k with 0 < k < n
such that mo f o o® = 7, and fi = f o ¢* has radius at most R + n. Let
g1 : X X Z,, — X be defined by

91(y,1) = (0" oy, 0 frothy 007 )(y).

Note that this does not, strictly speaking, make much sense, since ¢ is not
invertible.'> However, we can choose a continuous section (right inverse) for
o, for example 0~(x) = #'x for a new symbol #, and extend v, and 1! so
that they add and remove the n-skeleton w™ even in the presence of the new
symbol. We extend (f1)1oc : SEH*+1 — S to the alphabet SU{#} by having
it behave as the identity map if the symbol # occurs in the neighborhood.
Since fi preserves the n-skeleton even in the presence of new symbols, 9}
can indeed be applied after it.

It is now easy to see that the new symbols do not actually occur in
g1(y,4) for any (y,i) € X x Z. Namely, #' is prefixed to y by o¢~¢, and
Vw(07%(y)) is then a n-skeleton with the first 4 symbols . filled with #, and
the rest of the coordinates filled with the letters of y. Our extension of f;
preserves the n-skeleton and it is easy to see that it does not remove or add
#-symbols. Thus, % 0 1! undoes the adding of #-symbols.

Since all the maps in the composition are continuous, g; is continuous.
To check that g; is a block map, we now only have to check that it is shift-
commuting. If ¢ < m — 1, then this is true basically by definition:

gi(o(ay),i+1) = (e orht o fi othy 0o ) (y)
o((0" 0ty © fro oo ) (#y))
a((0" 0y o f1 0ty 0 07") (ay))
o(g1(ay, ),

12An alternative to the use of the dummy symbol # would be to move to two-way
subshifts already at this point, but we have chosen this clumsier way to avoid translating
results from one-way subshifts to two-way subshifts.
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where the third equality follows by tracking the leftmost symbol, and noting
that it is removed by the ¢ at the end.
If i =m —1, then

91(0(y),0) = (V" o fr o thw) (0 (y))
= (0™ o1y o frotu oo ™) (a(y))
=o((c™ oyl o frothy 0o " (y))
=oa(g1(y,m — 1)).

For the second equality, note that ¢~ simply adds #™ in the beginning of
a(y), so that 1, (c7"(o(y))) = W'ty (o(y)), where w' is w with the symbols
- replaced with # (since w contains exactly m symbols .). Then

(frovwoo ™) (oY) = w' fr(¥u(o())),

from which the second equality follows easily.

Because X L Z,,, it follows from Theorem 3.3.15 that X is independent
of Z,,. Thus, there exists a map hj : X — X such that g;(y,7) = hi(y) for
all y € X and ¢ € Z,,,. But then, by the definition of the unlifting operation,
fi =1 h1. It is easy to see that h; can be taken to have the same radius
as gy (since its local rule can use the local rule of g1 with arbitrary data on
the Z,,-track). For a large enough constant C' (independent of f), g; — and
thus hy — has radius at most >R+ C. As in Section 3.2, we see that this is
smaller than R if R is large enough. m

Let Y = X be the two-way extension of X. For f : YV — Y, we
define | f : Y — Y in the obvious way. It is easy to check the equality
l(goh)=_1gol hfor CAg,h:Y — Y. Notions such as skeletons directly
translate to the two-way case. We write o; = |? 0, so that g = o, and in
general o; shifts the coordinates not in the n'-skeleton one step to the left
(jumping over coordinates in the ni-skeleton).

We note that Lemma 3.3.26 is true in a slightly nicer form in the two-way
case, since we can put the shift on the right hand side of the equation.

Lemma 3.3.27 There exists r such that for every endomorphism f:Y —
Y with radius R > r, there exists a block map h :' Y — Y with radius less
than R such that

f=cFolh

for some k € Z.

Proof sketch. Considering the action of 07 o f on right tails of points,
where j is large enough that o7 o f has one-sided radius, we see that o
0/ o f = | h for some k also in the two-way case. The proof follows by
composing both sides with ¢~ %7, m

@)
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Lemma 3.3.28 With the assumptions and notation above, for any CA h :
Y=Y, ifp>0and

Cp—
hza(l;ooaflo"'oapp—lloipm
then h = o' for some i € Z.

Proof. First, note that we can make p as large as we like by repeatedly
substituting this expression for h on the right-hand side and using | (g o h) =
+ gol h. Analogously to how K; was defined in the one-directional case for
the point z € X, we write K;(y) for the set of coordinates in y that are not
in its n'-skeleton. Note that o; then shifts the coordinates in K;(y) to the
left (jumping over coordinates in J;(y)). Let g = G'SO o afl 0.0 aff’_ e

If r is the radius of h, we take p large enough that ¢ = p satisfies
Lemma 3.3.22 for j = 2r 4+ 1. Choose a point y with 0 € K,(y) and define
a function ¢ : Y — Y where

ze—1 if > 0A[K,(y) N[0, 5] = kA j € Ky(y) and
¢(2)j = 2—k+1 i J<OAN[KR(y)N[5,0]| =kAj € Ky(y) and
Yj if j € Jp(y).

that is, ¢(z) is the point where the coordinates K,(y) of y are replaced by
symbols of z in order, so that ¢(z)p = 29, and other coordinates are taken
from y.

Now, we note that there exists k such that g(¢(z))r = 2 for all z € Y.
Namely, whatever z € Y is, it will be shifted in the exact same way, as
a subsequence of ¢(z), by all the maps O'fi for ¢ < p, since by definition,
o® simply shifts the contents of the coordinates K;(y) D Kp(y) to the left,
jumping over coordinates in J;(y).

The equation [P h(¢(z)) = ¢(h(z)) holds basically by the definition of
the J-operation, as |P h applies h to the subsequence of y found in the
coordinates K,(y). Thus,

h@(2)rk = (g 01" h)(¢(2))r = 9(¢(h(2)))k = h(2)o

holds for all z € Y.
Now, we have t € K,(y) for at most one t € [k — 7,k + r|, by the
assumption on p. If there is no such ¢, then A is a constant map:

Vz €Y : h(2)o = h(o(2))k = Moc(Ylk—rk-+r])-

Due to the assumption that X,, supports no symbol maps other than the
identity, this is impossible. If there is such ¢, then we note that, by the
definition of ¢, there exists i such that for all z, ¢(z); = z;. Then,

Vz €Y : h(2)o = h&(2)k = Noc(Yfk—r.t—1)» Zis Y1 61]):
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so h = o' o7 for some symbol map 7. Again, by the assumption that X,
has no symbol maps other than the identity, we have that h is a shift map.
]

Theorem 3.3.29 For every tuple (n,n’,m) satisfying (3.6), there exists a
two-way Toeplitz subshift whose endomorphism monoid is isomorphic to the
group A(n,m).

Proof. With the standing assumptions and the notation above, we show
that the endomorphism monoid of Y is (o; | i € N), and it is isomorphic
to the group A(n,m) by the isomorphism o; (%)Z Note that the o;
indeed generate an (n,m)-lifting group. Namely, both 0; 0 0; = 0 0 0; and
o' = o}l are seen to hold on Y by considering the images of x in these
functions (rather, the images of z in their one-way restrictions; note that
these maps have one-directional radii).

Given any f:Y — Y, we start iterating Lemma 3.3.26 on f to obtain
f=cfolh=c"ol(e"olhy) =00l (c"o] ("ol hg))="--,
which can be rewritten, using the equality | (goh) =] gol h, as
fzalgl ol h =0§1 Oalf2 012 ho :agl oa’fzog§3 ol hy=--.

By Lemma 3.3.26, the radii of the h; eventually decrease below some con-
stant r, and then for some n, we have h,, = hy,4, for some p > 0.
Then we have

k k k
h,, = O_0n+1 o O_ln+2 . Jpﬁ'{p o |P hy,.

It follows from Lemma 3.3.28 that h,, is a shift map, and then f € (o; | i €
N).

Now, we have seen that there are no endomorphisms other than the
maps in (o; | i € N). To see that this group is isomorphic to A(n,m), by
Lemma 3.3.19 it is enough to show

ke

kji1
It o...oo’jl =0

k;
O'] OO'j+1

where k; # 0, kj # 0 and k; € [—n/,n/] for all ¢ is impossible. But this is
again clear from the periodic structure of Y: a;-fj shifts the jth level of z,
and does not change other coordinates. m

Corollary 3.3.30 There exists a minimal subshift whose automorphism group
18 not finitely generated.
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Remark 3.3.31 It was recently proved in [CK1/]] that a transitive subshift
whose language has a subquadratic growth satisfies that the automorphism
group becomes periodic when we quotient out the shift maps, where a group
G is periodic if

YgeG:3In:g" =1.

It is not hard to check that in the case w = 10_0_ (so that n =5, m = 2),
our example X, has subquadratic growth. Thus, the result of [CK14] should
hold, and indeed it does. Namely, the automorphism group we obtained is
periodic when the shift maps are quotiented out: the automorphism group

of Xy is isomorphic to A(n,m) where the subgroup Z corresponds to the

shift maps. Since the group is abelian, and for the generators (g)l we have

2 (g)Z € Z for all i, the group is of the required form. In particular, this
shows that subshifts of the type considered in [CK14] need not have a finitely
generated automorphism group.
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Chapter 4

Algebraic Subshifts

4.1 Cellular Automata on Algebraic Subshifts

Giving algebraic structure to subshifts is a common topic in the literature.
Usually, the structure given is that of a group (or something related). A
standard reference for dynamical systems with algebraic structure is [Sch95],
and a more symbolic approach can be found for example in [Kit87, BS08§].
We are of course mainly interested in the endomorphisms — cellular au-
tomata that respect the algebraic structure of the subshift. Cellular au-
tomata respecting a group structure have been investigated for example in
[ION83, CFMMO00, MM98, Sat97, Kar00]. Since the study of group homo-
morphic cellular automata and group subshifts has proved fruitful, it seems
natural to give other algebraic structures to subshifts, and look at their
endomorphisms.!

Another question studied in multiple sources is the commutation of cel-
lular automata, see for example [Vo0o93, MB97, CHR79]. Given a cellular
automaton f (or a finite set of cellular automata), which other cellular au-
tomata commute with it? We can restate this question in algebraic terms
in at least two ways. On the one hand, this can be thought of as the study
of the centralizer of f in the endomorphism monoid. On the other hand, it
can be considered as the study of the endomorphism monoid of the subshift
with an algebraic structure given by the unary operator f.

In this chapter, we study these questions. We give subshifts general
(though always shift-commuting and continuous) algebraic structures, and
the natural self-maps are then the cellular automata that are algebra en-
domorphisms with respect to this structure. Our main emphasis is on the
classical cases of group shifts, and structures given by unary maps, and espe-
cially the interplay of such structures. This is the topic of both Section 4.2

LOf course, there is a lot to study even in the subshifts with algebra operations them-
selves, but we only consider endomorphism monoids in this thesis.
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and Section 4.3. We also briefly study endomorphisms of subshifts with
lattice structure in Section 4.4. Since our goal is to derive simplicity from
the algebraic structure, and not the subshift itself, many considerations in
this chapter take place on the full shift, with an algebraic structure defined
cellwise (that is, we consider the subshift A% for a finite algebra A).

We begin with the universal algebraic objects needed in this chapter,
and then discuss the general idea of recoding a general algebraic structure
to one defined cellwise.

4.1.1 Types, Identities, Varieties and Algebras

Our definitions are condensed, and some even slightly imprecise, see [BS81]
for details.

Let T be a set of pairs (f,n), where f is a symbol and n € N, with the
property that (f,m),(f,n) € T = m = n. Here, f is called a function
symbol, and n is called the arity of f. An algebra of type T is a pair (X, F),
where X is a set and for each (f,n) € T we have a function f': X" — X
in the set F. In this case, we identify f’ with f, and the functions f are
called algebra operations. We usually identify (X, F') with X, if F' is clear
from the context.

The terms (of type T, over variables (a1, ...,ar)) are defined inductively
as follows: a; is a term for all 4 € [1,k], and for all (f,n) € T, if by,...,b,
are terms, then f(by,...,by,) is a term. In particular, if n = 0, then f = f()
is itself a term. An identity (of type T ) is a pair of terms (b, '), usually
written b =~ b'. An algebra X of type T satisfies an identity b ~ b’ of type
T if, whenever elements of X are substituted for the variables in b and ¢’ in
any possible way, the equality b = b’ holds.

A variety of type T defined by the set of identities I is the class of algebras
of type T that satisfy the identities in I. If (X, F') is an algebra and Y C X
is closed under the operations of X in the sense that f(Y x--- xY) CY
for all operations f € F, then we call (Y, F) a subalgebra of X. If (X, F)
is in a variety F, and Y is a subalgebra, then Y is automatically in F as
well. The set of subalgebras of an algebra X is denoted Sub(X). A function
g : X — Y between two algebras in F is called an (F-)homomorphism if
g(f(z1,...,zn)) = f(g(x1),...,9(xy)) for each n-ary operation f. If g is bi-
jective, it is called an isomorphism. The direct product of an indexed family
(X,)iez of algebras is the algebra HiGZ X;, where the operations are defined
cellwise (f(z!,...,2"); = f(z},...,2%)). An algebra is directly indecompos-
able, if it is not isomorphic to a product of two nontrivial algebras. All finite
algebras are isomorphic to a finite product of directly indecomposable finite
algebras. All varieties are closed under subalgebras, homomorphic images
and products (and in fact the converse holds).
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If ~ C X x X is an equivalence relation that satisfies

fxlNyla"wxn'\’yn:>f($17"'73:n)Nf(yla"'vyn)

for all x;,y; € X and all n-ary operations f, we say that ~ is a congruence
on X. The set of congruences on an algebra X is denoted Con(X). A
natural algebraic structure is induced by the algebra operations on the set of
equivalence classes X/ ~. The kernel ker(g) = {(z,y) € XxX | g(x) = g(y)}
of a homomorphism ¢ is always a congruence, and X/ ker(g) is isomorphic
to g(X) (the last claim is known as the Homomorphism Theorem).

The variety of groups has type {(-,2), (()71,1),(1,0)}, and satisfies the
identities

v (y-2)=(x-y) =z
lz~zrl-2x

rox talxar !l ox

In the variety of abelian groups, there is an additional identity z-y =~ y-x, and
the operations are usually renamed so that the type is {(+,2),(—,1),(0,0)}
(referred to as additive notation).

For example, the variety of lattices has type {(A,2), (V,2)} and is defined
by the identities

rNr~z, TANYy~yAx,
Ay ANzrmzA(yAz), zA(xzVy) =z,

and the same identities with A and V interchanged (their dual versions). The
operations A and V are called meet and join, respectively. It is known that
the variety of lattices coincides with the class of partially ordered sets where
all pairs of elements have suprema and infima, where the correspondence
is given by z Ay = inf{z,y} and =z Vy = sup{z,y}. If S is a lattice and
a,b € S, then we denote [a,b] = {c € S| a < ¢ < b}, where < is the partial
order of S.

The variety of distributive lattices satisfies the lattice identities and the
additional identity

xVynz)=(xVy A(zVz)

and its dual version. Of particular interest is the binary lattice 2 containing
the elements {0, 1} with their usual numerical order.

The variety of Boolean algebras has type {(A,2),(V,2), (% 1),(1,0),(0,0)}.
A Boolean algebra is a distributive lattice w.r.t. A and V, and also satisfies

zNAN0~=0, zV1xl,
xANTz~0, zVZT~Il.

It is known that every finite Boolean algebra is isomorphic to the algebra of
subsets 27 of some set T" where the ordering is given by set inclusion.
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4.1.2 Algebraic Subshifts and Recoding

This section is mostly based on [ST12c], and the slightly extended version
[ST12d].

Let F be a variety of algebras of type 7. We call X C S% an F-subshift,
if it is a subshift and has an algebra structure in F whose operations are
block maps (so that whenever (f,n) € 7, we have a corresponding block
map f : (S™)% — S%). In particular, every finite S € F induces a natural
cellwise algebra structure on S% by f(z!,... ,2"); = f(x},...,2?) for all 4,
whenever f : S™ — S is an algebra operation of S (that is, S¢ is taken to be
a direct product), and in this case, if X C S# is a subshift in Sub(S%), it is
called a cellwise F-subshift. A conjugacy that is also an F-homomorphism
is called algebraic. A cellular automaton with state set S that is also an
F-homomorphism is said to be F-homomorphic (or simply homomorphic,
when the variety is clear from context). When F is a variety, and X is a
subshift in that variety with operations fi,..., fi,, we write Endz(X) or
Endz(X, fi,..., fm) for its set of F-endomorphisms. We often use this no-
tation without explicitly stating which variety F is, since it conveys no
extra information when the operators are given: Endz(X, fi1,..., fm) is
simply the set of cellular automata g on X satisfying g(f(x1,...x,)) =
flg(x1),...,9(xyn)) whenever f = f; and f; has arity n.

Both Section 4.2 and Section 4.3 discuss the interplay between unary
operators and group operators, and in particular emphasize the unary op-
erators. In the case where the operators are unary, we can interpret en-
domorphisms as centralizers in the monoid of cellular automata. Namely,
if fi,...,fm : X — X are unary CA operators, then End(X, f1,..., fin)
consists of those cellular automata that commute with f; for all ¢ € [1,m].
Writing Cx (f) for the centralizer of f, that is, the set of cellular automata on
X that commute with f, and more generally Cx(f1,..., fm) =, Cx(fi),
we have

End(X, f1,..., fm) = Cx(f1,-- -, fm)-

As the subshift X is determined by the types of the CA, we often just write
C(f)or C(f1,..., fm) for centralizers. We use the notation and terminology
of centralizers especially in Section 4.3, where the unary operator is an ar-
bitrary extremally permutive cellular automaton, and not really considered
an intrinsic operator.

Note that in universal algebra, it is important that the type of a variety
contains all the relevant information about it. For example, it is important
that the type of a group contains the identity operator as a nullary oper-
ator. Namely, the existence of an identity element is not representable as
an identity (b,b’) of two terms, so that groups do not form a variety unless
the identity element is an explicit operator. However, to avoid clutter, we
will omit both the nullary identity operator and the unary inverse operator
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from the type of groups, and simply write (X, -) or (X, +) to denote a group
shift X.

Now, let F be a variety of algebras. We give a general way to produce
subshifts in F whose operations are not cellwise. For this, begin with a
cellwise F-subshift Y and a conjugacy ¢ : X — Y, and define

f@r,o ) = 67 (f(9(z1), -, B(an)))

for all n-ary algebra operations f of F. Clearly, ¢ now becomes an algebraic
conjugacy. Not every algebraic subshift arises this way in general, but it
turns out that in many well-known varieties F (such as that of groups,
see Corollary 4.1.5), this is the only way to produce subshifts in F. The
main theorems in this section address the issue of deciding whether a given
F-subshift is algebraically conjugate to some cellwise F-subshift.

Definition 4.1.1 An affine map of an algebra X is inductively defined as
either t(§) = £ (the identity map), t(§) = a for some a € X (the constant
map) or t(§) = f(a1,...,an), where f is an n-ary operation, one of the a;
is an affine map and the rest are constants a; € X. Here, £ ¢ X is used as
a variable. To each affine map t we also associate a function Eval(t) : X —
X by replacing & with the function argument and evaluating the resulting
expression. By a bit of abuse of notation, we also write t(a) = Eval(t)(a).
The set of affine maps of X is denoted by Af(X).

Note in particular that each affine map is associated with a single alge-
bra. It contains (at most) a single variable, and any amount of constants
from the algebra. For example, in the ring Z, the term ¢(£) = 2-(3+(&-(—4)))
is an affine map, and Eval(t)(i) = —8i + 6 for all ¢ € Z. An affine map of
an F-subshift is a block map if the constants are unary points. In general,
it is a non-uniform CA in the class rv-CA of [DFP12] (different rule in each
cell, but the radii are globally bounded).

The following is a dynamical characterization of F-subshifts that are
cellwise up to algebraic conjugacy. The proof uses a common recoding tech-
nique found, for example, in the Recoding Construction 4.3.1 of [Kit98].

Theorem 4.1.2 Let X C S% be an F-subshift. Then there exists a cellwise
F-subshift Y and an algebraic conjugacy ¥ : X — Y if and only if there is
an r € N such that for all t € Af(X), Eval(t)(z)o is a function of x|_, .

In dynamical terms, the existence of such r means that the family of
affine maps is equicontinuous. In terms of non-uniform cellular automata,
it means that the radii of the local rules of the non-uniform CA associated
with affine maps are uniformly bounded over all affine maps.

Proof. Suppose first that such an r exists. Then, we can also meaning-
fully apply an affine map ¢t € Af(X) to a word w € Ba,11(X) by taking an
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arbitrary point x € X with z_,.,) = w, and taking the center cell of t(z).
We define the following equivalence relation on Ba,41(X):

Vo, w € Bopi1(X) :v ~w <= Vit e Af(X) : t(v)g = t(w)o .

Note that, in particular, v ~ w = vy = wy, since the identity translation
t(§) = & separates such words. We define an injective block map ¢ : X —
(Bar11(X)/~)? by ¢(x); = Tfi—r,itr]/~, and denote Y = 1(X). Restricting
the codomain of 1, we obtain a conjugacy ¥ : X — Y.

In order to make the algebra operations commute with v, we define

f(yh R ,yn) = w(f(w_l(yl)a SRR 1/1_1(%)))

for all n-ary algebra operations f, which is obviously well-defined. Now )
extends to a bijection between Af(X) and Af(Y) in a natural way. Let us
show that every algebra operation f is then defined cellwise in Y. Consider
two points y,y’ € Y with yo = . We need to show that ¢(¢)(y)o = ¥ (t)(y')o
for all () € Af(Y). Assume the contrary, that ¥(¢)(y)o # ¥ (t)(y)o for
some (t) € Af(Y). Let z = ¢~ (y) and 2’ = ¢~ (3/). Then also t(z)[_,,] =
v b w = t(x')[_ry], and thus there exists ¢’ € Af(X) such that ¢'(v) # t'(w).
But by the assumption on affine maps, t’ = t' ot has radius r. Now we have
t"(x)o # t"(2")o, which is a contradiction, since [, ~ x’[_w].

For the converse, note that if X is algebraically conjugate to a cellwise
F-subshift Y via the conjugacy v, then the radius of every affine map is at
most the sum of the radii of ¢ and ¢y~1. m

We also obtain a sufficient algebraic condition for algebraic conjugacy
with a cellwise F-subshift. In the special case of the full shift, this becomes
a characterization.

Definition 4.1.3 We define the depth of an affine map as the number of
nested algebra operations in it. We say an algebra S is k-shallow if for every
t € Af(S) there exists t' € Af(S) of depth at most k such that Eval(t) =
Eval(t'). If every algebra in the variety F is k-shallow, then we say F is
k-shallow.

For example, the depth of 2- (3 + (£ - (—4))) is 3 because the depth of
34 (£-(—4)) is 2 because the depth of £ - (—4) is 1 because the depth of &
is 0.

Theorem 4.1.4 Let X C S% be an F-subshift. If X is k-shallow, then
it 1s cellwise up to algebraic conjugacy. Conversely, if X is algebraically
conjugate to a cellwise F-subshift Y, and either

e Y = R? where R€ F, or
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e F contains only unary operations.

then X is k-shallow for some k.

Proof. If X is k-shallow, then clearly all affine maps have uniformly
bounded radii, and Theorem 4.1.2 gives the result.

For the first item of the other claim, it suffices to show that R? is k-
shallow for some k. Since R is finite, the set I' = {Eval(t) | t € Af(R)} is
finite. For an affine map ¢ € Af(R%) we denote by ¢; the affine map in Af(R)
that ¢ computes in coordinate 7, obtained by taking coordinate ¢ from each
constant. For each affine map t € Af(R?) we define A, = {Eval(t;) | i € Z}.
Let n = |I'| and note that since R™ is finite, it is k-shallow for some k.

Let t € Af(R?%) and let ji,...,j, be coordinates such that for all h € A,
we have Eval(t;,) = h for some i. Construct an affine map s € Af(R")
by s; = tj;,, copying the j;th coordinate of each constant. Since R" is
k-shallow we find some affine map s € Af(R") of depth at most k& with
Eval(s) = Eval(s'). We may now define an affine map ' € Af(R%) by
) = S;é for all i (again copying constants coordinatewise), where j/ is such
that Eval(t;) = Eval(sj). Since Eval(s;) = Eval(s}) for all j, we have
Eval(t) = Eval(t').

For the second item, in the case that F contains only unary operations,
we can repeat the previous argument: we only needed Y = R? so that the
constants needed for the affine map ¢’ would be in Y. If F has only unary
operations, then no constants are needed. m

It can be shown that there exists a mixing SFT (in the variety of
groupoids) with cellwise defined operations which is not k-shallow for any k.
Thus, when the operations are not unary (so that affine maps can actually
contain constants), it is hard to find a generalization beyond full shifts.

In the corollary below, we list varieties where Theorem 4.1.4 applies. To
add a bit of color, we include heaps (groups without identity elements) in
our list. A heap has type {([-,-,],3)}, and satisfies the identities

[a,a,b] = b=~ [b,a,d
[[a,b,c],d,e] =~ [a,[d,c,b],e] =~ [a,b,][c,d,e]l

Corollary 4.1.5 Up to algebraic conjugacy, every distributive lattice, Boolean
algebra, ring, semigroup, monoid, group and heap subshift is defined cellwise.

Proof. By finding suitable normal forms, one easily sees that the va-
rieties of distributive lattices, semigroups and monoids are 2-shallow, while
the varieties of Boolean algebras, groups and rings are 3-shallow. We list
the deepest possible normal forms below.

e Distributive lattices: a V (b A§).

127



e Semigroups and monoids: a - (£ - b).

HeapS: [a7 [bv §7 6]7 d]

Boolean algebras: a V (b A £°).
e Groups: a- ((£)7!-b).
e Rings: a+b-(¢-¢).

These normal forms are well-known in all cases, except perhaps for heaps,
where the normal form easily follows from the identity

[a, b, e, € d], ], f] = [[a, e, ], €, [d b, []].

]

The recodability of groups is well-known [Kit87], but to our knowledge,
the others (possibly excepting rings) have not appeared in the literature.
The recodability of quasigroup shifts is discussed in at least [ST12d] and
[Sob07]. In [ST12d], we show that not all quasigroup shifts can be recoded
to cellwise ones, and [Sob07] shows that this is doable if the quasigroup
satisfies some additional identities. An example of a lattice subshift which
is not recodable to be cellwise is also given in [ST12d].

Once we have recoded to a cellwise algebraic subshift, homomorphisms
are easy to describe. Note that if R is an algebra and X C R? is an F-
subshift, then B, (X) is a subalgebra of R" for all n.

Lemma 4.1.6 Let R € F, and let X C R? be a subshift. A CA f: X — X
with radius r is an F-homomorphic if and only if fioc : Bar+1(X) — R is an
F-homomorphism.

Proof. Let g be an n-ary algebra operation on R, and denote the cor-
responding operators on R™ and R by g as well.

Assume first that f is F-homomorphic. Let w; € Ba,41(X) for all i €
[1,n], and let s € S be arbitrary. Let 2/ € X be arbitrary points such that

xfﬁr ] = Wi Then

so in particular

floc(g(w17 s 7wn)) = g(floc(w1)7 SRR} floc(wn))'

Thus, g is an F-homomorphism.
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On the other hand, if the local function fi, is an F-homomorphism,
consider arbitrary points z!, ..., 2" € X. We have

f(g(xlv <o 733“))2 = flOC(g(m[lifr,i+r]7 cee 71‘[277",2#1”]))
= g(floc(x[li_ni_t,_r])v ceey floc(xﬁ_ni_;,_r]))
= g(f@")i,. ., f(&™)s)

for all ¢ € Z, which implies that f is F-homomorphic. m

As we mentioned in the beginning of this section, we mostly restrict to
subshifts A% for finite algebras A in the rest of this chapter. This may seem
harmless, and it is a common choice when studying, say, group homomorphic
cellular automata. However, in fact there are good reasons to look a bit
further, at the general case of mixing SFTs.

It is true in general that while results about cellular automata often have
the nicest possible description in the case of the full shift, one can argue that
the ‘right’ playground for cellular automata is actually the class of mixing
SFTs. This is, for example, the content of the sermon part of the ‘Introduc-
tion and sermon’ section of [BK99]. For me, the primary reasons for this
opinion are twofold. First, mixing SFTs have a beautiful theory, whereas
full shifts are only interesting in combination with cellular automata. Sec-
ond, almost every result about cellular automata generalizes, in some way,
to mixing SFTs, and in general there is little dynamical difference between
a full shift and a mixing SFT (especially if there is a unary point), so that
once you are familiar with mixing SFTs, full shifts seem like a rather sparse
subset of examples.

However, there are of course also practical reasons to study cellular au-
tomata on general mixing SFTs. Namely, recoding. The results of this
section are a case in point. Suppose F is a variety where recoding of opera-
tions to cellwise ones is doable in general (such as those in Corollary 4.1.5).
In such a case, studying mixing SF'Ts with cellwise algebra operations in F
means that we are studying mixing SFTs with arbitrary (shift-commuting
and continuous) algebra operations in F, which is, for a mathematician,
quite satisfying a class to study. This is of course because the class of mix-
ing SFTs is closed under conjugacy. On the other hand, if we study only
full shifts with cellwise algebra operations (that is, A% for A € F), then we
are not even studying all questions about full shifts, as full shifts with gen-
eral algebra operations are not usually recodable to another full shift with
cellwise algebra operations. We obtain such general results in Section 4.2,
but unfortunately, the results in both Section 4.3 and Section 4.4 seem hard
to generalize beyond full shifts.
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4.1.3 Cellular Automata on Group Shifts

In this section, we make a few (probably well-known) remarks about concrete
representations of self-maps of group shifts. Namely, in the case of full
group shifts G4, we can say much more than Lemma 4.1.6. We use additive
notation, as only the abelian case is interesting in most of the applications
of the following lemmas.

Lemma 4.1.7 Let G be a finite (not necessarily abelian) group and let f :
G% — G?% be a homomorphic CA with neighborhood N = [—r,r]. For all
i € N, there exists a group endomorphism f; : G — G such that

e fi(g) + fj(h) = fj(h) + fi(g) whenever h,g € G and i # j € N, and
o fioc(g—rs -y 9r) = fr(g—r) + -+ frgr) for g—r,..., 9, € G.

Note that the order of summation in the above formula for fi,. is irrele-
vant by the first item.
Proof. For all : € N, define the function f; : G — G by

fz(g) = floc(oa s 7079307 s )O)a
I v
i+r r—1

and note that this is an endomorphism of G. Let ¢ < j € N and g,h € G.
Since fioc is a homomorphism, we have

fi(g) + £i(R) = fioc(0,. .., g, -,0,...,0) + fioc(0,...,0,...,h,...,0)
= fioc(0y...,9,...,h,...,0)
= floc(0,...,0, ... Ay, 0) + fioc(0,...,9,...,0,...,0)
= fj(h) + fi(9),

and forall g_,,..., g, € G,

r
floc(gfﬂ"wg?“) = Z floc(oa'-',()?gi?O?' . aO)
——

N——

== itr r—i

= for(g—r) + -+ frlgr)-

This concludes the proof. =

We call the endomorphisms f; the symbol endomorphisms of f. In the
case of an abelian group G, a CA f : G — G4 is called a sum of shifts if
f=2ienki o' for a finite set N C Z, and k; € N, where the sum is taken
pointwise, and k; - 6 = ¢" + --- + ¢'. In terms of symbol endomorphisms,
this means f;(g) = kig. If we can take k; = 1 for all 4, then f is called a
sum of distinct shifts, and this means that the symbol endomorphisms are
identity maps.
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Lemma 4.1.8 Suppose that G is a finite abelian group with decomposition
G =11 me, where the p; are prime numbers and m; > 1. Then every

homomorphic cellular automaton on G is a sum of shifts if and only if the
primes p; are distinct.

Proof. It is easy to find a homomorphic cellular automaton which is
not a sum of shifts if the primes are not distinct. Namely, if p; = p; and
k; > kj, then the symbol map

(@1, @iy, ) (al,...,ai—i—ajpk"_kj,...,aj,...,am)
provides such an example.

For the other direction, first suppose m = 1. Then, since Z P is cyclic,
it is clear symbol endomorphisms are maps of the form g — g-k for constant
k, so that f is a sums of shifts.

Now, suppose m > 1 and the primes p; are distinct, and let f : G% — GZ.
We will give an algebraic way to zero a single track without affecting the
others. More precisely, in the terminology of [BS81], we construct a term
R; over the term algebra of groups type with one variable £ such that the
corresponding term function RZG : G — G maps

(al,...,ai_l,ai,ai+1,...,am)H(0,...,0,a,~,0,...,0).

Constructing such a term is a matter of noting that by the Chinese Remain-
der Theorem, there exists k; such that k; = 1 mod p;" and k; = 0 mod p;nj
for j #4. Then R; =&+ --- 4+ & = k; - € has the desired property.

We extend the terms R; to points of GZ in the usual way, and observe
that f(R;(x)) = Ri(f(z)) (see, for example, Theorem 10.3. (b) in [BS81]),
so that the tracks corresponding to distinct primes are independent. Com-
bining this and the observation in the case m = 1, we obtain that f is a sum
of partial shifts o; which map the track corresponding to the prime p; one
step to the left. Of course, k; - ¢ = 0, which concludes the proof. m

Thus, in general every group homomorphic CA on a full group shift is
a sum of shifted symbol endomorphisms, and by Lemma 4.1.8, for certain
abelian groups, the endomorphisms can be taken to be identity maps. Note
that the fact that the images of distinct symbol endomorphisms commute
means that, even in the non-abelian case, the local rule of a homomorphic
cellular automaton first projects its inputs to subgroups of G which commute
with each other, and then multiplies them together. In particular, we have
the following.

Lemma 4.1.9 Let G be a group and let the CA f : G% — G% be homomor-
phic. If at least two of the symbol endomorphisms of f are surjective, then
G is abelian.
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Finally, in Section 4.3, we will need cellular automata which are homo-
morphic up to the addition of a constant:

Definition 4.1.10 Let (G,+) be an abelian group. Then a function f :
G — G is homomorphic plus a constant, or homomorphic+C' if there exist
a € G and a group endomorphism g of (G, +) such that f(x) = g(z) + a for
allz € G.

Of course, we usually apply this definition to cellular automata. It
is easy to see that if G is a finite abelian group and f : G% — G? is
homomorphic+C, then the constant a € G4 in the definition is a unary
point, since f(0%) = a.

In the case of abelian groups (especially Z,), it would make a lot of
sense to call homomorphic CA ‘linear’ and maps that are homomorphic
plus a constant ‘affine’. However, we have already reserved the latter term
for something more general in Definition 4.1.1, and the first term has quite
many definitions in the literature; we have tried to choose our definitions to
be as unambiguous as possible.

We now give an easy alternative characterization of maps that are ho-
momorphic plus a constant.

Lemma 4.1.11 Let G, H be abelian groups, and let g : G — H be such that
gla+b—c) = g(a) + g(b) — d holds for some ¢ € G and d € H, and all
a,be G. Then, g(a) = h(a) — g(2¢) + 2d for a homomorphism h : G — H.
In particular, g is homomorphic plus a constant.

Proof. We have

Denote e = g(2¢) — 2d, and let h(a) = g(a) + e. Then

h(a+b) =gla+0b)+e
=g(a) +g(b) + 2¢
= h(a) + h(b),

so h is a homomorphism and ¢ is homomorphic+C. =
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4.2 Subshifts with Equicontinuous Unary Opera-
tors

This section is based on [ST13b].

In this section (and the next one) we discuss subshifts with algebraic
structure given by a single cellular automaton, or a finite family of cellular
automata. We think of these cellular automata as unary algebra operations,
so that the natural endomorphisms have to commute with the operations.
As the commutation of cellular automata is a complicated problem, we make
some simplifying assumptions. Namely, in this section, we require that the
family of operations buildable from the cellular automata is equicontinuous,
in the following sense:

Definition 4.2.1 Let X be a subshift and let F = {f1,..., fr} C End(X).
A point x € X is called an equicontinuity point for F' if for all € > 0, there
exists 6 > 0 such that

Vie Ff,ye X :d(z,y) <d = d(f(x), f(y)) <e. (4.1)

If every point x € X 1is an equicontinuity point for F', then we say F is
equicontinuous. We say F' is reversible if every cellular automaton f; is
bijective.

The main results of this section are that mixing SFTs with equicontin-
uous reversible unary operators have complicated endomorphism monoids,
but when the operations are not reversible, or there is additional algebraic
structure, the endomorphism monoid may contain only the shift maps.

In the case of unary operations, as a corollary of Theorem 4.1.4, we
obtain that equicontinuity is equivalent to recodability of the operations
to symbol maps, and further equivalent to there being only finitely many
distinct affine maps.

Corollary 4.2.2 (of Theorem 4.1.4) Let X be a mixing SFT with alge-
braic structure given by unary operations F' = {f1,..., fr}. Then the fol-
lowing are equivalent:

e F' is equicontinuous.

o X is algebraically conjugate to a subshift Y with algebraic structure
given by symbol maps g1, ..., gi-

o [ is finite.

By Corollary 4.2.2, the study of endomorphisms of subshifts with alge-
braic structure given by equicontinuous families of unary operators is just
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the study of cellular automata that commute with symbol maps. It is thus
this class that we focus on.

We begin with the case of bijective equicontinuous unary operations. In
Section 4.2.1, we define the combinatorial notion of color blindness. This is
the notion of cellular automata that commute with all symbol permutations.
We begin our study on the full shift. In Section 4.2.2, we show that color
blindness, on its own, is not sufficient to guarantee that the endomorphism
monoid is simple, by constructing an intrinsically universal color blind cel-
lular automaton. We also show that the endomorphism monoid is far from
sparse — it has full density. In Theorem 4.2.23, we show that this happens
in general, in the sense that no structure given by a reversible equicontin-
uous family of unary maps on a mixing SF'T prevents the existence of an
intrinsically universal endomorphism.

In Section 4.2.3, we relax the assumption of reversibility, and the picture
changes drastically. Here, our main result is that the full shift {0,1,2}%
with algebraic structure given by the set of all symbol maps has no endo-
morphisms other than the shift maps. We prove this by reducing it to the
obvious fact that a finite set supports no non-principal ultrafilters (and in
fact obtain a general characterization of ultrafilters). We also see that the
structure given by symbol maps on {0,1}# is not enough to prevent a rich
endomorphism monoid.

In Section 4.2.4, we look at subshifts with group structure and a structure
by unary maps simultaneously. More concretely, we consider the color blind
endomorphisms of full shifts will cellwise group operations. The results are
similar to those of Section 4.2.3: if the alphabet (and thus the group) is
small, there exist interesting color blind endomorphisms, but if the group is
large, then all endomorphisms are shift maps. The (nontrivial) small groups
are precisely the groups Zs, Z3 and Z%.

4.2.1 Color Blind Cellular Automata

We begin with the definition and discussion of a purely combinatorial ob-
ject: the color blind cellular automaton. Color-blind cellular automata are
endomorphisms of subshifts where the equicontinuous family of unary maps
is given by symbol permutations. By Corollary 4.2.2, such cellular automata
are representative of general reversible equicontinuous families of unary op-
erations.

Recall that a symbol map 7 € S° is also applied to points z € S% by
m(x); = m(x;), and we also apply them to words (with the same formula).

Definition 4.2.3 Let I € S° be a set of symbol maps. A cellular automa-
ton f: S% — S% satisfying mo f = fomx for all m € 11 4s called II-blind. If
IT contains precisely the symbol permutations, we say f is color blind, and
if I = S, we say f is typhlotic.
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In other words, II-blind cellular automata are exactly the endomorphisms
of S% with algebraic structure given by the symbol maps II. Alternatively,
the set of II-blind cellular automata on S% is exactly the centralizer of II in
the monoid of all cellular automata on S% with respect to composition. A
concrete characterization is that the set of spacetime diagrams of a II-blind
CA is closed under cellwise applications of elements of II, and in particular,
in a spacetime diagram of a color blind cellular automaton, the colors can be
renamed in any way. We use the somewhat obscure term typhlotic, meaning
blind, to avoid cluttering the global namespace of cellular automata: we will
soon see that these automata are rather trivial (Theorem 4.2.31).

Example 4.2.4 The radius-1 cellular automaton f on {0,1,2}% defined by

¢, ifa=0b#c,
fioc(a,b,c) =1 a, ifa#b=c,
b, otherwise

1s clearly color blind. It always chooses the symbol in its neighborhood that
s in the minority, or acts as the identity CA if such a symbol does not exist.
A portion of a spacetime diagram of f is shown in Figure 4.1.

.|'I:':$:':I'|.
& & A

Figure 4.1: A sample spacetime diagram of the cellular automaton of Ex-
ample 4.2.4, with time advancing downward. It is of course unimportant
which of the symbols {0, 1,2} each color corresponds to, since any symbol
permutation of a spacetime diagram of a color blind CA is also its spacetime
diagram.

Recall that a cellular automaton f on S% is called captive if the local
rule fio. satisfies fioe(ai,...,an) € {a1,...,a,} for all aj,...,a, € S. Color
blind CA are ‘almost captive’ in the following sense.

Lemma 4.2.5 Let f : S% — S% be a color blind CA. Then fioc(a1,...,a,) €
{ai,...,an} whenever [{ai,...,a,}| <|S|— 1.
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Proof. Suppose for a contradiction that we have |[{a1,...,a,}| <|S|—1,
but a = fiec(a1,...,an) & {a1,...,an}. Then, there exists

be S\{a,ai,...,an}.

Now, f does not commute with the transposition (a b). =

The automaton of Example 4.2.4 is captive. However, not all color blind
automata are captive, since the local rule may output the ‘last remaining
color’ unambiguously when all but one color appear in the neighborhood, as
the alphabet size is known. The following is an example of this phenomenon.

Example 4.2.6 The radius-1 cellular automaton f on {0,1,2}% defined by

[ d, if{a,b,c}| =2 and d ¢ {a,b,c},
fioc(a, b, c) = { b, otherwise

1s color blind. It always chooses the unique symbol that does not appear in
its neighborhood, or acts as the identity CA if such a symbol does not exist.

It is clearly not captive. A portion of a spacetime diagram of f is shown in
Figure 4.2.

Figure 4.2: A sample spacetime diagram of the non-captive cellular automa-
ton of Example 4.2.6.

Typhlotic CA are in fact captive, which we will obtain as a corollary of
Theorem 4.2.31. We continue with a simple logical characterization of color
blind cellular automata which gives yet another way to define this class.

Definition 4.2.7 Fiz a set of variables V. = {vi,...,v,}. A color blind
formula over V' is a Boolean combination of basic equations of the form v; =
vj. For a color blind formula E over V, an alphabet S and a word w € S",
we denote by E(w) the formula obtained by replacing each v; by w; in E (so
that E(w) is formula on the letters w;, with no free variables). The formula
E defines a set of words E(S) C S™ by E(S) = {w € 8™ | E(w) holds}. We

say E is captive on S if the last letter of w occurs at least twice in w for all
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w € E(S), and captive, if it is captive on S for all finite S. If n = 2r + 2
and E(S) defines a function from S***1 to S (seen as a subset of S>" 1 x S),
we let fg : 8% — S% be the radius 1 cellular automaton whose local function
it 1s. We say fg 1s defined by a color blind formula.

Lemma 4.2.8 A set of words W C S™ is defined by a color blind formula
if and only if it is closed under symbol permutations.

Proof. First, let W = E(S) for a formula F, and consider an arbitrary
symbol permutation 7 : S — S. It is clear that if F(w) holds for a word w €
S™, then so does E(m(w)), and thus W is closed under symbol permutations.

Suppose then that W is closed under symbol permutations. For all
w € W, define the formula Ew, = A; jc(0.n—1)t(i, ), Where ¢(i, ) is v; = v;
if w; = wj, and =(v; = v;) otherwise. We let £ = \/, iy Ew. Now, it is
clear that W C E(S). On the other hand, let v € E(S). This means that
v € Ey(S) for some w € W. It is easy to see that there then exists a symbol
permutation 7 : S — S with 7(w) = v, and since W is closed under symbol
permutations, we have v € W. m

As a cellular automaton commutes with symbol permutations if and only
if its local rule does (by Lemma 4.1.6), we obtain the following corollary.

Corollary 4.2.9 A CA f : S% — S?% is (captive and) color blind if and
only if it is defined by a (captive and) color blind formula.

Example 4.2.10 The cellular automaton of Example 4.2.4 is defined by the
captive and color blind equation

(Ul:’U275’U3/\U3:U4)\/(Ul7&1}2:03/\1}1:114)\/

(1 =v2 =v3 =vq) V (v1 # V2 # v3 # V1 A V2 = v4)

where vy, ve, vy and vy correspond to a, b, ¢ and fiye(a, b, c) in the definition,
respectively.

The characterization essentially says that a cellular automaton is color
blind if and only if it can be defined without referring to any particular
colors, but only their arrangements on the neighborhood.

Corollary 4.2.11 Let f : 8% — S% be a captive and color blind CA such
that |S| > 2r+1 where r is the radius of f, and let S C T. Then there exists
a captive and color blind CA g : T% — T% with radius r such that f = g|gz,
and there is no other such extension of radius .
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Proof. Let E be a color blind equation such that f = f;g, that is, F(S)
defines precisely the local function of f. Since |S| > 2r+1 and f is captive,
it is easy to see that E(T) also defines a function, since exactly the same
set of equivalences between the 2r + 2 variables can occur no matter which
alphabet of size at least 2r + 2 is used. We then have that g = fg is a color
blind CA on T4. Uniqueness is also easy to verify. m

Remark 4.2.12 An interesting further corollary of Corollary 4.2.11 is that
since captive and color blind CA with small enough radii have natural ex-
tensions to all full shifts, we, in some sense, obtain a cellular automaton
on NZ in the limit, when we consider such extensions for larger and larger
alphabets [0, k]. More precisely, we obtain a function N defined by

B (x =7, 7‘)
fE(@)=fg " (@),

where By(w) is the set of symbols that occur in w. Note that the choice of
the infinite set N is immaterial due to color blindness (and it can even be
taken to be uncountable). Let C be the class of such maps, and note that
they are closed under composition. The class C is very much incomparable
with class of sand automata introduced in [CF03] (even if we choose Z or
ZU{—00,00} as the state set). Finding out what the dynamics of automata
i C can look like is a possible direction for future research.

We generalize the idea of extending a color blind CA to a larger subshift
in Proposition 4.2.16. To prove it, we need a few definitions and a standard
topological lemma.

Lemma 4.2.13 (Pasting Lemma) Let X and Y be topological spaces, let
Aq,..., A C X be closed, such that |J;A; = X, and let f : X — Y be a
function. If f|a, is continuous for all i, then so is f.

Definition 4.2.14 Let X C S% be a subshift, let f : X — X be a CA, and
let I ¢ S°. Suppose that whenever = € II* and x € X satisfy n(x) € X,
then w(f(z)) = f(n(x)). Then we say f is II-blind on X. If there exists
r € N such that for all x € X there exists k € [—r,r] such that f(x)g = z,
we say f is captive on X.

We note a small subtlety in the definition:

Example 4.2.15 Let S = {0,1,2} and X = {0,1}%. Then the symbol
permutation f = (0 1) is not II-blind on X where 11 is the set of all symbol
permutations w: S — S (although it is clearly color blind on X in the sense
of the earlier definition). Namely, if m = (1 2), then w(*°0%°) = *0* € X,
but [(r(0%)) = %1% 7 2% — 1(f(=0%)).
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Another important observation is that if 7(X)N X = 0 for all 7 € II*,
then every cellular automaton on X is II-blind. Definition 4.2.14 is the
correct one if we want it to correspond to f being a restriction of a II-blind
cellular automaton on S4. The following extension result shows this and
more.

Proposition 4.2.16 Let X C S% be a subshift, and let II be a set of per-
mutations on S. Then a CA f: X — X is (captive and) I1-blind on X if
and only if f = g|x for a (captive and) I-blind CA g : S% — S% which
satisfies g(X) C X.

Proof. First, if f = g|x for such a g : S — S%, and 7 € II* is arbitrary,
then 7(g(z)) = g(m(z)) for all z € S, so in particular this is the case when
z,m(x) € X, and then 7(f(z)) = f(n(z)). In this case f is also clearly
captive on X, if g is captive.

For the other direction, we first claim that X can be assumed to be
closed under the action of IT*. Namely, replace X by X = Unrern- 7(X),
which as a finite union of subshifts is a subshift, and for all 7 € II*, define
fr:m(X) = m(X) by fr(m(x)) =7(f(z)). Now, if x € 7(X) U p(X) for p €
IT*, then x = m(y) = p(z) for some y,z € X. Since II* is a subgroup of the
symmetric group on S, we have p~! o € IT*, and also p~(n(y)) = z € X.

Since f is II-blind, this implies f(z) = f(p~ (7 (y))) = p~ (= (f(y))), that

| fol@) = fo(p(2)) = p(f(2)) = 7(f(y)) = f=(7(y)) = [x(2).

By the Pasting Lemma, the well-defined function f : X — X such that
f lx(x) = fx for all = € II* is continuous, and it is easily seen to be shift-
commuting. It is also II-blind by definition, and clearly captive if f is.

Suppose thus that X is closed under 1I*, and let » € N be a radius for
f that also witnesses its captivity, if f is captive. Define the radius-r CA
g : 8% — S% by the local rule

gloc(w) — { floc(W), ifwe 82T+1(X)

Wy, otherwise.

It is clear that g|x = f (and thus g(X) C X) and that g is captive if f is. It
remains to be shown that g is II-blind, and for that, let 7 € IT* and = € S%
be arbitrary, and let i € Z. We now have x[;_; ;) € Bar+1(X) if and only
if W(x[i,r’lgrr}) € Bory1(X). If Lli—ritr] € Bay+1(X), then

9(m(2)i = froe(m(@(i=r,i+1))) = T(fioe(Zfi—r,itn1)) = 7(9(2))i-

If 2i_yiyr) & Bor+1(X), we have g(m(z)); = m(x); = m(g(z));. This shows
that g is II-blind. =
From this and Corollary 4.2.9 we deduce the following.
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Corollary 4.2.17 Let X C S% be a subshift. Then a CA f : X — X is
(captive and) color blind on X if and only if f = f2|x for a (captive) color
blind formula E.

The restriction to sets of symbol permutations (and not general symbol
maps) is necessary, as an easy corollary of Theorem 4.2.31.

We also show by example that the radius of f may not be sufficient
to define g even if it witnesses the captivity of f on X. Let X consist
of the points x = (0122)% and y = (0022)% and their shifts, and define
fioe = {0,1,2}3 — {0,1,2} by fioe(a,b,¢) = b, except for fioc(0,1,2) = 0.
Now, f is captive and color blind on X (the only symbol permutation we
need to check is (0 2)). However, no color blind cellular automaton on
{0,1,2}# with radius 1 is an extension of f, since fioc(012) = 0 = fio(201).
One can check that the neighborhood N = [—1, 2] suffices though.

After Proposition 4.2.16 has been established, a natural question arises:
if we have a sufficiently ‘well-behaved’ subshift Y C S% that contains X, is
it possible to extend f to a CA g : Y — Y which is [I-blind on Y? The
following example shows that assuming Y to be a mixing SFT with window
size 2 closed under II is not sufficient.

Example 4.2.18 Let S = {0,1,#,a,b,c,d} and X = {>°0°°,*°1>°}, and
define the mizing SFTY C S% by forbidding all words of length 2 except the
set

{007 1]'7 ##7 0a7 0b7 167 1d7 a#? b#? c#? d#? #07 #1}7

that is, Y = B7L(((0(a + b) + 17 (c + d))#7)*). Define the symbol per-
mutations T = (a b) and p = (¢ d) and let II = {r,p}, so that both X
and Y are closed under 11, and the automaton f : X — X that swaps
X0 and 1 is [I-blind. We claim that f cannot be extended to a 1I-
blind automaton g :' Y — Y. Assume the contrary, and consider the point
y = X0.a#> € Y. Since g|x = f, the image g(y) € Y s left asymptotic
to 14. Now, if g(y) # 1%, then g(y); € {c,d} for some i € Z, but then
p(9(y)) # g(y), even though p(y) = y, contradicting the Il-blindness of g.
Thus g(y) = 1%, implying g(#%) = 1. Similarly (using the permutation )
we see that g(*®1c#>) = 0%, implying g(#%) = 0%, a contradiction.

We are not aware of an easy characterization for the situations where the
extension succeeds, but there is at least the following sufficient condition.
This is rather technical, and not particularly interesting as such, but we will
need it in the proof of Theorem 4.2.23.

Lemma 4.2.19 Let X C Y C 5% be subshifts, of which X is an SFT and
Y is a mizing SFT, and let 11 be a set of permutations on S such that 'Y is
closed under I1. Suppose further that for some r, every symbol a € S occurs
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in every word of By(X). Then a CA f : X — X is II-blind on X if and
only if f = g|lx for a CA g:Y — Y which is captive and 11-blind on Y and
satisfies g(X) C X.

Note that any automaton f : X — X is automatically captive due to
the strong assumption on X.

Proof. The backward implication is proved as in Proposition 4.2.16.
For the forward implication, we can again assume that X is closed under
IT*, and we may assume II = IT*.

Let » € N be a radius for f, a window size for X, and a mixing distance
and windows size for Y, and such that every symbol a € S occurs in every
word of B,.(X). Note that then the only element of II having a fixed point
in B,(X) is the identity. We now define the automaton g.

As in Proposition 4.2.16, what we wish to do is to update long enough
patterns from X according to the local rule of f, and other cells by the
identity function, except for some gluing in the borders. For this, let hq :
Y — {0,1}# be the auxiliary automaton mapping

0, i xygniyen € B(X),
()i = { 1, otherwise.

Clearly we have
Vorell,bz €Y : hl(a:)z = hl(w(:c)),

since X is closed under II. In coordinates i of x where hy(x); = 0, we could
sensibly apply the local rule of f. Note that if hy(x); = hi(z); =0, j < j
and j' —j < 3r, then hy(z)[; ;) € 0%, since X has window size r. If 2 € X,
then we have h(z) = 0%.

Now, we define a second auxiliary automaton hy : Y — {0, 1}Z mapping

7,4

0, if El] 11 € [],] +7r— ].} VAN hl(.%‘)[j,jJrT,l] S 0*,
1, otherwise.

ha(x)i = {

Note that hy satisfies the same properties as h1, and also has the additional
property that every maximal subword of all zeroes in hg(x) has length at
least r. The coordinates i of x where ha(z); = 0 will be the ones where fio.
is applied, in the final CA g.

We now locate the coordinates where the identity map is applied, by
defining a third auxiliary CA h3 : Y — {0,1,2}¢ by

0, if he(xz); =0
ha(a)i = 1, if ha(@)fpipe = 177!
2, otherwise.

Note that hs(z); = 0 <= ha(z); = 0. The coordinates i where h3(z); =1
will be the ones where the final CA ¢ applies the identity CA, and they
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form runs of length at least r + 1 by the property that two Os separated by
1s in ha(x) are separated by at least 3r + 1 repetitions of 1 (which in turn
was inherited from hq(z)). The coordinates ¢ where hg(z); = 2 form runs of
length precisely 7.

To sum up the properties of hg,

h3(Y) € B7H(((070%)2" (171%)2")%),

and
h3(X) = {Oz}a

and hs(z) = hg(m(x)) forall r € I, z € Y.

Next, we define the map g : ¥ — Y. We already mentioned that we
will at least have g(z)i = fioc(Z(i—rits) if h3(z); = 0, and g(z); = ; if
hs(z); = 1. We now choose the rule for filling the rest of the coordinates.
Of course, we will just use the fact that Y is mixing, and the only trick is
to choose only one gluing per II-orbit, in the following sense. Consider the
natural IT-action on B,(X) obtained in the obvious way. Since each symbol
of S occurs in every word of B,(X), every orbit is of the same size, that is,
[II(w)| = || for all w € B,(X). Now, if

h3(x)(0,30—1) = 072"17,
then

9(90)[0,3r—1] = uvw,

where u = f(2)j9,—1], W = 22y 3,_1], and if 7 (zp,_1)) is lexicographically
minimal in the Il-orbit of x[,_1) (note that there is a unique such ) and
v’ lexicographically minimal such that

T (f(@)joren)V'm (w) T Y,

then v = m(v"). When h3(z)p 3,—1] = 172"0", we define g(x)[o 3,—1) symmet-
rically.

It is easy to see that g is a well-defined captive cellular automaton and
g(Y) C Y. We show that it is color blind. Let x € Y and 7 € II and recall
that hs(x) = hs(mw(z)). If hg(z); = 0, then

71'(9(33))1 = W(flOC(x[ifT,iﬁ’T})) = floC(ﬂ-(m[ifr,H»r])) = g(ﬂ-(x))z
If h3(x); = 1, then
m(g(x))i = m(x)i = g(7(x))i-
Finally, if hs(x)j3,—1) = 072"1", then if ¢ € II and ¥~ (x}y,_q)) is lexico-
graphically minimal in the II-orbit of z,_1j, then

(mop) Hm(zp,—1)) = ¢ (7 (7 (2p,—1))) = ¥ (@)0,r—1
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is also minimal in the TI-orbit of 7(x)[—1]- The same word v’ is chosen for
the gluing of the words ¢_1(f(3:[0,74_1])) and 1/)_1(9:[2T73,4_1}) when deciding
the contents of g(x)}.9,—1) and g(7(x)),2r—1), and thus g(x)p.2,—1) = P (V')
and g(7(z))r2r—1] = 7(1(v")). Thus, g is indeed color blind. m

We remark that to prove Lemma 4.2.19, what we actually needed was
that

e 1o element of II* except the identity has a fixed point in X, and that

e we can always glue together f(u) C X and v C Y using only the
symbols occurring in uwv.

We note that the lemma is not a generalization of the usual Extension
Lemma. One can find a generalization by elaborating on the above, but the
conditions obtained are still somewhat artificial. It is an interesting question
what the right conditions for the existence of color-blind extensions are.

4.2.2 Constructing Color Blind Cellular Automata

In this section, we give concrete examples of color blind cellular automata,
and construct color blind automata with interesting properties.

Definition 4.2.20 Let f : S% — S% be a cellular automaton with a neigh-
borhood of sizen. We say f is a majority CA if, whenever fioc(s1,...,5n) =
s, we have [{i € [1,n] | s; =s}| > [{i € [1,n] | si =§'}| for all s’ € S.

This means that the local rule of a majority CA always outputs a symbol
that occurs a maximal number of times in the input. All majority CA are
of course captive. In the binary case, there is a unique majority CA for
each odd neighborhood size, and this CA is color blind. In other cases, the
CA must have a tie-breaking rule. To make such a CA color blind we can,
for example, always choose the leftmost input symbol s,, that maximizes
{ie[1,n]|si=sm}

Of the 256 elementary cellular automata, 16 rules are color blind. The
even-numbered rules are summarized in Table 4.1, while the odd-numbered
rules are obtained by subtracting their numbers from 255, effectively com-
posing them with the symbol permutation (0 1). We show the even-numbered
color blind rules, as they are exactly the captive ones.

Of these 8 elementary automata, the most interesting ones for us are
232 and 150. Rule 232, the Majority CA (which, as its name suggests, is
a particular majority CA), has the property that it in fact commutes with
all symbol maps on {0,1}, not just permutations. This is something that
cannot occur when the alphabet is larger, by the results of Section 4.2.3.
The rule 150 has this property as well, and the additional property that
if we give the binary full shift the obvious group structure Z%, then it is
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Table 4.1: The even-numbered color blind elementary CA. The variables vy,
v9 and v3 denote inputs to the local rule, and v4 is its output.

CA Color blind formula Description

142 | (v4 # v2) <= (v1 = v2 # v3) | Flip left, then majority
150 (v =v2) <= (v4 =13) XOR of neighborhood

170 vy = U3 Left shift
178 | (v4 = v2) <= (v] = vy = v3) | Flip unless all equal
204 V4 = Vg Identity

212 | (vq4 # v9) <= (v1 # v9 = v3) | Flip right, then majority
232 | (vg4 # v9) <= (v1 # v2 # v3) | Majority
240 V4 = V1 Right shift

a pointwise sum of three distinct shifts, and thus a group endomorphism.
As we mentioned in the introduction, we show in Section 4.2.4 that color
blind CA with this property are quite exceptional, or rather Z, is rather
exceptional, in that group homomorphisms cannot be color blind for groups
other than Zy, Z3 and Z3.

Our first result is that (on the full shift) color blind cellular automata
are abundant in the sense of density (see Definition 1.5.6). In particular,
the endomorphism monoid is far from sparse.

Proposition 4.2.21 Denote by CB the set of captive color blind cellular
automata on S%. Then d(CB) =

Proof. Let S = {s1,...,5/g}, and let n € N be arbitrary. We define an
injective map ¢ : CA, — CBy,y|s|, which shows that [CA,| < |CB,,4g|. For
that, let f € CA, have neighborhood size n. The local function ¢(f)ee :
SntISI 5 S works as follows on the inputs ag, . . . s Aptls) € S. If the symbols
An+1,---,0n4|s| are pairwise distinct, we let 7 : S — S be the symbol
permutation that maps each an4; to s;. The local function then returns
7 froe(m(ar), ..., m(an))). If the symbols apn1, . . ., a,4|s| are not pairwise
distinct, ¢(f)ioc returns aj. Then ¢(f) is captive and color blind, and ¢ is
injective.

Now, we calculate

1 1
w 10g|5| log|5| ‘CBn+|S|‘ > n+ ’S’ 10g|s| log‘s‘ ‘C.A ‘
|S\ 085 0g|5|| | n+ |9 >4

which proves the claim. =
In the next result, intrinsic universality is understood with respect to
simulation by injective bulking, in the sense of [OlI08] (this is the same
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simulation that we did in Proposition 1.5.4). In this formalism, a cellular
automaton f : S% — S% simulates another automaton g : T% — T?
if there exists an injective function ¢ : T — S™*" from T-symbols to S-
rectangles such that for every one-way spacetime diagram z € T4*N of
g, the point ¢(z) € S%*N (defined in the obvious way, by replacing each
symbol s in z by the rectangle ¢(s)) is a one-way spacetime diagram of f.
An intrinsically universal automaton is then one that simulates any other
CA. Note that it does not, strictly speaking, follow that the endomorphism
monoid is not predictable, but one could argue that intrinsic universality is a
stronger kind of computational universality, since it means we can simulate
every CA (and thus, in particular ones that are unpredictable), as long as
we can restrict to a subshift.

We begin with a simple lemma. A similar, though much more quantita-
tive, result is Proposition 2.1 in [Mil12], although our result does not directly
follow from it. In the next lemma, when X is a subshift and w C X, we
write [w]; for the set of points z € X with x; ;1 |,,|—1] = w (of course, strictly
speaking, [w]; depends also on X).

Lemma 4.2.22 Let X be an infinite mizing SFT and k € N. Then for large
enough n, and for any set of words {wi, ..., wx} C B(X) with Vi : |w;| = n,

the SFT
Y=x\ J I[wl
1€Z,j€(1,k]

contains a mizing SET of positive entropy.

Proof. Let wi,...,wr be words of length n. We will find sufficient
conditions on n such that the claim holds. Let n > 4m, where m is the
window size and mixing distance of X. Let p be a probability measure on
X [LM95] with

VwC X,ieZ: A< p([w]y) < d-talvl

for some A\ > 1 and 0 < d < ¢ € R. Then in particular there are between
dA\™ and c\" words of length n in X. Let U be the set of words of length n
which overlap with one of the words w; by at least 7. It is easy to see that

U| < k-2n-cA1™ < d\" — 1

for all large enough n. We thus take such n, and then V = B,(X) \ U
satisfies |V| > 2. Now, define Z as the subSFT of X where we require every
cell to either be in an occurrence of a word in V, or in a gap of length at
most m + 1 between two such occurrences. This is an SF'T by definition,
has positive entropy because it contains the positive entropy subshift

BT (VB (X)) N X,
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and is mixing because if u,v C Z, u ends in a word in V' and v begins with
a word of V', then u can be glued to v by a word in

((Bm(X) + Bmi1 (X)V) By (X)
that is long enough. Note that Z C Y since n > 4m. =

Theorem 4.2.23 Let F' be a reversible equicontinuous family of cellular au-
tomata on a mixzing SFT. Then the centralizer of F' contains an intrinsically
universal cellular automaton.

Proof. Let g : [1,k]% — [1, k)% be any CA. We show how to simulate this
map on X by a CA that commutes with the operations in F' (an ‘F-blind’
cellular automaton). This proves the claim, since there exists an intrinsically
universal cellular automaton on the full shift.

Let F be a reversible and equicontinuous family of CA on a mixing SF'T
X'. First, we apply Corollary 4.2.2 to F, and obtain a conjugacy a from
X’ to a nontrivial mixing SFT X C 7% with Bi(X) = T that sends F to a
subset IT of the symbol permutations on 7%. We may suppose IT = IT*. Note
that X is closed under II, and the centralizer of F' corresponds to the set of
[I-blind maps on X. Let m € N be the window size and mixing distance of
X, and suppose further that this is more than twice the radius of o™ !.

Take an unbordered word v C X of length n > m such that B (X) C v,
by applying Lemma 1.3.5 to an aperiodic point of X where every symbol
is uniformly recurrent (in the sense that every symbol appears in every
long enough subword). Now, let W = II(v), and note that |[W| = |1
since v contains every letter of X. If n is taken large enough, then X \
Uiez ren[m(v)]i contains a mixing SFT Y of positive entropy, by the previous
lemma.

Let éw(z)i = 1 <= T} i4(0|-1) € W. We have {y () = &w (m(w)) since
W is closed under II, and thus B, (X) \ W is as well.

Now, note that for n large enough (we can find v for arbitrarily large n),
since X has positive entropy, there are k pairwise distinct words v; € B, (X)
that share a prefix and suffix of length m (by the pigeonhole principle).
Choose such v;, let ©w C Y be an unbordered word of length M > 10n, and
choose a, b, c € B,(X) such that w; = uavbv;c C X (where b and ¢ can be
taken independent of ¢ because the v; share a common prefix and suffix).

Define the injection h : [1, k]¢ — S% by

h(z) = wy Wy | WyyWg, -
Let Z = h([1,k]%) and Z' = Uij\iar5”_1 o'(Z). Tt is easy to see that Z’ C §%
is an SFT, since

7' =B N (wy + -+ wp)"),
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the set of concatenations of the words w;, and the words w; begin precisely
where the unbordered word u occurs. Define f: Z — Z by foh=hog,
and extend it to a CA f : Z’ — Z’ in the unique way. We may assume f
has radius r > 2M. Since v contains all symbols of X, f is trivially captive.

Next, we show that f is II-blind. We show that it is trivially so, by
showing 7(Z'YNZ"' =0 if # € IT and 7 # id. For this, note that in a point
2 € Z', the occurrences of u can be determined by looking at &y (z) only:

é-W( .. wx_2wx_1 ‘wxowzl e ) — .. Olul_nt,QO‘u‘_nt,]_Olu‘_nt()O'ul_nt]_ RN

for some words t; € {0,1}%" each containing at least one 1. The leftmost
1 in each t; occurs in the same coordinate h, and 0“=" is of length at
least 9n > 6n. Thus, we can locally determine the subwords 0/“/=" in the
decomposition above, in the sense that

Ylisitlu|-1] = U < fw(y)[iyiﬂu”,nfl] = 0|u|fnt7

for some ¢ € {0,1}5" whose leftmost coordinate containing 1 is h. Thus, for
y € Z', we can uniquely determine 0 < i < 15n — 1 such that y € ¢*(2)
based on &y (y) only. Of course, this means that if we have 7(Z") N Z" # (),
then z = 7(2’) for some z,z € Z. But this is impossible if 7 is not the
identity map, again since v contains every letter.

Since f is II-blind, Lemma 4.2.19 gives us a II-blind extension f X —
X, since v contains every letter. Then f’ =alo f oa: X — X'isa
cellular automaton that commutes with every element of F'. Since we chose
la] = |b] = n > m to be more than twice the radius of a1, every point
in a~!(Z) is an infinite concatenation of some words s1, ..., s of the same
length as uavbv;c, and f’ behaves as g on such points, treating the word s;
as the symbol . This implies that h simulates g. m

Clearly the endomorphism monoid should not be predictable in the gen-
eral case of Theorem 4.2.23, but we do not obtain this result easily from the
current proof. As we mentioned, intrinsic universality is, in some sense, a
stronger notion of universality than unpredictability (although neither im-
plies the other), so we have chosen to prove a general result for intrinsic
universality instead of unpredictability. However, we at least sketch the
proof that color blind CA on full shifts are not predictable.

Theorem 4.2.24 Let S be a finite alphabet of size at least 2 and let 11 be
the set of symbol permutations on S. Then End(S%,11) is not predictable.

Proof sketch. Let f € End(S%,1I) simulate a CA g : [0, k]% — [0, k]%
for which 0 is a spreading state, as in the proof of the previous theorem.
The simulations of g happen on some SFT Y = B~((wp + - - - wy)*) where
the words w; are all of the same length n, and 7(Y") does not intersect Y~ for
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any 7 € I, and if a forbidden pattern of Y occurs around coordinate i, we
apply the identity map in some neighborhood of ¢. We may also suppose w;
is not unary for any 4.

Now, the reachability problem is already almost undecidable if g is chosen
suitably: given u, v it is undecidable whether there exist extensions of u and
v to points y, z € Y such that f"(y) = z. The problem is that even if v is not
reachable from u this way, there might still be an extension of u to a point
of SZ\Y such that, somehow, eventually v appears in the origin. Let m > n
be a window size of Y. Suppose the radius of f is r. We make a modified CA
f' which behaves as follows: If T[ji4m—1] 1S unary, then the unary pattern
tries to spread in both directions by more than r. If there is another unary
pattern of length at least n in the way, the patterns merge if they are of
the same color, and otherwise they grow until they touch, and then become
fixed. Note that a color blind CA need not be left-right symmetric, so
tie-breaking can be done rather freely when the patterns collide. Now, if
[; i+m—1] 18 not forbidden in Y but ;1 j1m—9) is, then f'(x); i4m—1) = 2"
(introducing a long spreading unary pattern). Similarly, if 2(; ;;,,—1) is not
forbidden in Y but Z[;;1 1) is, and the previous rule did not change any
of the coordinates [i,i +m — 1], then f'(x)}; j4m—1] = ]

Then f’ is color blind because we did not refer to any specific colors in its
definition. It is not predictable if g is chosen suitably, because the prediction
problem for u,v C Y is undecidable within continuations to points of Y, and
if u is continued to a point of S not in Y, then a unary pattern appears in
f'(xz) where the forbidden pattern of Y closest to the origin appears in x.
The unary pattern spreads faster than the speed of light r of f, so the only
way the run of f/ might differ from a simulation of f is that a long unary
pattern appears near the origin, and v does not contain such a pattern if it
is long enough. m

It seems obvious that with the assumptions of the previous theorem,
End(S%,1I) is not finitely generated. However, we do not have a proof of
this fact.

4.2.3 Typhlotic Cellular Automata

We now turn our attention to typhlotic cellular automata, and start with
the observation that they are not necessarily trivial. For example, from The-
orem 4.2.23 we obtain an intrinsically universal color blind CA on {0,1}4,
and this automaton is in fact automatically typhlotic. Furthermore, every
binary majority CA is typhlotic. These CA are already color blind, so we
only need to check that they commute with the symbol maps that are not
permutations, namely the constant maps s +— 0 and s — 1. But this easily
follows from the fact that both the intrinsically universal CA and majority
CA are captive, and the following lemma.
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Lemma 4.2.25 A CA f : S% — S% commutes with the constant map
g(x) = a? if and only if f(a%) = a®.

Proof. If f commutes with such g, then

f(a®) = f(9(a®)) = g(f(a?)) = a*.

Conversely, if f(a?) = a?, then f(g(z)) = f(a?) = a® and g(f(z)) = a?. m

Somewhat curiously, if the alphabet S has more than two elements, the
situation changes drastically: in Theorem 4.2.31, we show that shift maps are
the only typhlotic CA. The proof of Theorem 4.2.31 follows from some rather
general set theory. Namely, we show that a typhlotic CA is defined by an
ultrafilter on its neighborhood, and ultrafilters on finite sets are very simple.
We note that we do not need any hard set theoretic results on ultrafilters:
they just happen to provide convenient terminology for the proof.

Definition 4.2.26 Let X be a nonempty set. We say that Q C 2% is a
filter (on X) if

e 0¢Q,XeQ, andif A,B e Q, then ANB € Q, and
e if AcQ and A C B, then B € Q.

If Q is a filter, and for all A, either A € Q or X \ A € Q, then Q is called
an ultrafilter. An ultrafilter Q is principal if @ = {A C X | j € A} for some
jeX.

On infinite sets, the rather dramatic term ‘ultrafilter’ is fitting. Ultrafil-
ters are exactly the filters that cannot be extended to a larger filter. Having
access to non-principal ultrafilters (even on N) allows for some rather mind-
blowing constructions, such as the non-standard reals of Robinson [Rob66].

We start with two characterizations of ultrafilters. The first one is just
the observation that a well-known partition property of ultrafilters charac-
terizes them, as also the filter axioms follow from it. This result has already
appeared in at least [Leil2] (and is presumably well-known). The second
one is rather specific to typhloticity, and is in fact just the first part of
Theorem 4.2.31 in thin disguise.

Lemma 4.2.27 (Corollary 1.6 of [Leil2]) Let X be a nonempty set, let
kE € N with k > 3, and let Q C 2% have the property that for all parti-
tions (A1, ..., Ag) of X, exactly one A; is in Q. Then Q is an ultrafilter.
Furthermore, every ultrafilter satisfies the property for every k > 1.

Proof. To show that @ is an ultrafilter, we need to show that it is a
filter, and that for all A, either A or X \ A is in Q.
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First, from the partition (X,0,...,0) we deduce that () ¢ Q and X € Q.
Thus, if A C X, then exactly one of A and X \ A is in @, by the partition
(A, X\ A0,....0).

Suppose then that A € @ and A C B. The partition (X \ B, A, B\
A,0,...,0) proves that X \ B ¢ Q, so by the above, B € Q. Finally, we
have to show that A, B € @ implies AN B € Q. For this, consider the
partition (AN B, X \ A, A\ B,0,...,0). Since A € Q, we have X \ A ¢ Q,
and similarly A\ B C X \ B ¢ Q. Thus, AN B.

The converse claim is a well known property of ultrafilters. m

For the next lemma, we give a more general definition of typhloticity.

Definition 4.2.28 Let S and T be sets with S finite, and let f : ST — S
be a function. Then we say f is typhlotic if for every function g : S — S,
we have fog = go f, where g is applied coordinatewise on the left side of
the equation.

Lemma 4.2.29 Let T be a set, and S a finite set with |S| > 3. Then the
map f— {{i € T |z = f(x)} | z € ST} is a bijection from the set of
typhlotic maps f : ST — S to the set of ultrafilters on T.

Proof. Without loss of generality, let S = [1,k]. For all x € ST and
s € S we define x| ={i € T | z; = s}.

Let first f : ST — S be typhlotic, and denote by @ C 27 the im-
age of f under the mapping. By Lemma 4.2.27, we need to show that if
(A1, Ag, ..., Ag) is a partition of T', then exactly one of the A; is in @, that
is, of the form x|, for some € ST. Let x € ST be such that z|; = A,
for all 7 € [1,k]. Then of course x|y, € Q by the definition of @, and
2| p@) = Ag(a)-

Suppose then that, for example, we have A7 = y\f(y) and As = z\f(z) for
some y,z € ST, where we may assume f(y) = 1 and f(z) = 2 by applying
symbol permutations. Let again x € ST be the point with z|; = A; for all

€ [1,k]. If f(z) = 1, define the symbol map 7 : S — S by 7(2) = 2 and
m(s) =1for all s € S\ {2}. Then

L=mn(f(z)) = f(n(z)) = f(x(2)) = 7(f(2)) = 7(2) = 2,

a contradiction. A symmetric argument shows that f(x) # 1 is likewise
impossible. Thus exactly one of the A; is in @), and @ is a ultrafilter.

Conversely, let @ be an ultrafilter on 7', and define f : ST — S by f(z) =
a if and only if z|, € Q). Again by Lemma 4.2.27 (the converse direction),
f is then well-defined. Since ultrafilters are closed under supersets, f is
easily seen to be typhlotic. As the ultrafilter corresponding to f is @, this
concludes the claim. m

The following is also a well known property of ultrafilters (for instance,
it appears as Example 1.3 in [Leil2]).
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Lemma 4.2.30 Let T be finite and let Q) be an ultrafilter on T. Then Q is
principal.

Proof. Since T is finite, we can take a minimal set A in Q. If A is a
singleton, we are done. If A is not a singleton, let € A. Either {z} € Q
or AN (X \ {z}) € Q. In either case, A was not minimal. m

Theorem 4.2.31 If |S| > 3, the typhlotic CA f: S% — S% are exactly the
shift maps. If |S| = 2, they are exactly the captive color blind CA.

Proof. First, suppose |S| > 3, and let N C Z be the neighborhood
of f. The local rule fio. : SN — S is typhlotic since f is. Let Q be the
ultrafilter on N that defines it, given by Lemma 4.2.29. Since N is finite,
Q={ACN|je A} for some j € N by Lemma 4.2.30, which means

f@)o=a <= {ieN|z;=a}€Q <= z;=a.

Thus, f is a shift map.

In the case |S| = 2, a CA is captive if and only if it commutes with con-
stant maps by Lemma 4.2.25, and all symbol maps are either permutations
or constant maps. This concludes the proof. m

In terms of endomorphisms monoids:

Theorem 4.2.32 If |S| > 3, and F is the set of all symbol maps on S,
then End(S%, F) consists of only the shift maps (in particular, it is finitely
generated, sparse and predictable).

We end this section with some questions arising from the previous the-
orem. Namely, the result states in particular that there exists a set of 27
CA {f1,..., for} on {0,1,2}4 such that End({0,1,2}%, f1,..., for) consists
of the shift maps only. By Lemma 1.3.22, the center of End({0,1,2}4) is
precisely the set of shift maps. This suggests the following definition:

Definition 4.2.33 Given X, let m(X) be the smallest number m such that
there exists a set of cellular automata {fi,..., fm} on X such that

End(X, fi,....fm)={f: X > X|Vg: X > X:fog=gof},
if such m exists. Otherwise, let m(X) = co.
We mention the obvious upper bound given by the previous theorem.
Corollary 4.2.34 If n > 2, then m([1,n]%) < n.
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Proof. There are n" symbol maps on [1,n]4. These symbol maps are

generated by n—1 transpositions (which generate the symbol permutations),
and the map 7(1) = 7(2) = 1, (i) = i for i € [3,n] that merges two symbols
together. The result then follows from Theorem 4.2.32; since the center of
a full shift is precisely the set of shift maps by Lemma 1.3.22. =

I do not know what the actual value of m([1,n]?) is. Here’s my best
guess:

Conjecture 4.2.35 If X is a mizing SFT with at least two unary points,
then m(X) = 2.

The inequality m(X) > 1 of course holds in general whenever End(X)
is not abelian: if f € End(X) commutes with all CA in End(X), then
C(f) = End(X) is not the center of End(X), and similarly if f does not
commute with all CA in End(X), then f € C(f) is not in the center of
End(X). On the other hand, if End(X) is abelian, then m(X) = 0, since
End(X) is its own center. There are many subshifts whose center contains
more maps than just the shift maps. A mixing SFT has this property if
and only if it contains a unique unary point, by Lemma 1.3.22. A more
interesting case is when the endomorphism monoid is abelian and contains
maps other than the shifts, such as those constructed in Section 3.3. I do
not have an example of a subshift with m(X) = cc.

The reason m(X) is interesting is that it is (by definition) a property of
the endomorphism monoid only.

Proposition 4.2.36 If X and Y be subshifts with isomorphic endomor-
phism monoids, then m(X) = m(Y).

Invariants like this are interesting, since one of the big open problems
in symbolic dynamics is to find out when two mixing SFTs have isomor-
phic automorphism groups. While this has been solved in some cases, it
is for example still open whether Aut({0,1}%) = Aut({0,1,2}%4). If we
had m({0,1}%) # m({0,1,2}%) (and in particular, Conjecture 4.2.35 were
wrong), then at least the endomorphism monoids would not be isomorphic.
As far as I know, the isomorphism question is unsolved for endomorphism
monoids as well, and interesting in its own right. Of course, the fact this
question is open might well be only because no one asked. So let us ask:

Question 4.2.37 For mizing SFTs X andY , when are End(X) and End(Y)
isomorphic monoids? Are End({0,1}#) and End({0, 1,2}%) isomorphic?

Of course, as usual in mathematics, if the automorphism groups or en-
domorphism monoids are isomorphic, then invariants do not show much.
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One can naturally also define an automorphism group version of m(X),
say m/(X), with the same formulas. I do not have an upper bound for
this quantity for any mixing SF'T X. Theorem 4.2.23 suggests that a set
of m/(X) reversible automata whose centralizers intersect to the center of
Aut(X) at least should not form an equicontinuous family, since I do not
believe there is an inherent obstacle in making the automata constructed in
the proof reversible.

4.2.4 Homomorphic Color Blind Automata

In Section 4.2.2, we saw that color blind cellular automata can do almost
anything a general cellular automaton can do, with any alphabet size. On
the other hand, typhlotic cellular automata turned out to be almost the
same objects as color blind CA in the binary case, but shift maps for larger
alphabets. In this section, we show that cellular automata that are color
blind group homomorphisms satisfy a similar property: if the group is very
simple, the color blind homomorphic CA form a large subclass of all homo-
morphic CA, but when the group is larger, they are all shift maps.

In algebraic terms, we are giving a full shift the structure given by the
set of all symbol permutations, and the structure given by a cellwise group
operation, simultaneously (without assuming any axioms linking the two
structures together). We show that in this case, the endomorphism monoid
contains only shift maps. Of course, we do not claim that such algebras are
particularly interesting as such, but they do show an interesting contrast
with the elementary CA number 150.

Another motivation for this study is that it generalizes a few results of
[MBO04], where a section was devoted to color blindness of homomorphic CA.
There, the term k-rule was used for a sum of k distinct shifts. In the article,
two particular cases of our main result Theorem 4.2.45 were proved. We
prove Theorem 4.2.45 in a series of simple lemmas. By the following lemma,
only the abelian case is interesting.

Lemma 4.2.38 Let S be a finite group and let the CA f : S% — S% be color
blind and homomorphic with minimal neighborhood size at least 2. Then S
is abelian, and if |S| > 4, then f is a sum of distinct shifts.

Proof. All groups of order at most 3 are abelian, so we may assume |S| > 4.
Let 0 # g € S, and consider the point z(g) = °°0.g0%°. Since the local rule
sees at most two distinct symbols in its neighborhood, the image f(z(g))
must also be a point over {0, g} by Lemma 4.2.5. Since f commutes with the
permutation (g h), wehave I ={i € Z | f(2(9))i=g} ={i € Z| f(z2(h))i =
h} for all 0 # h € S. From this we deduce that the symbol endomorphisms
of f (in the sense of Lemma 4.1.7) are either trivial or identity maps, and
since at least two of them must be nontrivial, S is abelian by Lemma 4.1.9.
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Also, we clearly have f = >,y o', where N C Z is the set of those i for
which the symbol endomorphism f; is nontrivial, so f is a sum of distinct
shifts. m

Lemma 4.1.8 and the fact that only the groups Zs and Z3 (and the trivial
group) do not fit in Lemma 4.2.38 together give us the following.

Corollary 4.2.39 Let S be a finite abelian group and f : S — S% a color
blind homomorphic CA. Then [ is a sum of shifts, which are distinct if
S| > 4.

The radius-1 CA f with local rule (a, b, c) — a+ 2b+ c is an example of
a color blind homomorphic CA on Zg which is not a sum of distinct shifts.

Lemma 4.2.40 Let S be a finite abelian group and f : S — S% a homo-
morphic CA. Then f commutes with the symbol permutation ¢g(h) =h+g

if and only if f(g%) = g*.

Proof. Having f(g%) = g% is equivalent to f(z) + g% = f(x) + f(g?%
for all x € S#, which is simply commutation with ¢, since f(z) + f(g%)
flx+g%). m

We now proceed with a case analysis on the small groups Zs, Z3 and Z3.

Lemma 4.2.41 Let the CA f : Z§& — Z% be homomorphic with minimal
neighborhood size m € N. Then f is color blind if and only if f fives 1% if
and only if m is odd.

Proof. The only nontrivial permutation of Zy is ¢1 = (0 1), so from
Lemma 4.2.40 it follows that f is color blind if and only if it fixes 1%. Since
f is a sum of shifts by Corollary 4.2.39, it is clear that it is in fact a sum of
exactly the m different shifts in its neighborhood. Thus, f fixes 17 if and
only if m is odd. m

Lemma 4.2.42 Denote S = Z3, and let the CA f : S% — S% be homomor-
phic. Then f is color blind if and only if it is a sum of an odd number of
distinct shifts.

Proof. Suppose first that f is color blind. Corollary 4.2.39 applies,
so that f is a sum of m distinct shifts for some m € N. This means that
X = {(0,0),(0,1)}% = Z% is closed under f, and the restriction of f to X is
also a sum of shifts. If f|x were not color blind then f would not be either,
so m must be odd by Lemma 4.2.41.

On the other hand, let f be a sum of m distinct shifts for odd m, and
consider an arbitrary transposition ¢ = (g h). Denote S = {a,b,g,h}. Let
J1,---,9m € S, and for ¢ € S, let n. be the number of i € {1,...,m} such
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that g; = c. We note a few facts about the group Z3, namely that 2ng = 0
for all g € S and n € N, and if S = {a,b,c,d} then a + b+ c = d.

Since m is odd, either exactly one of the numbers n, is odd for ¢ € Z3,
or exactly three of them are odd. Let ¢ € Z3 be the oddball with different
parity than the others. Then fioc(g1,.--,9m) = ¢ by the properties of Z3
noted in the previous paragraph. If ¢ € {a, b}, then fioc(d(g91),-..,0(gm)) =
¢ = &(fioc(g1,--.,9m)) because the parities of the number of occurrences of
the group elements are not changed by ¢. On the other hand, if ¢ € {g, h},
then letting {c,d} = {g, h} we have

floc(¢(gl); cee 7¢<gm)) =d= ¢<f10c(917 ce ;gm))

since the oddball changes from ¢ to d on the left, when ¢ is applied, and ¢
maps the oddball ¢ to d on the right. m

Lemma 4.2.43 Let the CA f : Z% — Z% be homomorphic. Then f is color
blind if and only if it fives 1% if and only if it is a sum of 3k + 1 shifts for
some k.

Proof. By Lemma 4.2.40, f fixes 1% if and only if it commutes with
the symbol permutation ¢;. We prove that all such homomorphic CA are
color blind, for which it is enough to show that they also commute with the
transposition (1 2). By Corollary 4.2.39, f is a sum of shifts > /", o¥i for
some m € N and k; € Z. For all z € Zg, we then have

((12) o f)(x) = (12) (Z o" (:r)> = (12)(c"(x)))
=1 1=0

=3 oM (1)) = (o (12))(a)
=0

where the second equality follows from the fact that (1 2) is an automor-
phism of Z3 and the third one directly from the fact that (1 2) is a cellular
automaton.

Finally, it is easy to see that a sum of m shifts on Z% fixes the point 1¢
if and only if m =1 mod 3. m

We handle the remaining cases in a single lemma.

Lemma 4.2.44 Let S be a finite abelian group such that |S| > 3 and S %
Z%, and let the CA f : S% — S% be homomorphic. Then f is color blind if
and only if it is a shift map.

Proof. First, a shift map is trivially a color blind homomorphic CA for
any group alphabet.
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As for the nontrivial direction, Corollary 4.2.39 again applies, so that
fioc simply adds together n of the inputs, for some n. If n = 0, then f
does not commute with symbol permutations, as it sends everything to 0%.
Assume then that n > 2.

We first suppose |S| > 4. In this case, we take 0 # g € S and h € S such
that h ¢ {0,g9,—¢g}. Now, g+ h ¢ {0,9,h}, so that fioc(g,h,0,...,0) =
g+ h ¢ {0,9,h}, which is a contradiction by Lemma 4.2.5. Now, let
|S| = 4, so by the assumption that S % Z3, we have that S = Z;. Then
floc(1,1,0,...,0) = 2, again contradicting Lemma 4.2.5.

Of course, in the remaining case that n = 1, f is a shift map. =

We collect the results of this section into a single statement.

Theorem 4.2.45 Let S be a finite (nontrivial) group, and let f : S% — S%
be a homomorphic cellular automaton. Then, f is color blind if and only if
one of the following conditions holds.

e S=2Z5 0rS=22, and f is a sum of an odd number of shifts,
e S=1273, and f is a sum of 3k + 1 shifts for some k,

o |S|>4o0rS =24, and f is a shift map.

Proof. If S is not abelian, then by Lemma 4.2.38 f has neighborhood
size 1, and since a non-abelian group has size at least 6, such a CA can
only be a shift map by Lemma 4.2.5. In the abelian case, Lemma 4.2.41,
Lemma 4.2.42) Lemma 4.2.43 and Lemma 4.2.44 give the claim. m

In each of the cases S = Zy, S = Z2 or S = Z3, the condition is equivalent
to f fixing the unary points.

This gives a complete characterization of homomorphic color blind cel-
lular automata on full shifts whose alphabet is a finite group. We also note
that in our arguments we only manipulated the local functions of cellu-
lar automata, so the result holds for multidimensional CA with the same
proof. Thus, Theorem 4.2.45 is a generalization of the results of [MB04],
which state that for all dimensions d > 1, any sum of 4 distinct shifts on
ng is color blind, and no sum of m distinct shifts on Z%d is color blind if
n>m>1.

Theorem 4.2.46 If - is a group operation on S giving rise to any group
other than Zy, Z3 or Z%, and F is the set of all symbol maps on S, then
End(S%,-,F) consists of only the shift maps (in particular, it is finitely
generated, sparse and predictable).
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4.3 Subshifts with a Bipermutive Unary Operator

This section is based on [ST13c].

In this section, we study the opposite case of Section 4.2, in the sense
that we study structure given by bipermutive maps, which are very far from
equicontinuous. We show that bipermutive maps are transitive in a strong
sense, which we call topological randomization. As a corollary, we obtain
that the endomorphism monoid of a subshift with an algebraic structure
given by one such map is always sparse.

Again, we also prove some interesting connections with cellular automata
that respect a group structure. Namely, we give a new proof to a result of
[MB97], showing that the centralizer of a bipermutive homomorphic+C' au-
tomaton contains only homomorphic+C' automata. One of their conjectures
is whether an analogous result holds also for general d-dimensional cellu-
lar automata. We show that it indeed does: if SZ° has a cellwise abelian
group structure (S,+), then any ‘extremally permutive’ homomorphic+C
CA f: SZ' 5§72 ‘temembers’ the group structure in the sense that
the endomorphism monoid of the unary algebra (Szd, f) consists of only
homomorphic+C' CA.

If we choose an extremally permutive homomorphic CA carefully, we
obtain from this that for the full group shift X = SZ* for a finite abelian
group S, there exist a unary operator g : X — X such that

End(X,+) = End(X, g).

In this section, we only consider full shifts, and do not look at more
general mixing SFTs at all (except as tools), for the simple reason that
bipermutivity does not really make much sense in this generality, as it is
very deeply tied in the exact symbols that occur in the subshift. For exam-
ple, the notion is not closed under conjugacy. Also, in Theorem 4.3.2, we
show that many mixing SF'Ts in fact have the full shift as their limit in the
action of a bipermutive CA; obviously, such a mixing SF'T cannot support a
bipermutive cellular automaton in a very interesting sense. A more sensible
generalization might be to consider positively expansive CA, which could
be considered a dynamical generalization of bipermutive CA. Positively ex-
pansive CA make perfect sense on mixing SFTs in general, and are a much
larger natural class of CA than bipermutive ones. However, they are much
harder to study. Namely, one of our main proof techniques in this section is
‘sharpshooting permutations at the speed of light’, where by ‘speed of light’
we mean the maximal speed at which information can travel, based on the
radius of the CA. That is, if we permute a cell and apply a bipermutive
CA, the permutation will, in a sense, travel at the edge of the light cone,
and land exactly where we wish. Trying to do this directly using the com-
binatorial characterization of positively expansive CA is rather hard, as the
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permutation bullets then usually do not travel at the speed of light, and I
do not know how to control their path.

4.3.1 Orbits of Subshifts in Bipermutive CA

We begin by studying the behavior of individual points under the action of
bipermutive CA. Recall that our definition of a bipermutive CA requires a
neighborhood of size at least 2. A ‘bipermutive’ CA with neighborhood size 1
would be a symbol permutation composed with a shift map. The centralizers
of such maps look very different, and were the topic of the previous section.

We give some examples, and prove Lemma 4.3.1 which states that ev-
ery pattern, when surrounded by temporally and spatially periodic content,
eventually self-replicates in the orbit of a bipermutive cellular automaton.
All of the results of this section are, to some extent, based on this very
simple observation.

Figure 4.3: An illustration of the elementary CA 150 running from the initial
pattern 101 for 16 generations. While the overall picture is rather compli-
cated, the red ellipses show that the initial pattern repeats periodically at
the borders.

We start with an illustration of this fundamental property of bipermu-
tive CA for a particularly simple example: the binary CA with local rule
Jloc(@,b,¢) = a + b+ c¢mod 2 and neighborhood {—1,0,1}. This is the el-
ementary cellular automaton number 150, which we already discussed in
Section 4.2 as an example of a homomorphic and typhlotic CA. See Fig-
ure 4.3 for a sample spacetime diagram.

Let f be bipermutive, and let v € S* be such that fP(u?) = u#. Then,
any word w € S*, when superposed on the periodic background w4, is a kind
of self-replicating pattern: Copies of w periodically appear on both borders
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of the light cone starting from w. See Figure 4.3 for a concrete illustration.
The precise statement is formulated in Lemma 4.3.1.

Lemma 4.3.1 Let f : S% — S?% be a left permutive CA with neighborhood
[—r,7'], and let y € S% be temporally and spatially periodic with periods t
and p, respectively. Let x € S% be such that x; = y; for all i > 0, and let
n € N. Then, denoting C = pt(|S|")! and I = [-n + 1,0], for all £ € N, we
have

@) 1pere = 1.

Proof. We begin with an auxiliary observation. Let § : @ x ¥ — @
be such that 0(-,a) : @ — @ is bijective for all a € ¥ (in other words,
(Q,%,0) is a reversible deterministic finite automaton), and let ¢ € @ and
w € ¥* be arbitrary. Inductively, write §(g,aw) = 0(d(g,a),w). Clearly,
5(-,w) : Q = Q is then bijective for all w € ¥*. Then, §(q, w"!9!") = ¢ for
all g € Q and £ € N.

Then, let Q = $" and ¥ = S, and let 4 : (Q x X) — @ be defined by
5(q,a) = f(qa). We claim that (-, a) is bijective. For this, let ¢,¢' € @ and
a € ¥ with ¢; # ¢}, where i € [0,n— 1] is maximal. Since f is left permutive,
we have 6(q,a); # (¢, a);.

Consider the words ¢' = fi(z);1 € Q and a* = fi(ar)[uw/]m €X
for ¢ € N. Since r is the right speed of light for f, we actually have a* =
fi(y)[LHT/HM for all i € N, and thus the sequence (a');en is periodic with
period pt. Furthermore, we see that §(q’, a’) = ¢**! holds for all 4. Denoting
w=a---- aPt=1 € ¥ we have 6(¢°, w?1Ql") = ¢° for all £ € N by the first
paragraph, and expanding the definitions gives the claim. =

The lemma states that in the left-permutive case the pattern x; is re-
peated on every C'th step on the right border of the light cone. Of course,
in the right-permutive (or bipermutive) case, a symmetric result holds. We
refer to both results as Lemma 4.3.1. A similar result is true for all cellular
automata, when started on a point with the right tail z|; ) periodic: At the
border of the light-cone, there is no time for computation, so the contents of
the light-cone will be eventually periodic for all CA. Of course, often, this
just means that from some point on, the border of the light cone is no longer
carrying any information from the interesting pattern x|, g

With the help of Lemma 4.3.1, we now consider the orbits of subshifts in
bipermutive cellular automata. The focus is on their long-term (asymptotic)
dynamics, in particular the set of patterns that will eventually appear during
the evolution. As an example, we first illustrate how, for the elementary CA
150, one can build an initial point where 1s are spaced arbitrarily far apart,
yet a given word eventually appears at the origin in the orbit of the point,
using nothing but the bipermutivity of the CA. See Figure 4.4.

The first nontrivial result that follows from Lemma 4.3.1 is a gener-
alization of the idea in the caption of Figure 4.4. Namely, the property
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. ¥4

Figure 4.4: We illustrate the idea of building sparse points such that a
particular word appears in the evolution, for the CA 150 and the pattern 111
(although it ‘accidentally’ already appears on the first step). The red circles
indicate patterns that reappear on the right border of the light cone (by
left-permutivity), and an arrow from cell A to cell B means that permuting
the contents of cell A permutes the contents of cell B (by right-permutivity).
As the cell A in the rightmost picture is permuted to 1, the cell B pointed
to by the arrow changes to 1 as well, and the pattern 111101 (which begins
with the desired pattern 111) appears on the right border of the light cone.

of a bipermutive cellular automaton f : S% — S% that every word is self-
replicating can be used to show that every word occurs in some image f™(X)
— that is, the set of limit points of X in f is the full shift — if the SFT X C §%
satisfies certain mixing properties.

Theorem 4.3.2 Let f : S% — S% be a bipermutive CA and X C S% a
nontrivial mizing SFT with window size m. If there exists vi € Bp—1(X)
such that vis € By, (X) for all s € S, then Qp(X) = S%.

Proof. The idea of the proof is simple: Supposing that the claim w €
B(Qf(X)) holds for the word w, we show it holds for wa, for arbitrary
a € S. We show this by extending w to the right with a periodic tail so that
it eventually repeats on the right border of the light cone by left permutivity
and Lemma 4.3.1. Since we have carefully chosen the periodic right tail so
that it contains v; in just the right place, we can ‘shoot a permutation’
from the coordinate to the right of v; to the coordinate to the right of the
repeated occurrence of w, by right permutivity and Lemma 4.3.1. While
this is straightforward to formalize, the precise indexing needed is a bit
cumbersome.

So, suppose that such a v exists. Without loss of generality we can
assume that vlz € X, and that m is also a mixing distance for X. Namely,
since periodic points are dense in X, we have (v'v1)% € X for some v/ €
B(X), and then we can simply replace v; by v'vy. Also, it is clear that
m can be replaced by a larger value. We will show, by induction on word
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length, that for all w € S* there exist arbitrarily large n € N such that
w € B(f"(X)), from which the claim then follows. The case |w| = 0 is
trivial.

Suppose then that the claim holds for w € S*, and let s € S. We will
prove the claim for the word ws. The proof is illustrated in Figure 4.5. Let
r and 7’ be the left and right radii of f, respectively. By the induction hy-
pothesis, for arbitrarily large n € N, there exists a word u € Bjy|4n(r4r) (X)
such that f"(u) = w. We can take n so large that f*(v{) = v has the
property that fP(v5) = v& for some p € N, where |vo| = m — 1.

For all k € [m,2m — 2] we choose a mixing word z; € Bi(X) and an
arbitrary left extension y, € S~N such that x;, = yp.uzv® € X. Now,
STk [pn o0y = w2,v5° for some 2, € By ip(ryyr)(X). This is illustrated on
line 2 in Figure 4.5.

By Lemma 4.3.1, there exists t; > k + n(r + ') 4 |v1| such that

ot
S (@) (et ) 00) = WERVS

for all £ € N. Let h =lem{ty | k € [m,2m — 2]}, so that

F @0 iy o0) = W2RVSY,

for all k.
Let now k£ be such that

j=(+r)Yn+h)+|w = ul+kmod (m —1). (4.2)

We can permute the coordinate j of xj freely (and choose a new right tail
arbitrarily), because (4.2) and the fact that h > k+n(r+r")+|v1| imply that
it is preceded by the word vi, and m is the window size of X. Permuting
the coordinate j in xp (point A in Figure 4.5) permutes the coordinate
j—7r'(n+h)=r(n-+h)+|wl in f7+"(z;) (point B in Figure 4.5) without
affecting any coordinate to the left of it, and thus all the words ws for s € S
occur in f*T"(X). Since n may be chosen arbitrarily large, this concludes
the induction step. m

As we mentioned in the beginning of the proof of Theorem 4.3.2, both
left and right permutivity are really used: As the CA is left-permutive,
Lemma 4.3.1 guarantees that w repeats on the right border of the light
cone. Right-permutivity on the other hand guarantees that the permutation
applied to the coordinate a of zp propagates along the left side of the light
cone to a permutation of the (n + h)th image. It is easy to find examples
of CA which are left- or right-permutive, but for which Theorem 4.3.2 does
not hold (for example, shift maps can be considered to be such examples).

We also note that if X is a proper subshift of S%, then J, oy f™(X) is
never actually equal to S%. In fact, for all n, the subshift f*(X) has the
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Figure 4.5: A schematic diagram of the proof of Theorem 4.3.2. The coordi-
nate A may be changed to any symbol without changing the left part, and
by permuting A, we also permute B.

same entropy as X, since a bipermutive CA is finite-to-one [LM95], and in
general its entropy can only decrease. This means that the appearance of
all words of S* for larger and larger k in f"(X) is somehow compensated
by having these words appear in only a small number of different contexts.

Example 4.3.3 Let X C {0,1}% be the golden mean shift (the SFT with
the single forbidden pattern 11), and let f : {0,1}% — {0,1}# be the two-
neighbor XOR automaton with neighborhood {0,1} and local rule fioe(a,b) =
a + b, which is bipermutive. Then

F(X) =B7H((07(11)7)").

Thus, f(X) is conjugate to the even shift B~1((1*(00)*)*) by the CA that
applies the permutation (0 1) cellwise, and it is indeed well known that the
golden mean shift and the even shift have equal entropy. However, Ba(X) =
{00,01, 10}, while B2(f(X)) = {00,01,10,11}.

We continue one more step:

FAH(X) = B7H((0°10(00)*1)*),

the binary subshift where every second maximal contiguous segment of Os
between two 1s (counting empty segments between adjacent 1s as even seg-
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ments of 0s) is of odd length. Note that

Bs(X) = {000, 001,010,100, 101},
Bs(f(X)) = {000,001,011,100,101,110,111},
Bs(f*(X)) = {000,001, 010,011,100, 101,110}, and
Bs(f3(X)) = {000,001, 010,011,100, 101,110, 111}.

but all four subshifts X, f(X), f2(X) and f3(X) necessarily all have equal
entropy. This example also shows that the convergence to the full language
18 not monotone, since

010 € (B3(X) N B3(f*(X))) \ B3(f(X))-

Let Y C 8% be a subshift. If these exists m € N such that no word
w € By (Y) can be followed in Y by every letter of S, then the entropy of Y
satisfies h(Y) < log(|S| —1). If Y is also binary, then the existence of such
an m implies that Y is periodic. Thus we have the following corollaries to
Theorem 4.3.2.

Corollary 4.3.4 IfY C S% is a mizing SFT with h(Y) > log(|S| — 1) and
the automaton f : S% — S% is bipermutive, then Qp(Y) = SZ.

Corollary 4.3.5 If Y C {0,1}% is a nontrivial mizing SFT and the au-
tomaton f : {0,1}% — {0,1}# is bipermutive, then Qp(Y) = {0, 1}%.

In the special case that the alphabet is a group of prime order and the
cellular automaton is a homomorphism, we can relax our assumptions on
the SFT X. We only sketch the proof of the following result, as it is mostly
the same as that of Theorem 4.3.2.

Theorem 4.3.6 Let p € N be a prime, let S = Z,, let the CA f : S% — §%
be a group endomorphism with minimal neighborhood size at least 2, and let
X C S% be a nontrivial mizing SFT. Then Q¢(X) = S%.

Proof sketch. First, note that f is automatically bipermutive, since
the symbol endomorphisms are permutations of S. Since X is nontrivial,
there exists a long word v; € B(X) such that via,vib € B(X) for some
a#beZ, Let we € B(Qf(X)) for some ¢ € Z,, and as in the proof of
Theorem 4.3.2, there exist ¥ € N and v € B(X) such that uvia is an fP*-
preimage of we. Then wvb is an fPF-preimage of wd, where d = c4+b—a in Z,
since f is homomorphic. After p such operations, we see that we € B(Q(X))
foralle€ Z,. m

Theorem 4.3.6 can be thought of as a kind of topological analogue of
Theorem 5.3 in [Piv12] (proved in [PY04]), which in particular states that
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the ergodic averages of Markov measures with full support converge to the
uniform Bernoulli measure in the weak-star topology, under the action of a
bipermutive homomorphic CA on Zg. The automaton is said to asymptot-
ically randomize such a measure. Using analogous terminology, we can say
that a CA f topologically randomizes a subshift X if Q7(X) = 5%, and The-
orem 4.3.6 then states that a bipermutive homomorphic CA topologically
randomizes every nontrivial mixing SF'T X C Z%. Theorem 4.3.2 can of
course also be phrased in terms of topological randomization, but the class
of subshifts randomized is not quite as natural (see Question 4.3.9).

There is also a more familiar meaning to these results, as topological
randomization for a left (or right) permutive cellular automaton in fact
corresponds to the existence of a transitive point.

Theorem 4.3.7 Let f : S% — S% be a left permutive CA with neighborhood
[—7,7'], where r > 0, and let X C S be a mizing SFT. Then Q(X) = S if
and only if X contains a transitive point for f, that is, 3z € X : wy(x) = SZ.

Proof. If 3z € X : wy(z) = S%, then clearly Q(X) = S%.

Now, suppose Q¢(X) = S%. We show that given any w € B,(X) and v €
SP, there exist z € X and N € N such that x|y ,_;) = w and fN(x)[O’p,l] =w.
We may assume without loss of generality that w? € X, and then there exist
m,t € N such that f™(w?) = " (w?) = u? for some u € B(X). Since
Q¢(X) = S%, there exists M > m and vivy € B(X) such that fM(viv) = v
and |v1| = rM. Define y = zv1.v0w'w™, where z € S™N and w’ € B(X) are
chosen such that y € X and p divides |vow'|. Now, fM(y) = 2/.vw"u'> for
some 2z’ € S™N " € (SP)* and v/ € SP. Lemma 4.3.1 now implies that for
C = pt(|S|PH1"Nl and all £ € N, we have fMC(y),c4 0,1 = v. Since
Yerc+[0,p—1] = w for large enough ¢, some translate of y can be chosen as x.
]

The notion that ‘the asymptotic set of f from X is S%’, that is, ws(X) =
SZ . fits into the picture in the obvious way: in general,

erX:wf(x):Sz = wf(X):SZ = Qf(X):SZ.

The next (rather trivial) example shows that the restriction to a group
of prime order is necessary in Theorem 4.3.6, that just mixing does not
suffice for proving Theorem 4.3.2, and that entropy h(Y') > log(]S|/2) is not
enough for Corollary 4.3.4.

Example 4.3.8 Let f: {0,1}% — {0,1}# be the elementary CA 150, X =
({0,1} x {0})? € ({0,1}>)? =Y and g = f x f. Then X is a mizving SFT
with h(X) = log2, g is homomorphic and bipermutive, and h(Y) = log4,
but g(X) = X.
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Here, the CA g is a group homomorphism, and B;(X) is a subgroup of
the full group that g cannot expand. We do not know whether such cheating
is the only way to guarantee that a mixing SF'T does not expand to the full
shift. In fact, we do not know whether a bipermutive CA randomizes every
mixing SFT that uses the full alphabet.

Question 4.3.9 Let f : S% — S% be a bipermutive cellular automaton,
and Y C S% a nontrivial mizving SFT with B1(Y) = S. Do we then have
Qp(Y) = S22

A positive solution to Question 4.3.9 seems plausible, especially if f is
also a group homomorphism, and would extend Theorem 4.3.2 to a much
more natural class of topologically randomized subshifts.

Definition 4.3.10 Let 0 € S and d,k > 1. The k-sparse subshift of di-
mension d is the SFT X C S%° defined by the forbidden patterns

(P e SMH 1P|y < Kk — 2}

For example, the one-dimensional binary 2-sparse subshift is just the
golden mean shift, since it is defined by the set of forbidden patterns

{w e {0,13% [ |wlo < 0} = {11}.

We can apply Theorem 4.3.2 to such subshifts to obtain concrete examples of
simple subshifts that bipermutive automata take to the full shift in the limit,
as the k-sparse subshift obviously satisfies the assumption of Theorem 4.3.2.
This observation (and especially its generalization Proposition 4.3.16) is
useful in the study of commutation of cellular automata, as we will see in
the next section.

Corollary 4.3.11 Let f : 8% — S% be a bipermutive CA, k € N, and
X C 8% the k-sparse subshift. Then Qp(X) = SZ. In fact, X contains a
transitive point for f.

Proof. Combine Theorem 4.3.2 and Theorem 4.3.7. m

While it is hard to say much about multidimensional SFTs in general,
we can at least extend Corollary 4.3.11 to higher dimensions. The proof is
essentially the same as that of Theorem 4.3.2, but we use some additional
tricks to make the argument cleaner. Namely, we apply a certain trans-
formation of SL4(Z) to make the neighborhood shape more suitable, and
then use a similar shoot-and-reperiodize technique as in [Sall2] to partially
reduce the problem to the one-dimensional case.
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Definition 4.3.12 For @ = (n1,...,nq) € Z%, denote n(ii) = ny. A set
N c Z% is pointy, if

IN N7 Y min7(N))| = [N N7~ (max7(N))| = 1.

Lemma 4.3.13 Let f : SZY 5 82" be a cellular automaton. Then, there
exists A € SLy(Z) such that A(f) has a pointy neighborhood.

Proof. For n = (na,...,ng) € N®~1, define the shear map A, by
d
An(.%‘l,afz, R ,:L'd) = (l’l + Znixi,mg, R ,:L'd).
i=2

We have A € SLg(Z) for all n € N9~!, since A is given by an upper tri-
angular matrix with only 1s on the diagonal, and thus has determinant 1.
Now, let N C Z% be the neighborhood of f. It is easy to see that if we
choose n suitably, the image A(N) is pointy, and thus A(f) has a pointy
neighborhood. m

Definition 4.3.14 Let
d __ z4 . . e; _
X, ={r eS8 |Vie{2,...,d}: 0" (z) =z},

where (e;); are the natural basis of Z%. The natural bijection between X]‘,i
and (P2, is called pl.

Thus, Xg is the d-dimensional full shift restricted to points with period
p € N in all but the first dimension. The usefulness of pointy neighborhoods
comes from the following observation.

Lemma 4.3.15 Let f : 57" 5 §7% be q totally extremally permutive CA
with a pointy meighborhood. Then for all p, the automaton f' = pg(f) :

(Spd—l)z N (Spd—l)z deﬁned by f/ — pg o f o (pg)_l 18 bipermutive.

Proposition 4.3.16 If the CA f : 52¢ 5§27 g totally extremally permu-
tive with quiescent state 0, then Qp(X) = Szd, where X is the d-dimensional
k-sparse subshift.

Proof. We prove here the case d = 2. The general case follows similarly,
but is notationally more complex. We first ensure that the neighborhood
is pointy (the first axis is the horizontal one) and is located at the west
border of the east half-plane, so that on points with a vertical period, a one-
dimensional bipermutive CA with right speed of light 0 is simulated. The
general idea is to successively draw larger and larger patterns at the origin
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as follows: As vertically periodic points are in a sense just one-dimensional
(horizontal) points, we can apply Lemma 4.3.1 to any vertically periodic and
horizontally O-finite point to obtain that any finite set of columns repeats
infinitely many times in the orbit. Now, as in the proof of Theorem 4.3.2,
we carefully shoot a signal in the right cell at the right time, and add a huge
vertical period to conclude the induction step.

Let us make this precise. We may assume without loss of generality that
the lexicographically minimal element in the neighborhood of f is (0,0), and
that the maximal is (mq, mg) with my > 0. We may also assume that f has
a pointy neighborhood by Lemma 4.3.13. Note that applying a shear map
of course changes the k-sparse subshift as well. However, for any shear map
A and any k, there exists ¥/ > k such that the A-image of the k’-sparse
subshift is included in the k-sparse subshift. Thus, if we prove the claim for
arbitrarily large k and CA with pointy neighborhoods, the claim follows for
arbitrarily large k and all CA.

Let n > k, and let P € S™*" be arbitrary. We inductively construct
vertically periodic points z° € X such that the lexicographical prefix of P

of size i occurs in some f!(z*) at the origin, and 'réa,b) =0 for all b € Z for

large enough a € Z. For x!

x% = (0 for all other @I € Z2.
Suppose then that z? has already been constructed, and let p € N be
its vertical period. By Lemma 4.3.15, when restricted to the set X;, f

, we choose x(lo,nm) = Po) for all m € Z, and

simulates a bipermutive one-dimensional CA g : (SP)% — (SP)?# through the
bijection p2. Denote H = {(a,b) | a > 0} C Z*. Since p2(x"); = 0P for all
large enough ¢ € Z and the left radius of g is 0, we can use Lemma 4.3.1 to
conclude that there exist arbitrarily large ¢ > 0 such that 2|y = f!(2%)|g.
Now, there are arbitrarily large ¢ € N such that ff(z%) contains the
lexicographical prefix of P of size i at the origin. Let thus ¢ be larger than
the maximal a € Z with xéa—k,b) # 0 for some b € Z. Let (c,d) be the

lexicographically (i + 1)th coordinate of P. We let y(s)* € X be as z¢, but
with the coordinate (tmj+c, tma—+d) containing s € S. Now, permuting s in
y(s)! permutes ft(y(s)i)(c7d), so we can choose s so that ft(y(s)i)(cjd) = Ple.q);
and denote y" = y(s)".

Since (mj,mg) is the lexicographically maximal vector in the neigh-
borhood of f, (¢,d) is the lexicographically minimal coordinate which can
change in f!(y(s)?), when we permute s. Thus, f!(3%) contains the lexico-
graphical prefix of P of size i + 1 at the origin. We obtain z'*! from 3 by
adding any sufficiently large vertical period. ®

Similarly to how Theorem 4.3.2 could be generalized to Theorem 4.3.6,
we can generalize Proposition 4.3.16 to Proposition 4.3.17. We omit the
proof.
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Proposition 4.3.17 Let p € N be a prime, let S = Z,, let f : 5z¢ y g7¢

be a group homomorphism with at least two neighbors, and let' Y C SZ% e
the k-sparse shift. Then Q¢ ({0, 1}Zd nYy) = S%.

4.3.2 Counting and Describing the CA

In this section, we give mixing SFTs and d-dimensional full shifts an alge-
braic structure with a bipermutive, and more generally totally extremally
permutive cellular automaton. This, of course, amounts to the study of the
centralizer of such an automaton. First, we consider the size of the cen-
tralizer, and find that it is very small in general. As in Section 4.2.4, we
then look at what happens when the totally extremally permutive CA is
also a homomorphism (or more generally, homomorphic+C') on a full shift
with cellwise defined group structure — that is, we again give the subshift
both the structure of a group, and a structure by unary operations. We can
always find such a map in the abelian case, and it turns out that such maps
necessarily ‘capture’ the endomorphism monoid of the group structure, see
Theorem 4.3.25.

We first prove a strong upper bound on the number of commuting cellular
automata of any radius. This result is based on the following lemma, which
relates the centralizer of a given CA f to the f-orbit closures of subshifts.

Definition 4.3.18 Let X be a subshift, f : X — X a cellular automaton
and Y C X a subshift of X. We define the f-orbit closure Y/ of Y to be

the set J;en f1(Y).

Lemma 4.3.19 Let X C SZ° be a subshift, let f: X — X be a CA and let
Y C X with Y/ = X. Then the map ¢ : C(f) — XY defined by ¢(g9) = gly
18 injective.

In other words, the restriction of a cellular automaton in the centralizer
of f to the subshift Y determines it uniquely. Note also that we always have
Qs(Y) C Y/, so that Y/ = X is a weaker assumption than Q;(Y) = X.

Proof. Let g,h € C(f) be such that g|ly = hly, and let x € X be
arbitrary. Let » € N be a common radius for g and h, and let y € Y and
i € N be such that fi(y) @ =T Then, since g,h € C(f), we have

[—r,7] rr]d-

9(@)o = 9(f'(¥))o = ' (9W))o = [ (A(y))o = h(f*(¥))o = h(x)o.
Since x was arbitrary, we have g = h. =

Proposition 4.3.20 Let f : 57 5 82" be q totally extremally permutive
CA with a quiescent state 0 € S. For all n € N, define

Cn(f) ={g€C(f)|[0,n—1] is a neighborhood for g} .
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Then |Cy,(f)] < |S|HUS-D | 155 = de for a primep € N and f is a group
homomorphism, then |Cpn(f)| < |S|F".

Proof. Let X C S%° be the n-sparse shift. Proposition 4.3.16 and
Lemma 4.3.19 together imply that |Cy,(f)| is at most the number of local
maps By ,,_1ja(X) — S. Since we have |Bjg,,_qa(X)| = 1 + nd(|S| — 1),

the number of such maps is |S |1+”d(|5 =1, In the homomorphic case, apply

Proposition 4.3.17 to replace X with ¥ = X N {0, 1}Zd, where we have
Bion-1a(Y)[=1+n" m

Thus, the density of the centralizer of any totally extremally permutive
CA is 0. In other words:

Theorem 4.3.21 Let f: 52% 5 52 pe g totally extremally permutive CA.
Then the endomorphism monoid End(SZd, f) is sparse.

In [MB97], it was proved that if f,g: S% — S% are commuting radius—%
(that is, neighborhood {0, 1}) cellular automata and f is bipermutive, then
there exist functions ¢, : S — S such that gioc(a,b) = fioc(d(a), (b)) (g
is an isotope of f). From this one can compute the weaker upper bound of
% for the density of the centralizer of a bipermutive CA.

Next, we turn to homomorphic+C totally extremally permutive cellular
automata on S’Zd, where S is a finite group. As in the case of color blind CA
(Lemma 4.2.38), there is nothing of interest to say when S is not abelian.

Lemma 4.3.22 Let S be a finite group, and suppose there exists a totally

. . d .
extremally permutive and homomorphic+C' cellular automaton on S%° with
minimal neighborhood of size at least 2. Then, S is abelian.

Proof. If there exists such a homomorphic+C' cellular automaton, then
there must in particular exist a homomorphism f with minimal neighbor-
hood N of size at least 2. It is easy to see that any symbol endomorphism
corresponding to a coordinate that is in a corner of N is surjective, and thus
S is abelian by Lemma 4.1.9. m

Conversely, it is easy to find totally extremally permutive homomorphic
maps in the abelian case.

Lemma 4.3.23 Let S be a finite abelian group. Then there exists a totally
extremally permutive and homomorphic cellular automaton g on SZ% with
minimal neighborhood of size at least 2. Furthermore, we can ensure that
C(g) contains all homomorphic CA, and g maps all unary points to 0%,

Proof. Any nontrivial sum of shifts is totally extremally permutive and
homomorphic. Furthermore, if f is homomorphic, then

Flg(@) = (Yo" (2)) = flo"(x)) = Y o"(f(2)) = g(f(2)).

icl iel iel
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If |I| = | S|, then g maps all unary points to 02, m

In [MB97] it was proved, using algebraic methods, that among CA
with radius 1/2, bipermutive homomorphic+C' CA can only commute with
homomorphic+C CA. We show the small step required to generalize this
result for our definition of centralizer in one dimension.?

Theorem 4.3.24 Let S be a finite group, let f : S% — S% be a bipermutive
and homomorphic+C CA (so that S is abelian), and let g : S% — S%
commute with f. Then g is homomorphic+C.

Proof based on the results of [MB97]. By composing with shifts,
we may assume f has neighborhood [0, my] and g has neighborhood [0, m,].
Then, since g commutes with f, it also commutes with f¥. Let k be large
enough that my - k > m,. Then, the my - k blocking of f* (the automaton
obtained from f* by joining blocks of my - k consecutive cells into single
symbols) is bipermutive and homomorphic+C' with radius 1/2, and the cor-
responding blocking h of g has radius 1/2. Thus, the result of [MB97]
applies, and A is an homomorphic+C' self-map of (S %)%,

From this, we easily obtain that also ¢ must be homomorphic+C for SZ.
Namely, the constant associated with h must be of the form a™/* for some
a € S, since h((0™7%)%) is a blocking of the unary point g(0%). Because
the blocking operation is a group isomorphism between S% and (S™f%)Z,
we obtain that x ~ g(z) — a? is a homomorphic cellular automaton on S4,
so that ¢ is indeed homomorphic+C. =

We can also prove this directly, using Lemma 4.3.1:

Proof using Lemma 4.3.1. First, we can assume that f has a unary
fixed point a by taking powers of f, and we denote g(a?) = b%*. Now, f also
fixes b%. Without loss of generality, assume f has neighborhood [0, m] and
g has neighborhood [0,n]. Let w € $?"*! and e € {a, b}, and let y € S% be
the point with y_,, ,j = w and y; = e for i ¢ [-n,n]. Denote M = (|S]2n+1y!
and apply Lemma 4.3.1, so that

M) = M) jmmn = w; (4.3)

for all j € [—n,n].

Let then w!',w? € S"*! let z € S% be the point with x; = wjl- and
TjpmM = wjz- for all j € [0,n], and a everywhere else. By (4.3) and the fact
f is homomorphic+C' we have

M) =wj +w}—C

20f course, [MB97] studies cellular automata with radius 1/2 precisely because all
cellular automata can be reduced to such CA with a blocking operation, but the authors
do not make the complete proof very explicit.
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for all j € [0,n] and some constant C' € S. Thus we have g(fM(z)); =
Goc(wr +w?—(C,...,C)). On the other hand, we have g(z); # b only when
n+1

j € [-n,n] or j — mM € [—n,n], so using the fact f is homomorphic+C
and (4.3), we see that fM(g(2))5 = goc(w') + gioc(w?) — C. Since f
and g commute, these values are equal, and thus g is homomorphic+C' by
Lemma 4.1.11 (setting ¢ = (C,...,C) and d=C). m

Now, let us reduce the multidimensional case to the one-dimensional
case. For this, note that if A = SLg(Z), then A(f) is totally extremally
permutive, homomorphic or homomorphic+C' if and only if f is.

Theorem 4.3.25 Let S be a finite group, f : 570 5 52 g totally ex-
tremally permutive and homomorphic+C CA (so that S is abelian), and let
g: SZ4 5 827 commute with f- Then g is homomorphic+C.

Proof. We only present a proof for d = 2. We first modify the neighbor-
hoods of f and g. First, we compose with a shift so that the lexicographically
minimal element in the neighborhood of f is (0,0). Then, we ensure that
for the lexicographically maximal element (mi,m2) of the neighborhood, we
have m; > 0 by considering (91 (1)) (f) instead in the case m; = 0. We also
make sure f has a pointy neighborhood by applying Lemma 4.3.13. These
transformations amount to mapping f — o?(A(f)) for some A € SLy(Z)
and @ € Z2. Note that f' = 0% 0 A(f) and ¢ = 67 o A(g) commute for all
¥ € Z2, and f’ is homomorphic+C and totally extremally permutive.

Now, let the neighborhood of ¢’ be contained in [0,p — 1]? (by choosing
v’ appropriately), and consider the vertically periodic subshift X = X;.
The restrictions f'|x and ¢'|x simulate one-dimensional cellular automata
on (SP)% through the bijection pg. By Lemma 4.3.15, the one-dimensional
CA corresponding to f’|x is bipermutive, and it is clearly homomorphic+C'.
Then, by Theorem 4.3.24, ¢’| x is homomorphic+C. Since ¢’ has neighbor-
hood [0, p—1]?, as in our first proof of Theorem 4.3.24, we then see that ¢’ is
homomorphic+C' too. Finally, g is homomorphic+C' since transformations
of SL4(Z) are group isomorphisms. m

For the special case of totally extremally permutive homomorphic CA
on a group of prime order, there is a very nice characterization for the
centralizer restricted to CA with quiescent state 0. This can be seen as a
corollary of the previous results, but we present a very short direct proof
based on Proposition 4.3.17 and Lemma 4.3.19.

Proposition 4.3.26 Let S =Z,, let f: 57" 5 87 be totally extremally
permutive homomorphism. Then g : S%° — S2° with g(0%") = 02" com-
mutes with f if and only if g is homomorphic.
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Proof. Let g have radius r. Then X/ = 5%, where X = {0,1}%4'NY and
Y is the r-sparse shift, by Proposition 4.3.17. As § = Z,, it follows easily
from Lemma 4.1.8 that all homomorphic automata commute (we only stated
it in the one-dimensional case, but the proof applies in the general case as
well), so in particular ho f = f o h for the unique homomorphic automaton
defined by h|x = g|x. Thus, ¢ = h by Lemma 4.3.19. m

Finally, we show how to exactly capture the endomorphism monoid:

Theorem 4.3.27 Let (Szd, +) be a cellwise abelian group shift. Then there
exists a cellular automaton g : SZ 5 §Z% such that

End(S%',+) = End(S%, g).

Proof. Let g be given by Lemma 4.3.23. Then every homomorphic
CA commutes with g, and by Theorem 4.3.25, all cellular automata that
commute with g are homomorphic+C'. Since g maps all unary points to
OZd7 we see as in the proof of Lemma 4.2.25 that any CA commuting with
g must map 0% to Ozd7 and no homomorphic+C' CA with a nontrivial
constant satisfies this. Thus, End(SZd, +) = End(SZd,g). |

As far as I know, no bipermutive CA with strong computational prop-
erties is known, but neither is a reason why there couldn’t exist one. In the
sense of predictability, they have no computational properties: since biper-
mutive CA are transitive, the whole class of bipermutive CA is predictable
— any word v is reachable from any word w in the action of any bipermutive
CA, so the algorithm need only say ‘yes’. By Proposition 4.3.20, a CA in
the centralizer of a bipermutive CA on SZ is determined uniquely by the
images of *°0s0% for s € S, and is thus very small. However, it is hard to
say what this set actually looks like.

Question 4.3.28 Is there a bipermutive CA with an unpredictable central-
izer?

The centralizer of a homomorphic+C' bipermutive CA consists of only
homomorphic+C' CA. Thus, the question of predictability reduces to the
corresponding question for group homomorphisms. On some group shifts
S%4, such as S = I 1Z mi for distinct primes p; and m; = 1 for all i,
all homomorphic CA (and thus also homomorphic+C' CA) are Cartesian
products of bipermutive CA, as an easy corollary of Lemma 4.1.8, and then
the prediction problem is again trivial.

4.4 Cellular Automata on Lattice Subshifts

This section is based on [ST12c].
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Figure 4.6: A run of the lattice homomorphic CA of Example 4.4.1.

We consider the self-maps of full shifts with a cellwise lattice struc-
ture (and other varieties that satisfy what we call the congruence-product
property) whose local rule is surjective. Our main objective is correcting a
mistake in [ST12¢].

Example 4.4.1 We define the diamond lattice S = {0, <>, Q, O}

The diamond represents the Hasse diagram of S, and the dots represent the
location of an element in the diagram. More precisely, S ~ {0,1}2, the direct
product of two copies of the two-element lattice {0,1} where 0 < 1, and

S~ 1), Cpm (0,1), O~ (0,0), € ~ (1,0):

We define a CA with radius 1/2 (neighborhood {0,1}, with the neighbors
thought of as the top left and top right neighbor, and pictures drawn slanted)
on S% by fioc((a,b), (¢,d)) = (a,d). It can be checked that this CA is lattice
homomorphic. Two pictures of its runs, and their cellwise meet and join,
are show in Figure 4.6

Of course, while the picture is arguably pretty nice, this is a rather trivial
CA: it is nothing but a CA on two binary tracks that shifts one track to the
left, and one track to the right. We now show that this is, in a sense, the
best one can do.

Let F be a variety, and S a finite member of 7. We only consider cellwise
defined algebraic structures of SZ in this section.
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Definition 4.4.2 The variety F has the congruence-product property, if
for all finite families (S;)ic1,n) of algebras in F we have that

n

Con(H S;) = H Con(S;) .
i=1

i=1
A proof of the following can be found, for example, in [Gra71].
Lemma 4.4.3 The variety of lattices has the congruence-product property.

We show that if F has the congruence-product property, then the F-
homomorphic cellular automata have very simple limit sets and limit dy-
namics. In particular, by the above lemma, our results hold for lattice-
homomorphic automata.

Lemma 4.4.4 Let F be a variety with the congruence-product property and
S € F finite. Let fioe : STt — 8 be surjective and F-homomorphic.
Denote by w} the canomical projections S* 1 — S. Let [T, Si be a de-
composition of S into directly indecomposable algebras, and denote by ; the
canonical projections S — S;. Then for each i € [1,m] there exist j;, k; and
a surjective F-homomorphism h; : Sj;, — S; such that ;o fioc = hjom;, owfﬂ.

Proof. Denote f; = m; 0 fioc and n = 2r 41, and decompose the domain
S™ = T[j= [13Z; Sk into the directly indecomposable algebras Sj. Now
ker f; is a congruence, and since f;(S™) = S; is directly indecomposable,
the homomorphism theorem states that S™/ker f; must be directly inde-
composable. Since F has the congruence-product property, we have that
ker fi = [[7Zo(~;) € I1j=; [1y2, Con(Sk), and now only one of these ~;
can be nontrivial, or S™/ker f; has a nontrivial decomposition. Thus f; is
of the desired form. =

We obtain an interesting simplicity result for full lattice shifts for cel-
lular automata with a surjective local rule. The proof is essentially that
of Theorem 4 in [ST12c|, but the statement is different — the without loss
of generality claim in the beginning of the proof in [ST12c| is wrong, and
although it seems minor, I do not know how to fix it (nor whether it is
fixable). My apologies to those inflicted.

Theorem 4.4.5 Let F be a variety with the congruence-product property
(for example, the variety of lattices) and S € F finite. Then there exists
p,n € N such that for any F-homomorphic cellular automaton f on S%
such that fioe : St — S is surjective, the limit set of f is f™(S%), which
is conjugate to a product of subshifts [[.c1 SZ-Z and on this limit set, fP is
conjugate to a Cartesian product of shift maps on the tracks Sl-z.
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Proof. Let [, S; be the decomposition of S into directly indecompos-
able algebras. We apply Lemma 4.4.4, and define H = ({S1,...,Sn}, F) as
the directed graph where (.5;, S;) € E if the domain of the surjective map h;
given by Lemma 4.4.4 is S;. Since each S; has exactly one incoming arrow,
every strongly connected component of H is a cycle or a single vertex. Let
S; be in a cycle, say S; — S;;, = -+ — S’ipul — S;. Since S; is finite, the
map f; = h; o hip,_ , © -0 hy is an automorphism of S;, and there exists
pi € N such that f is the identity map of S;. This in turn implies that for
all x € S%, we have

mi(f7(x)) = mi(0" (2))

for some ¢; € Z. That is, fPi simply shifts the S;-components of points by
a constant amount. Let Z be the set of indices i such that S; occurs in a
cycle, and let p = lem;ez(p;). Clearly, fP has a natural reversible restriction
on the full shift S, where Sy = [Licz Si-

Consider then S; for some j € J = [1,m]—Z. By following the incoming
arrows we necessarily find an i(j) € Z and a path of the form

Si(j) — Sz'l — s = Sip/—l — Sz(]) — Sj1 — = quul — Sj s

where jj, € J for all k. Denote by ¢(j) the length ¢’ of the path from S;;
to S, and let n = pmax;c 7 q(j).

Clearly, ify = f"(z) and j € J, then m;(y) is a function of 7;(;) (x), which
in turn is a function of some 7;(y) with ¢ € Z. But this means that the J-
components of y are uniquely determined by its Z-components. This and the
fact that f is reversible on S% imply that the limit set of f is X = f"(5%),
which is conjugate to S%. On X, fP is conjugate to a Cartesian product of
shift maps. Finally, note that n and p can be chosen independently of f. m

Of course, a surjective CA has a surjective local rule. The local rule is
automatically surjective also if f is captive, since unary point are mapped
to themselves.

Question 4.4.6 Is the assumption that fioc is surjective needed? Does a
similar result hold in general on mizing SFTs?

Proposition 4.4.7 Let F be a variety with the congruence-product property
and S € F finite. Then the set of homomorphic endomorphisms of S% with
surjective local rules is sparse, finitely generated and predictable

Proof. Finitely generatedness is easy to show, since if S = [[",S;
is the decomposition of S into directly indecomposable algebras, then by
Lemma 4.4.4, all endomorphisms are generated by symbol endomorphisms
of S and shift maps on the tracks S#. If k is the number of symbol en-
domorphisms, then there are at most k - m” endomorphisms of S% with
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neighborhood [0,n — 1]. Since this is only singly exponential, the endomor-
phism monoid is sparse.

For the predictability, suppose we are given u, v (which we may assume to
be of the same length) and fio. : S?"*! — S. First, by the previous theorem,
there exists n such that f"(5%) is the limit set of f for all homomorphic CA
f. Furthermore, we may decompose the alphabet as S = S7 x Ss, so that
SZ = S% x S%, and f? is a Cartesian product of shift maps on the S;-track,
and on f"(S%), the component Sy is computed by a block map g : Slz — 522
(with some radius r); letting m and 72 be the corresponding projections,
we have © € f*(S%) == g(m(z)) = ma(z). Clearly, there also exists a
CA f: 5% = SZ such that m(f(x)) = f(mi(x)) for all z € SZ (that is, the
Si-component is independent of the Ss-component in the action of f).

Now, let V' be the finite set of words v' € S|1U|+2T with g(v) = ma(v)
and vfr7|v|+r—1} = m1(v), and let U be the set of words v’ € S|1u|+2r with

u’[r ulr—1] = m1(u). We then have f”*jp(x)[mw_l} = v for some j € N and

(0 ju|—1] = w if and only if f"+jp(a:)[07|vl|_1} =’ for some j € N, v/ € V and
T(o,ju|+2r—1) € U. The latter problem is decidable since Cartesian products of
shifts are obviously decidable, and the result then follows from Lemma 1.5.5.
]

In fact, we do not know whether there are essentially different varieties
with the congruence-product property than lattices, but we state our re-
sults for this class instead of the variety of lattices, since the result then
encompasses all varieties in the ‘lattice family’ (as long as one checks the
congruence-product property).
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