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Abstract

We study the Monadic Second Order (MSO) Hierarchy over colourings of the discrete plane, and draw links between

classes of formula and classes of subshifts. We give a characterization of existential MSO in terms of projections of

tilings, and of universal sentences in terms of combinations of “pattern counting” subshifts. Conversely, we character-

ise logic fragments corresponding to various classes of subshifts (subshifts of finite type, sofic subshifts, all subshifts).

Finally, we show by a separation result how the situation here is different from the case of tiling pictures studied earlier

by Giammarresi et al.

Keywords: Symbolic Dynamics, Model Theory, Tilings

1. Introduction

There is a close connection between words and monadic second-order (MSO) logic. Büchi and Elgot proved for

finite words that MSO-formulas correspond exactly to regular languages. This relationship was developed for other

classes of labeled graphs; trees or infinite words enjoy a similar connection. See [1, 2] for a survey of existing results.

Colorings of the entire plane, i.e tilings, represent a natural generalization of biinfinite words to higher dimensions, and

as such enjoy similar properties. We plan to study in this paper tilings for the point of view of monadic second-order

logic.

From a computer science point of view, tilings and more generally subshifts are the underlying objects of several

computing models including cellular automata [3, 4, 5], Wang tiles [6, 7] and self-assembly tilings [8, 9]. Following

the recent trend to better understand such ’natural computing models’, one of the motivations of the present paper is

to extend towards these models the fruitful links established between languages of finite words and MSO logic.

Tilings and logic have a shared history. The introduction of tilings can be traced back to Hao Wang [10], who

introduced his celebrated tiles to study the (un)decidability of the ∀∃∀ fragment of first order logic. The undecidability

of the domino problem by his PhD Student Berger [11] lead then to the undecidability of this fragment [12]. Seese

[13, 14] used the domino problem to prove that graphs with a decidable MSO theory have a bounded tree width.

Makowsky[15, 16] used the construction by Robinson [17] to give the first example of a finitely axiomatizable theory

that is super-stable. More recently, Oger [18] gave generalizations of classical results on tilings to locally finite

relational structures. See the survey [19] for more details.

Previously, a finite variant of tilings, called tiling pictures, was studied [20, 21]. Tiling pictures correspond to

colorings of a finite region of the plane, this region being bordered by special ‘#’ symbols. It is proven for this

particular model that language recognized by EMSO-formulas correspond exactly to so-called finite tiling systems,

i.e. projections of finite tilings.

The equivalent of finite tiling systems for infinite pictures are so-called sofic subshifts [22]. A sofic subshift repres-

ents intuitively local properties and ensures that every point of the plane behaves in the same way. As a consequence,
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there is no general way to enforce that some specific color, say A, appears at least once. Hence, some simple first-order

existential formulas have no equivalent as sofic subshift (and even subshift). This is where the border of # for finite

pictures play an important role: Without such a border, results on finite pictures would also stumble on this issue. See

[23] for similar results on finite pictures without borders.

We deal primarily in this article with subshifts. See [24] for other acceptance conditions (what we called subshifts

of finite type correspond to A-acceptance in this paper).

Finally, note that all decision problems in our context are non-trivial : To decide if a universal first-order formula is

satisfiable (the domino problem, presented earlier) is not recursive. Worse, it is Σ1
1
-hard to decide if a tiling of the plane

exists where some given color appears infinitely often [25, 24]. As a consequence, the satisfiability of MSO-formulas

is at least Σ1
1
-hard.

In this paper, we will prove how various classes of formula correspond to well known classes of subshifts. Some

of the results of this paper were already presented in [26].

2. Symbolic Spaces and Logic

2.1. Configurations

Consider the discrete lattice Z2. For any finite set Q, a Q-configuration is a function from Z
2 to Q. Q may be seen

as a set of colors or states. An element of Z2 will be called a cell. A configuration will usually be denoted C, M or N.

Fig. 1 shows an example of two different configurations of Z2 over a set Q of 5 colors. As a configuration is

infinite, only a finite fragment of the configurations is represented in the figure. We choose not to represent which cell

of the picture is the origin (0, 0). This will indeed be of no importance as we use only translation invariant properties.

For any z ∈ Z
2 we denote by σz the shift map of vector z, i.e. the function from Q-configurations to Q-

configurations such that for all C ∈ QZ
2

:

∀z′ ∈ Z2, σz(C)(z′) = C(z′ − z).

M N

Figure 1: Two configurations

A pattern is a partial configuration. A pattern P : X → Q where X ⊆ Z
2 occurs in C ∈ QZ

2

at position z0 if

∀z ∈ X, C(z0 + z) = P(z).

We say that P occurs in C if it occurs at some position in C. As an example the pattern P of Fig 2 occurs in the

configuration M but not in N (or more accurately not on the finite fragment of N depicted in the figure). A finite

pattern is a partial configuration of finite domain. All patterns in the following will be finite. The languageL(C) of a

configuration C is the set of finite patterns that occur in C. We naturally extend this notion to sets of configurations.

A subshift is a natural concept that captures both the notion of uniformity and locality: the only description

“available” from a configuration C is the finite patterns it contains, that is L(C). Given a set F of patterns, let XF be

the set of all configurations where no patterns of F occurs.

XF = {C|L(C) ∩ F = ∅}
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Figure 2: A pattern P. P appears in M but presumably not in N

Patterns:

B C D E

A

Figure 3: A (finite) set of forbidden patterns F and the tilings it generates

F is usually called the set of forbidden patterns or the forbidden language. A set of the form XF is called a subshift.

A subshift can be equivalentely defined by topology considerations. Endow the set of configurations QZ
2

with

the product topology: A sequence (Cn)n∈N of configurations converges to a configuration C if the sequence ultimately

agree with C on every z ∈ Z2. Then a subshift is a closed subset of QZ
2

also closed by shift maps.

Example 1. Consider the three forbidden patterns of figure 3 and denote by D the dark color and L the light color.

The first one says that we cannot find a D point at the left of a L point. This can be interpreted as follows: every time

we find a D point, then all the points at the right of it are also D. With the second forbidden pattern, we deduce that

every time we find a D point, then the entire quarter of plane on the above right of it is also filled with D points. The

third pattern ensures us that every configuration contains at most one quarter of plane of color D : if it contains two

such quarters of plane, then there must be a bigger quarter of plane that contains both.

Hence a typical configuration looks like A. Other possible configurations are B,C,D, E. They correspond to

extremal situations where the corner of the quarter of plane is situated respectively at (0,−∞), (−∞, 0), (−∞,−∞) et

(+∞,+∞)

Example 2. Consider the set of colors {D,W} and F to be the set of patterns that contains two D points or more.

Then XF contains configurations with at most one D point. Up to shift, XF contains then two configurations: the

all W-one, and one where only one point is D and all others are W.
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A subshift of finite type (or tiling) is a subshift that can be defined via a finite set F of forbidden patterns: it is

the set of configurations C such that no pattern in F occurs in C. If all patterns of F fit in a n × n square, this means

that we only have to see a configuration through a window of size n × n to know if it is a tiling, hence the locality.

Example 1 is a subshift of finite type. It can be proven that Example 2 is not.

Given two state sets Q1 and Q2, a projection is a map π : Q1 → Q2. We naturally extend it to π : QZ
2

1
→ QZ

2

2

by π(C)(z) = π(C(z)). A sofic subshift of state set Q2 is the image by some projection π of some subshift of finite

type of state set Q1. It is also a subshift (clearly closed by shift maps, and topologically closed because projections

are continuous maps on a compact space). A sofic subshift is a natural object in tiling theory, although quite never

mentioned explicitly. It represents the concept of decoration: some of the tiles we assemble to obtain the tilings may

be decorated, but we forgot the decoration when we observe the tiling.

Example 3. Consider the following variant of Example 1: tilings are exactly the same except that the corner of the

quarter of plane in A is of a different color W. It is easy to see that this variant defines a subshift of finite type X (with

a few more forbidden patterns).

Now consider the following map:

π :

L 7→ W

D 7→ W

W 7→ D

Then B,C,D, E will become under π of color W, while A will become a configuration with exactly one D, all other

points being W.

As a consequence, π(X) is exactly Example 2. Example 2 is thus a sofic subshift.

2.2. Structures

A configuration will be seen in this article as an infinite structure. The signature τ contains four unary maps North,

South, East, West and a predicate Pc for each color c ∈ Q.

A configuration M will be seen as a structure M in the following way:

• The elements of M are the points of Z2.

• North is interpreted by North
M((x, y)) = (x, y + 1), East is interpreted by East

M((x, y)) = (x + 1, y). South
M

and West
M are interpreted similarly

• PM
c ((x, y)) is true if and only if the point at coordinate (x, y) is of color c, that is if M(x, y) = c.

As an example, the configuration M of Fig. 1 has three consecutive cells with the color A (second row from the

top, colors are denoted A, B, C, D, E below). That is, the following formula is true:

M |= ∃z, PA(z) ∧ PA(East(z)) ∧ PA(East(East(z)))

As another example, the following formula states that the configuration has a vertical period of 2 (the color in the

cell (x, y) is the same as the color in the cell (x, y+2)). The formula is false in the structure M and true in the structure

N (if the reader chose to color the cells of N not shown in the picture correctly):

∀z,







































PA(z) =⇒ PA(North(North(z)))

PB(z) =⇒ PB(North(North(z)))

PC(z) =⇒ PC(North(North(z)))

PD(z) =⇒ PD(North(North(z)))

PE(z) =⇒ PE(North(North(z)))

Remark. The choice of unary function (north, south, east, west) instead of binary relations in the signature above

is important because it allows a simple characterization of important classes of subshifts (see theorem 6 below). This

particular theorem would fail with binary relations in the signature instead of unary functions. Other theorems would

be still valid.
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2.3. Monadic Second-Order Logic

This paper studies connection between subshifts (seen as structures as explained above) and monadic second order

sentences. First order variables (x, y, z, ...) are interpreted as points of Z2 and (monadic) second order variables (X,

Y, Z, ...) as subsets of Z2.

Monadic second order formulas (φ, ψ, ...) are defined as follows:

• a term is either a first-order variable or a function (South, North, East, West) applied to a term ;

• atomic formulas are of the form t1 = t2 or X(t1) where t1 and t2 are terms and X is either a second order variable

or a color predicate ;

• formulas are build up from atomic formulas by means of boolean connectives and quantifiers ∃ and ∀ (which

can be applied either to first-order variables or second order variables).

A formula is closed if no variable occurs free in it. A formula is FO if no second-order quantifier occurs in it. A

formula is EMSO if it is of the form

∃X1, . . . ,∃Xn, φ(X)

where φ is FO. Given a formula φ(X1, . . . , Xn) with no free first-order variable and having only X1, . . . , Xn as free

second-order variables, a configuration M together with subsets E1, . . . , En is a model of φ(X1, . . . , Xn), denoted

(M, E1, . . . , En) |= φ(X1, . . . , Xn),

if φ is satisfied (in the usual sense) when M is interpreted as M (see previous section) and Ei interprets Xi.

2.4. Definability

This paper studies the following problems: Given a formula φ of some logic, what can be said of the configurations

that satisfy φ? Conversely, given a subshift, what kind of formula can characterise it?

Definition 1. A set S of Q-configurations is defined by φ if

S =
{

M ∈ QZ
2
∣

∣

∣

∣
M |= φ

}

Two formulas φ and φ′ are equivalent iff they define the same set of configurations.

A set S is C-definable if it is defined by a formula φ ∈ C.

It is easy to see that Example 1 is defined by the formula

φ :



















































∀x,¬ (PD(x) ∧ PL(East(x)))

∀x,¬ (PD(x) ∧ PL(North(x)))

∀x,¬ (PL(x) ∧ PD(East(x)) ∧ PL(North(x)))

or equivalently by the formula

φ′ : ∀x, PD(x) ⇐⇒ (PD(East(x)) ∧ PD(North(x)))

We will see some variants of formula φ′ appear in a few theorems below.

Example 2 is defined by the formula

ψ : ∀x, y, (PD(x) ∧ PD(y)) =⇒ x = y

Note that a definable set is always closed by shift (a shift between 2 configurations induces an isomorphism between

corresponding structures). It is not always closed: The set of {A,E}-configurations defined by the formula φ : ∃z, PA(z)

contains all configurations except the all-white one, hence is not closed.
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When we are dealing with MSO formulas, the following remark is useful: second-order quantifiers may be rep-

resented as projection operations on sets of configurations. We formalize now this notion.

If π : Q1 7→ Q2 is a projection and S is a set of Q1-configurations, we define the two following operators:

E(π)(S ) =
{

M ∈ (Q2)Z
2
∣

∣

∣

∣

∃N ∈ (Q1)Z
2

, π(N) = M ∧ N ∈ S
}

A(π)(S ) =
{

M ∈ (Q2)Z
2
∣

∣

∣

∣
∀N ∈ (Q1)Z

2

, π(N) = M =⇒ N ∈ S
}

Note that A is a dual of E, that is A(π)(S ) = cE(π)(cS ) where c represents complementation.

Proposition 1.

• A set S of Q-configurations is EMSO-definable if and only if there exists a set S ′ of Q′ configurations and a

map π : Q′ 7→ Q such that S = E(π)(S ′) and S ′ is FO-definable.

• The class of MSO-definable sets is the closure of the class of FO-definable sets by the operators E and A.

Proof (Sketch). Second item is a straightforward reformulation of the prenex normal form of MSO using operators

E and A. We prove here only the first item.

• Let φ = ∃X, ψ be a EMSO formula that defines a set S of Q-configurations. Let Q′ = Q × {0, 1} and π be the

canonical projection from Q′ to Q.

Consider the formula ψ′ obtained from ψ by replacing X(t) by ∨c∈QP(c,1)(t) and Pc(t) by P(c,0)(t) ∨ P(c,1)(t).

Let S ′ be a set of Q′ configurations defined by ψ′. Then is it clear that S = E(π)(S ′). The generalization to

more than one existential quantifier is straightforward.

• Let S = E(π)(S ′) be a set of Q configurations, and S ′ FO-definable by the formula φ. Denote by c1 . . . cn the

elements of Q′. Consider the formula φ′ obtained from φ where each Pci
is replaced by Xi. Let

ψ = ∃X1, . . . ,∃Xn,































∀z,∨iXi(z)

∀z,∧i, j(¬Xi(z) ∨ ¬X j(z))

∀z,∧i

(

Xiz =⇒ Pπ(ci)(z)
)

φ′

Then ψ defines S . Note that the formula ψ constructed above is of the form ∃X1, . . . ,∃Xn(∀z, ψ′(z)) ∧ φ′. This

will be important later. �

Second-order quantifications will then be regarded in this paper either as projections operators or sets quantifiers.

3. Hanf Locality Lemma and EMSO

The first-order logic has a property that makes it suitable to deal with tilings and configurations: it is local. This is

illustrated by Hanf’s lemma [27, 28, 29]. A square pattern of radius n is a pattern of domain [−n, n] × [n, n].

Definition 2. Two Q-configurations M and N are (n, k)-equivalent if for each Q-square pattern P of radius n:

• If P appears in M at most k times, then P appears the exact same number of times in M and in N

• If P appears in M more than k times, then P appears in N more than k times

This notion is indeed an equivalence relation. Given n and k, it is clear that there is only finitely many equivalence

classes for this relation.

Contrary to definition 2 above, Hanf’s original formalism doesn’t use square shapes (balls for the ‖ · ‖∞ norm) but

lozenges (balls for the ‖ · ‖1 norm). It makes essentially no difference and the Hanf’s local lemma can be reformulated

in our context as follows (proofs using formalism of definition 2 appear in [21]).
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Theorem 2. For every FO formula φ, there exists (n, k) such that

if M and N are (n, k) equivalent, then M |= φ ⇐⇒ N |= φ

Corollary 3. Every FO-definable set is a (finite) union of some (n, k)-equivalence classes.

This is theorem 3.3 in [21], stated for finite configurations. Lemma 3.5 in the same paper gives a proof of Hanf’s

Local Lemma in our context.

Given (P, k) we consider the set S =k(P) of all configurations such that the pattern P occurs exactly k times (k may

be taken equal to 0). The set S ≥k(P) is the set of all configurations such that the pattern P occurs k times or more.

We may rephrase the preceding corollary as:

Corollary 4. Every FO-definable set is a positive combination (i.e. unions and intersections) of some S =k(P) and

some S ≥k(P)

Theorem 5. Every EMSO-definable set can be defined by a formula φ of the form:

∃X1, . . . ,∃Xn,
(

∀z1, φ1(z1, X1, . . . , Xn)
)

∧ (∃z1, . . . ,∃zp, φ2(z1 . . . zp, X1, . . . , Xn)
)

,

where φ1 and φ2 are quantifier-free formulas.

See [1, Corollary 4.1] or [30, Corollary 4.2] for a similar result. This result is an easy consequence of [31, Theorem

3.2] (see also the corrigendum). We include here a full proof.

Proof. Let C be the set of such formulas. We proceed in three steps:

• Every EMSO-definable set is the projection of a positive combination of some S =k(P) and S ≥k(P) (using prop.

1 and the preceding corollary)

• Every S =(P, k) (resp. S ≥(P, k)) is C-definable

• C-definable sets are closed by (finite) union, intersection and projections.

C-definable sets are closed by projection using the equivalence of prop. 1 in the two directions, the note at the end of

the proof and some easy formula equivalences. The same goes for intersection.

Now we prove that C-definable sets are closed by union. The difficulty is to ensure that we use only one universal

quantifier. Let φ and φ′ be two C-formulas defining sets S 1 and S 2. We can suppose that φ and φ′ use the same

numbers of second-order quantifiers and of first-order existential quantifiers.

Then the formula

∃X,∃X1, . . . ,∃Xn,∀z1,































X(z1) ⇐⇒ X(North(z1))

X(z1) ⇐⇒ X(East(z1))

X(z1) =⇒ φ1(z1, X1 . . .Xn)

¬X(z1) =⇒ φ′
1
(z1, X1 . . .Xn)

∧ ∃z1, . . . ,∃zp

∨ X(z1) ∧ φ2(z1 . . . zp, X1 . . . Xn)

¬X(z1) ∧ φ′
2
(z1 . . . zp, X1 . . . Xn)

defines S 1 ∪ S 2 (the disjunction is obtained through variable X which is forced to represent either the empty set or

the whole plane Z2).

It is now sufficient to prove that a S =k(P) set (resp. a S ≥k(P) set) is definable by a C-formula. Let φP(z) be the

quantifier-free formula such that φP(z) is true if and only if P appears at position z.
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Then S =k(P) is definable by

∃X1 . . .∃Xk∃A1, . . . ,∃Ak,∀x































∧iAi(x) ⇐⇒ [Ai(North(x)) ∧ Ai(East(x))]

∧iXi(x) ⇐⇒ [Ai(x) ∧ ¬Ai(South(x)) ∧ ¬Ai(West(x))]

∧i, jXi(x) =⇒ ¬X j(x)

(∨iXi(x)) ⇐⇒ φP(x)

∧ ∃z1, . . . ,∃zk, X1(z1) ∧ · · · ∧ Xk(zk)

The formula ensures indeed that Ai represents a quarter of the plane, Xi being a singleton representing the corner of

that plane. If k = 0 this becomes ∀x,¬φP(x). To obtain a formula for S ≥k(P), change the last ⇐⇒ to a =⇒ in the

formula. �

4. Characterization of Subshifts of Finite Type and Sofic Subshifts

4.1. Subshifts of Finite Type

We start by a characterization of subshifts of finite type (SFTs, i.e tilings). The problem with SFTs is that they

are closed neither by projection nor by union: the ’even shift’ is the projection of a SFT but is not itself a SFT (see

[32]) and if F1 = {DE} and F2 = {ED} then the union XF1
∪ XF2

is not a SFT. As a consequence, the class of formulas

corresponding to SFTs is not very interesting:

Theorem 6. A set of configurations is a SFT if and only if it is defined by a formula of the form

∀z, ψ(z)

where ψ is quantifier-free.

Note that there is only one quantifier in this formula. Formulas with more than one universal quantifier do not always

correspond to SFT: This is due to SFTs not being closed by union.

Proof. Let P1 . . . Pn be patterns. To each Pi we associate the quantifier-free formula φPi
(z) which is true if and only

if Pi appears at the position z. Then the subshifts that forbids patterns P1 . . .Pn is defined by the formula:

∀z,¬φP1(z) ∧ · · · ∧ ¬φPn(z)

Conversely, let ψ be a quantifier-free formula. Each term ti in ψ is of the form fi(z) where fi is some combination

of the functions North,South,East and West, each fi thus representing somehow some vector zi ( fi(z) = z + zi). Let

Z be the collection of all vectors zi that appear in the formula ψ. Now the fact that ψ is true at the position z only

depends on the colors of the configurations in points (z + z1), . . . , (z + zn), i.e. on the pattern of domain Z that occurs

at position z. Let P be the set of patterns of domain Z that makes ψ false. Then the set S defined by ψ is the set of

configurations where no patterns in P occurs, hence a SFT. �

4.2. Universal sentences

Due to the way subshifts are defined, universal quantifiers play an important role. We now ask the following

question: what are the sets defined by universal formulas? First the following lemma shows that we can restrict to

first-order when considering universal formulas.

Lemma 7. Any universal MSO formula is equivalent to a first-order universal formula.

Proof. A universal formula is equivalent (through permutation of universal quantifiers) to a formula of the form

∀x1, . . . , xp,∀X1, . . . , Xn, Φ(X1, . . . , Xn, x1, . . . , xp)

where Φ is quantifier-free. Consider the formula

ψ(X1, . . . , Xn−1, x1, . . . , xp) ≡ ∀Xn,Φ(X1, . . . , Xn, x1, . . . , xp)

8



Let {t1, . . . , tk} be the set of terms t such that Xn(t) occurs inΦ. The idea is that the truth value ofΦ(X1, . . . , Xn, x1, . . . , xp)

depends only on the value of Xn at positions represented by the (ti). Depending on interpretations of the variables

(xi), interpretations of the terms (ti) may be equal or not. We say an assignment ρ : {1, . . . , k} → {0, 1} is sound if

ti = t j =⇒ ρ(i) = ρ( j). Denote by φρ(x1, . . . , xp) the quantifier-free formula expressing this condition:

φρ(x1, . . . , xp) ≡
∧

{(i, j):ρ(i),ρ( j)}

t j , t j.

Let ψρ denote the formula Φ
[

Xn(ti) ← ρ(i)
]

obtained from Φ be replacing each occurrence of Xn(ti) by the truth

value ρ(i) and this for each i ∈ {1, . . . , k}. For any fixed x1, . . . , xp, the truth value of ∀XnΦ(X1, . . . , Xn, x1, . . . , xp) is the

same as the truth value of the conjunction of formulasψρ for all sound ρ. Hence, we get that ψ(X1, . . . , Xn−1, x1, . . . , xp)

is equivalent to the following quantifier-free formula:

∧

ρ:{1,...,k}→{0,1}

φρ =⇒ ψρ.

We can eliminate this way second order universal quantifiers one by one and the lemma follows. �

For the rest of this section we focus on first-order universal formulas. The real difficulty is to treat the equality

predicate (=). Without the equality (more precisely if all predicates and functions are only unary) any first-order

universal formula is equivalent to a conjonction of formulas with only one quantifier and theorem 6 applies. The

equality predicate intertwines the variables and makes thing a bit harder to prove. The reader might for example try

to understand what the following formula exactly means:

∀x, y, (PA(x) ∧ PC(East(y))) =⇒ x = y

To understand it, we will prove an analog of Hanf’s Lemma for universal sentences.

Definition 3. Let (n, k) be integers, and M,N two Q-configurations. We say that M ≥n,k N if for each Q-square

pattern P of radius less than n:

• If P appears in M exactly p times and p ≤ k, then P appears at most p times in N

Note that M and N are (n, k) equivalent if and only if M ≥n,k N and N ≥n,k M.

Theorem 8. For every universal formula φ there exists (n, k) such that if M ≥n,k N, then M |= φ =⇒ N |= φ

Compare with definition 2 and theorem 2. Note that Gaifman’s Theorem (a more refined version of Hanf’s lemma)

was generalized in [33] to existential sentences. We may use this result to obtain ours. We give below a complete

direct proof.

Proof. We will translate the usual proof of Hanf’s Local Lemma into our special case. We will try as much as possible

to use the same notations as [28, sec. 2.4].

We first change the vocabulary and consider that East,West,North,South are binary predicates rather than func-

tions. Note that every universal formula will remain a universal formulas, albeit with more quantifiers.

Let introduce some notations. Let S (r, a) be the set of all points at distance at most r of a. That is S (r, a) =

{x : |x − a| ≤ r} where | · | is the Manhattan distance. Note that S (r, a) contains er = 2r2 + 2r + 1 points. Let

S (r, a1 . . .ap) = ∪iS (r, ai).

Let M and N be two Q-configurations. We say that a1 . . .ap ∈ (Z2)p and b1 . . . bp ∈ (Z2)p are k-isomorphic if

there exists a bijective map f from S (3k, a1 . . . ap) to S (3k, b1 . . .bp) that preserves the relations, that is

• x East y ⇐⇒ f (x) East f (y)

• Pc(x) ⇐⇒ Pc( f (x))

• f (ai) = bi.
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It is then clear that if a1 . . . ap and b1 . . . bp are 0-isomorphic, then we have M |= ψ(a1 . . . ap) ⇐⇒ N |=

ψ(b1 . . . bp) whenever ψ is quantifier-free.

Now take a formula φ = ∀x1 . . . xnψ(x1 . . . xn) where ψ is quantifier-free.

Let M and N such that M ≥3n,ne3n+1 N.

We now prove by induction that

if a1 . . . ap and b1 . . .bp are (n − p)-isomorphic, then for all bp+1, there exists ap+1 such that a1 . . . ap+1 and b1 . . . bp+1

are (n − p − 1)-isomorphic.

• Case p = 0. Let b1 ∈ Z
2. Consider the pattern of radius 3n centered around b1 in N. This pattern appears in N,

hence must appear in M at least one time. Take a1 to be the center of this pattern.

• Case p 7→ p + 1. Let a1 . . .ap and b1 . . . bp be n − p isomorphic. Let bp+1 ∈ Z
2.

– Case 1: |bp+1 − bi| ≤ 2 × 3n−p−1 for some bi.

In this case S (3n−p−1, bp+1) ⊆ S (3n−p, bi). Hence by taking ap+1 = f −1(bp+1) where f is the bijective map

involved in the n − p isomorphism, it is clear that a1 . . . ap+1 and b1 . . . bp+1 are n − p − 1 isomorphic.

– Case 2: ∀i, |bp+1 − bi| > 2 × 3n−p−1. In this case for every i, S (3n−p−1, bp+1) ∩ B(3n−p−1, bi) = ∅.

Consider the pattern P of radius 3n−p−1 centered around bp+1.

This pattern appears α times inside S (2 × 3n−p−1, b1 . . . bp) where α ≤ pe2×3n−p−1 . P appears at least

α + 1 times in N and α + 1 ≤ ne3n + 1 hence must appears at least α + 1 times in M. As it appears the

same amount of time in S (2×3n−p−1, b1 . . . bp) and S (2×3n−p−1, a1 . . . ap) (by n − p isomorphism), it must

appear somewhere else, say centered in ap+1. This ap+1 is not inside S (3n−p−1, a1 . . . ap) because otherwise

it would be the center of an occurrence of pattern P inside S (2 × 3n−p−1, a1 . . . ap). As a consequence,

a1 . . . ap+1 and b1 . . . bp+1 are n − p − 1 isomorphic.

Now suppose that M |= φ. Take b1 . . . bn ∈ Z
2. There exists a1 . . . an such that a1 . . . an and b1 . . . bn are 0-

isomorphic. As M |= φ the quantifier-free formula ψ(a1 . . .an) is true in M. As a consequence ψ(b1 . . . bn) is true in

N. As this is true for all b1 . . . bn we obtain N |= φ. �

Given (P, k) we consider the set S ≤k(P) of all configurations such that the pattern P occurs at most k times (k may

be taken equal to 0)

Corollary 9. A set is definable by a universal formula if and only if it is a positive combination (i.e. unions and

intersections) of some S ≤k(P).

This corollary should be compared to corollary 4.

Proof. Let C be the class of all universal formulas. It is clear that the set of C-defined formulas is closed under

intersection and unions.

Now S ≤k(P) is defined by

∀x1 . . . xk+1, φP(x1) ∧ · · · ∧ φP(xk+1) =⇒
∨

i, j

xi = x j

For k = 0, this becomes ∀x,¬φP(x). Hence, every positive combination of some S ≤k(P) is C-definable.

Conversely, let φ be a universal formula and S the set it defines. Let (n, k) be as in the theorem.

For each configuration M ∈ S and P a pattern of radius less than or equal to n, denote φM(P) the number of times

P appears in M with the convention than φM(P) = ∞ if P appears more than k times in M.

Consider the set

S M =
⋂

P|φM (P),∞,

radius(P)≤n

S ≤φM(P)(P)

From the hypothesis on (n, k), we have S M ⊆ S . It is then easy to see that S = ∪MS M where the union is actually

finite (two configurations that are (n, k)-equivalent give the same S M). �
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4.3. Sofic subshifts

Recall that sofic subshifts are projections of SFTs. Using the previous corollary, we are now able to give a

characterisation of sofic subshifts:

Theorem 10. A set S is a sofic subshift if and only if it is definable by a formula of the form

∃X1,∃X2 . . . ,∃Xn,∀z1, . . . ,∀zp, ψ(X1, . . . , Xn, z1 . . . zp)

where ψ is quantifier-free. Moreover, any such formula is equivalent to a formula of the same form but with a single

universal quantifier (p = 1).

See [26] for a different proof that eliminates equality predicates one by one.

Proof. Let C be the clas of all formulas of the form

∃X1, . . . ,∃Xn,∀zψ(X1, . . . , Xn, z)

where ψ is quantifier-free. With the help of theorem 6 and proposition 1, is is quite clear that C-defined sets are exactly

sofic subshifts.

LetD be the class of all formulas of the form

∃X1, . . . ,∃Xn,∀z1 . . . zpψ(X1, . . . , Xn, z1 . . . zp)

where ψ is quantifier-free. The previous remark states that sofic subshifts areD-defined.

Now we prove that D-defined sets are sofic subshifts. Using (the proof of) proposition 1, and the fact that sofic

subshifts are closed under projection, it is sufficient to prove that universal formulas define sofic subshifts. Using

corollary 9 and the fact that sofic subshifts are closed under union and projections, it is sufficient to prove that every

S ≤k(P) is sofic.

Now S ≤k(P) is defined by

φ : ∃S 1 . . . S k

{

Ψi

∀x,∨iS i(x) ⇐⇒ φP(x)

where Ψi expresses that S i has at most one element and is defined as follows:

Ψi

de f
= ∃A,∀x

{

A(x) ⇐⇒ A(North(x)) ∧ A(East(x))

S i(x) ⇐⇒ A(x) ∧ ¬A(South(x)) ∧ ¬A(West(x))

Now with some light rewriting we can transform φ into a formula of the class C, which proves that S ≤k(P) is

C-definable, hence sofic. �

5. (E)MSO-definable subshifts

5.1. Separation result

Theorems 5 and 10 above suggest that EMSO-definable subshifts are not necessarily sofic. We will show in this

section that the set of EMSO-definable subshifts is indeed strictly larger than the set of sofic subshifts. The proof is

based on the analysis of the computational complexity of forbidden languages (the complement of the set of patterns

occuring in the considered subshift). It is well-known that any sofic subshift X has a recursively enumerable forbidden

language: first, with a straightforward backtracking algorithm, we can recursively enumerate all patterns that do not

occur in a given SFT Y; second, if X is the projection of Y, we can recursively enumerate all patterns P such that all

patterns Q that projects onto P are forbidden in Y. The following theorem shows that the forbidden language of an

MSO-definable subshift can be arbitrarily high in the arithmetical hierarchy.

This is not surprising since arbitrary Turing computation can be defined via first order formulas (using tilesets)

and second order quantifiers can be used to simulate quantification of the arithmetical hierarchy. However, some care

must be taken to ensure that the set of configurations obtained is a subshift.
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Theorem 11. Let E be an arithmetical set. Then there is an MSO-definable subshift with forbidden language F such

that E reduces to F (for many-one reduction).

Proof (sketch). Suppose that the complement of E is defined as the set of integers m such that:

∃x1,∀x2, . . . ,∃/∀xn,R(m, x1, . . . , xn)

where R is a recursive relation. We first build a formula φ defining the set of configurations representing a successful

computation of R on some input m, x1, . . . , xn. Consider 3 colors cl, c and cr and additional second order variables

X1, . . . , Xn and S 1, . . . , S n. The input (m, x1, . . . , xn) to the computation is encoded in unary on an horizontal segment

using colors cl and cr and variables S i as separators, precisely: first an occurrence of cl then m occurrences of c, then

an occurrence of cr and, for each successive 1 ≤ i ≤ n, xi positions in Xi before a position of S i. Let φ1 be the FO

formula expressing the following:

1. there is exactly 1 occurrence of cl and the same for cr and all S i are singletons;

2. starting from an occurrence cl and going east until reaching S n, the only possible successions of states are those

forming a valid input as explained above.

Now, the computation of R on any input encoded as above can be simulated via tiling constraints in the usual way.

Consider sufficiently many new second order variables Y1, . . . , Yp to handle the computation and let φ2 be the FO

formula expressing that:

1. a valid computation starts at the north of an occurrence of cl;

2. there is exactly one occurrence of the halting state (represented by some Yi) in the whole configuration.

We define φ by:

∃X1,∀X2, . . . ,∃/∀Xn,∃S 1, . . . ,∃S n,∃Y1, . . . ,∃Yp, φ1 ∧ φ2.

Finally let ψ be the following FO formula: (∀z,¬Pcl
) ∨ (∀z,¬Pcr

). Let X be the set defined by φ∨ψ. By construction,

a finite (unidimensional) pattern of the form clc
mcr appears in some configuration of X if and only if m < E. Therefore

E is many-one reducible to the forbidden language of X.

To conclude the proof it is sufficient to check that X is closed. To see this, consider a sequence (Cn)n of configur-

ations of X converging to some configuration C. C has at most one occurrence of cl and one occurrence of cr. If one

of these two states does not occur in C then C ∈ X since ψ is verified. If, conversely, both cl and cr occur (once each)

then any pattern containing both occurrences also occurs in some configuration Cn verifying φ. But φ is such that any

modification outside the segment between cl and cr in Cn does not change the fact that φ is satisfied provided no new

cl and cr colors are added. Therefore φ is also satisfied by C and C ∈ X. �

The theorem gives the claimed separation result for subshifts of EMSO.

Corollary 12. There are EMSO-definable subshifts which are not sofic.

Proof. In the previous theorem, choose E, to be the complement of the set of integers m for which there is x such that

machine m halts on empty input in less than x steps. E is not recursively enumerable and, using the construction of

the proof above, it is reducible to the forbidden language of an EMSO-definable subshift. �

5.2. Subshifts and patterns

In the previous section we proved that there exists a MSO-definable subshift for which its forbidden language is

not enumerable. This means in particular that there exists no recursive set F of patterns that defines this subshift, and

in particular no MSO-definable set of patterns that defines this subshift. We will show in this section that this situation

does not happen for the classes of subshifts we show before, that is every subshift of theses classes can be defined by

a set of forbidden patterns of the same (logical) complexity.

For this to work, we now consider a purely relational signature, that is we consider now East,North,South,West

as binary relations rather that functions. As we said before, the previous theorems with the exception of theorem 6 are

still valid in this context. However with a relational signature, it makes sense to ask whether a given (finite) pattern P

satisfy a formula φ: First-order quantifiers range over Dom P, the domain of P, and second-order monadic quantifiers

over all subsets of Dom P.
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We now prove

Theorem 13. Let φ be a formula of the form

∃/∀X1,∃/∀X2 . . . ,∃/∀Xn,∀z1, . . . ,∀zp, ψ(X1, . . . , Xn, z1 . . . zp)

Then a configuration M satisfies φ if and only if all patterns P of M satisfy φ.

Proof. The basic idea is to use compactness to bypass the existential (second-order) quantifiers.

We denote by EDom P the restriction of E to Dom P. We prove the following statement by induction: For every sub-

sets E1 . . . Ek ofZd and any configuration M, (M, E1, . . . , Ek) |= φ(X1 . . . Xk) if and only if (P, (E1)Dom P, . . . , (Ek)Dom P) |=

φ(X1 . . . Xk) for every pattern P of M.

This is clear if φ has no second-order quantifiers.

Now let φ be a formula of the previous form. Note that it is clear that if (M, E1, . . . , Ek) |= φ(X1 . . . Xk) then

(P, (E1)Dom P, . . . , (Ek)Dom P) |= φ(X1 . . . Xk), as the first order fragment of φ is universal. We now prove the converse.

There are two cases:

• First case, φ(X1 . . . Xk) = ∀Xψ(X1 . . . Xk, X). Suppose that (P, (E1)Dom P, . . . , (Ek)Dom P) |= φ(X1 . . . Xk) for every

pattern P of M. Let E be a subset of Zd. Now, (P, (E1)Dom P, . . . , (Ek)Dom P, EDom P) |= ψ(X1 . . . Xk, X) for all

patterns P of M by hypothesis, so using the induction hypothesis, (M, E1, . . . , Ek, E) |= ψ(X1 . . . Xk, X) , hence

the result (M, E1 . . . Ek) |= ∀Xφ(X1 . . . Xk, X).

• Second case, φ(X1 . . . Xk) = ∃Xψ(X1 . . . Xk, X). Suppose that (P, (E1)Dom P, . . . , (Ek)Dom P) |= φ(X1 . . .Xk) for

every pattern P of M. In particular, for every pattern P, there exists a set EP so that (P, (E1)Dom P, . . . , (Ek)Dom P, EP)

satisfies ψ(X1, . . .Xk, X)

Let Pi be the pattern of domain [−i, i]d of M, and EPi
⊆ [−i, i] the subset given by the previous sentence. We

now see EPi
as a point in {0, 1}Z

d

, and by compactness we know that the set {EPi
, i ∈ N} has an accumulation

point E. This set E has the following property: for every domain Z ⊆ Z
d, there exists i so that [−i, i]d contains

Z, and EPi
and E coincide on Z.

Now we prove that (M, E1, . . . Ek, E) satisfies ψ. Let P be a pattern of M. There exists i so that EPi
and E

coincide on Dom P. Now by definition of EPi
, we have (Pi, (E1)Dom Pi

, . . . , (Ek)Dom Pi
, EPi

) |= ψ(X1 . . . Xk, X).

However, as P is a subpattern of Pi, and the fact that the first order fragment of ψ is universal, we have that

(P, (E1)Dom P, . . . , (Ek)Dom P, (EPi
)Dom P) |= ψ(X1 . . . Xk, X). Now E coincide with EPi

on Dom P, so that we have

(P, (E1)Dom P, . . . , (Ek)Dom P, EDom P |= ψ(X1 . . . Xk, X)). Using the induction hypothesis, we have proven that

(M, E1, . . .Ek, E) |= ψ(X1 . . . Xk, X), hence (M, E1 . . . Ek |= ∃Xψ(X1 . . . Xk, X).

�

Corollary 14. If S is a subshift defined by a formula φ of the form of the preceding theorem, then S = XF where F

is the set of words that do not satisfy φ.

In particular, in dimension 1, if a subshift is defined by a EMSO formula (is sofic), then it is defined by a EMSO-

definable set of forbidden words, ie a regular set. Similarly, if a subshift is defined by a (universal) FO formula, it

is defined by a (universal) FO-definable set of forbidden words, hence in particular by a strongly threshold locally

testable language [34] (compare with corollary 9).

The previous section shows that the corollary does not work for arbitrary formula φ. Indeed, for any MSO-formula

φ, the set of words that do not satisfy φ is recursive, but there exists MSO-definable subshifts that cannot be given by

a recursive set of forbidden words.
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5.3. Definability of MSO-subshifts

As we saw before, sets defined by MSO-formulas are not always subshifts. We will try in this section to find a

fragment of MSO that contains only subshifts and contain all of them. This fragment is somewhat ad hoc. Finding a

more reasonable fragment is an interesting open question.

We first begin by a definition

Definition 4.

f in(S ) : ∃A,∃B







































∀x, A(x) ⇐⇒ A(North(x)) ∧ A(East(x))

∀x, B(x) ⇐⇒ A(South(x)) ∧ A(West(x))

∃x, A(x) ∧ ¬A(South(x)) ∧ ¬A(West(x))

∃x, B(x) ∧ ¬B(North(x)) ∧ ¬B(East(x))

∀x, S (x) =⇒ A(x) ∧ B(x)

It is easy to prove that f in(S ) is true if and only if S is finite (there are finitely many x such that S (x)). Indeed A and B

represent quarter of planes, and S must be contained in the square delimited by the two quarter of planes. Any other

formula true only if S is finite would work in the following

Theorem 15. Let X be a MSO-definable set. Then X is a subshift if and only if it is definable by a formula of the form

∀S , f in(S ) =⇒ ∃B1 . . . Bk, ψ(S , B1 . . . Bk) ∧ ∀x1 . . . xnS (x1) ∧ . . . S (xp) =⇒ θ(S , B1 . . . Bk, x1 . . . xp)

where

• ψ is any MSO-formula not containing the predicates Pc.

• θ is quantifier-free.

Note that this formula can be written more concisely as

∀ f inS ,∃Bψ(S , B) ∧ ∀x ∈ S p, θ(S , B, x)

Proof. First we prove that such a formula φ defines a subshift X . For this, we prove that the set X is closed. Consider

a sequence M1 . . .Mn . . . of configurations of X converging to some configuration M. We must prove that M ∈ X.

Let S be a finite set. Now consider the formula θ. As it is quantifier-free, it is local: the value of θ(S , B1 . . . Bk, x1 . . . xn)

depends only of what happens around x1 . . . xn. As each x1 . . . xn must be in S , there exists a finite S ′ ⊃ S such that

the value of ∀x1 ∈ S . . . xn ∈ S , θ(S , B1 . . . Bk, x1 . . . xn) depends only of the value of the predicates S , Pc and Bi on S ′.

Now Mi converges to M. This means that there exists p such that Mp and M coincides on S ′. For this Mp, there

exists some B1 . . . Bk such that we have Mp |= ψ(S , B1 . . . Bk) ∧ ∀x1 ∈ S . . .∀xp ∈ S , θ(S , B1 . . . Bk, x1 . . . xn). Then

this formula is also true on M (Note indeed that ψ(S , B1 . . . Bk) does not depend on the configuration).

Hence we have found for every S some Bi that makes the formula true, that is we have proven M |= φ. Therefore

X is closed, hence a subshift.

Now let X be a MSO-definable subshift. X is defined by a formula φ. Change each Pc in φ by a predicate Bc to

obtain ψ1. Define

ψ(B) = ∀x















∨

c

Bc(x)















∧















∧

c,c′

¬(Bc(x) ∧ Bc′(x))















∧ ψ1(B)

Then X is defined by

φ : ∀ f inS ,∃Bψ(B) ∧ ∀x ∈ S ,
∧

c

(Bc(x) ⇐⇒ Pc(x))

Indeed M satisfies φ and only if every pattern of M is a pattern in some configuration of X. �
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EQ0
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(z)
NQ0

(z) , NQ1
(z)

Q0

Q1

Figure 4: The rectangular zone in dark gray defined by predicate Z(z).

6. A Characterization of EMSO

EMSO-definable sets are projections of FO-definable sets (proposition 1). Besides, sofic subshifts are projections

of subshifts of finite type (or tilings). Previous results show that the correspondence sofic↔EMSO fails. However, we

will show in this section how EMSO can be characterized through projections of “locally checkable” configurations.

Corollary 4 expresses that FO-definable sets are essentially captured by counting occurrences of patterns up to

some value. The key idea in the following is that this counting can be achieved by local checkings (equivalently, by

tiling constraints), provided it is limited to a finite and explicitly delimited region. This idea was successfully used

in [21] in the context of picture languages: pictures are rectangular finite patterns with a border made explicit using a

special state (which occurs all along the border and nowhere else). We will proceed here quite differently. Instead of

putting special states on borders of some rectangular zone, we will simply require that two special subsets of states Q0

and Q1 are present in the configuration: we call a (Q0,Q1)-marked configuration any configuration that contains both

a color q ∈ Q0 and some color q′ ∈ Q1 somewhere. By extension, given a subshift Σ over Q and two subsets Q0 ⊆ Q

and Q1 ⊆ Q, the doubly-marked set ΣQ0 ,Q1
is the set of (Q0,Q1)-marked configurations of Σ. Finally, a doubly-marked

set of finite type is a set ΣQ0,Q1
for some SFT Σ and some Q0,Q1.

Lemma 16. Consider any finite pattern P and any k ≥ 0. Then S =k(P) is the projection of some doubly-marked set

of finite type. The same result holds for S ≥k(P).

Moreover, any positive combination (union and intersection) of projections of doubly-marked sets of finite type is

also the projection of some doubly-marked sets of finite type.

Proof (sketch). For the first part of the theorem statement, we consider some base alphabet Q, some pattern P and

some k ≥ 0. We will build a doubly-marked set of finite type over alphabet Q′ = Q × Q+ and then project back onto

Q. The set Q+ is itself a product of different layers. The first layer can take values {0, 1, 2} and is devoted to the

definition of the marker subsets Q0 and Q1: a state is in Qi for i ∈ {0, 1} if and only if its value on the first layer is i.

We first show how to convert the appearance in a configuration of two marked positions, by Q0 and Q1, into a

locally identifiable rectangular zone. The zone is defined by two opposite corners corresponding to an occurrence of

some state of Q0 and Q1 respectively. This can be done using only finite type constraints as follows. By adding a new

layer of states, one can ensure that there is a unique occurrence of a state of Q0 and maintain everywhere the following

information:

1. NQ0
(z) ≡ the position z is at the north of the (unique) occurrence of a state from Q0,

2. EQ0
(z) ≡ the position z is at the east of the occurrence of a state from Q0.

The same can be done for Q1. From that, the membership to the rectangular zone is defined at any position z by the

following predicate (see figure 12):

Z(z) ≡ NQ0
(z) , NQ1

(z) ∧ EQ0
(z) , EQ1

(z).
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We can also define locally the border of the zone: precisely, cells not in the zone but adjacent to it. Now define

P(z) to be true if and only if z is the lower-left position in an occurrence of the pattern P. We add k new layers, each

one storing (among other things) a predicate Ci(z) verifying

Ci(z)⇒ Z(z) ∧ P(z) ∧
∧

j,i

¬C j(z).

Moreover, on each layer i, we enforce that exactly 1 position z verifies Ci(z): this can be done by maintaining

north/south and east/west tags (as for Q0 above) and requiring that the north (resp. south) border of the rectangular

zone sees only the north (resp. south) tag and the same for east/west. Finally, we add the constraint:

P(z) ∧ Z(z)⇒
∨

i

Ci

expressing that each occurrence of P in the zone mut be “marked” by some Ci. Hence, the only admissible (Q0,Q1)-

marked configurations are those whose rectangular zone contains exactly k occurrences of pattern P. We thus obtain

exactly S ≥k(P) after projection onto Q. To obtain S =k(P), it suffices to add the constraint:

P(z)⇒ Z(z)

in order to forbid occurrences of P outside the rectangular zone.

To conclude the proof we show that finite unions or intersections of projections of doubly-marked sets of finite

type are also projections of doubly-marked sets of finite type. Consider two SFT X over Q and Y over Q′ and two

pairs of marker subsets Q0,Q1 ⊆ Q and Q′
0
,Q′

1
⊆ Q′. Let πX : Q→ A and πY : Q′ → A be two projections. Denote

by ΣX and ΣY (resp.) the subsets of AZ
2

defined by πX

(

XQ0,Q1

)

and πY

(

YQ′
0
,Q′

1

)

. We want to show that both the union

Σx ∪ ΣY and the intersection ΣX ∩ ΣY are projections of some doubly marked sets of finite type.

First, for the case of union, we can suppose (up to renaming of states) that Q and Q′ are disjoint and define the

SFT Σ over alphabet Q ∪ Q′ as follows:

• 2 adjacent positions must be both in Q or both in Q′;

• any pattern forbidden in X or Y is forbidden in Σ.

Clearly, π(ΣQ0∪Q′
0
,Q1∪Q′

1
) = πX(XQ0,Q1

) ∪ πY (YQ′
0
,Q′

1
) where π(q) is πX(q) when q ∈ Q and πY (q) else.

Now, for intersections, consider the SFT Σ over the fiber product

Q× = {(q, q
′) ∈ Q × Q′|πX(q) = πY (q′)}

and defined as follows: a pattern is forbidden if its projection on the component Q (resp. Q′) is forbidden in X (resp.

Y);

If we define π as πX applied to the Q-component of states, and if E is the set of configuration of Σ such that states

from Q0 and Q1 appear on the first component and states from Q′
0

and Q′
1

appear on the second one, then we have:

π(E) = πX(XQ0,Q1
) ∪ πY (YQ′

0
,Q′

1
).

To conclude the proof, it is sufficient to obtain E as the projection of some doubly-marked set of finite type. This can

be done starting from Σ and adding a new component of states whose behaviour is to define a zone from two markers

(as in the first part of this proof) and check that the zone contains occurrences of Q0, Q1, Q′
0

and Q′
1

in the appropriate

components. �

Theorem 17. A set is EMSO-definable if and only if it is the projection of a doubly-marked set of finite type.

Proof. First, a doubly-marked set of finite type is an FO-definable set because SFT are FO-definable (theorem 6) and

the restriction to doubly-marked configurations can be expressed through a simple existential FO formula. Thus the

projection of a doubly-marked set of finite type is EMSO-definable.

The opposite direction follows immediately from proposition 1 and corollary 4 and the lemma above. �

At this point, one could wonder whether considering simply-marked set of finite type is sufficient to capture EMSO

via projections. In fact the presence of 2 markers is necessary in the above theorem: considering the set ΣQ0 ,Q1
where

Σ is the full shift QZ
2

and Q0 and Q1 are distinct singleton subsets of Q, a simple compactness argument allows to

show that it is not the projection of any simply-marked set of finite type.
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7. Open Problems

• Is the second order alternation hierarchy strict for MSO (considering our model-theoretic equivalence)?

• One can prove that theorem 6 also holds for formulas of the form:

∀X1 . . .∀Xn,∀z, ψ(z, X1 . . . Xn)

where ψ is quantifier-free. Hence, adding universal second-order quantifiers does not increase the expression

power of formulas of theorem 6. More generally, let C be the class of formulas of the form

∀X1,∃X2, . . . ,∀/∃Xn,∀z1, . . . ,∀zp, φ(X1, . . . , Xn, z1, . . . , zp).

One can check that any formula in C defines a subshift. Is the second-order quantifiers alternation hierarchy

strict in C? On the contrary, do all formulas in C represent sofic subshifts ?
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