1,536 research outputs found

    On LMI-based sliding mode control for uncertain discrete-time systems

    Full text link
    © 2016 The Franklin Institute In this paper, a new approach to design a robust discrete-time sliding mode control (DSMC) is proposed for uncertain discrete-time systems. To this end, an LMI approach is used to develop a new framework to design the sliding function which is linear to the state. Our proposed robust DSMC can be applied to unstable systems, and also there is no need to stabilize the underlying system first. It has been argued in the literature that for the systems involving balanced external disturbances, using switching component is not needed. In this paper, it is shown that with the assumption of smoothness of the external disturbances, a different form of switching element in the controller can outperform the so-called linear controller in terms of the thickness of the boundary layer around the sliding function and the ultimate bound on the system state. Also, this paper extends the idea of disturbance estimation to the uncertain discrete-time systems. The disturbance estimator is exploited in the controller design and the boundedness of the obtained closed-loop system is analyzed. Also, two novel forms of variable structure DSMC are suggested in this paper

    Design of Congestion Control Scheme for Uncertain Discrete Network Systems

    Get PDF
    For a class of uncertain discrete network systems, a sliding mode control algorithm is presented for active queue management (AQM) in order to solve the problem of congestion control in transmission control protocol (TCP) communication. First, the sliding surface is designed based on linear matrix inequality (LMI) technique. Then, we analyze the mechanism of chattering for the discrete-time exponential approximation law, a modified one is presented and applied to the network systems. Simulation results demonstrate that the proposed controller has good stability and robustness with respect to the uncertainties of the number of active TCPsessions, link capacity and the round-trip time

    Time-delay systems : stability, sliding mode control and state estimation

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Time delays and external disturbances are unavoidable in many practical control systems such as robotic manipulators, aircraft, manufacturing and process control systems and it is often a source of instability or oscillation. This thesis is concerned with the stability, sliding mode control and state estimation problems of time-delay systems. Throughout the thesis, the Lyapunov-Krasovskii (L-K) method, in conjunction with the Linear Matrix Inequality (LMI) techniques is mainly used for analysis and design. Firstly, a brief survey on recent developments of the L-K method for stability analysis, discrete-time sliding mode control design and linear functional observer design of time-delay systems, is presented. Then, the problem of exponential stability is addressed for a class of linear discrete-time systems with interval time-varying delay. Some improved delay-dependent stability conditions of linear discrete-time systems with interval time-varying delay are derived in terms of linear matrix inequalities. Secondly, the problem of reachable set bounding, essential information for the control design, is tackled for linear systems with time-varying delay and bounded disturbances. Indeed, minimisation of the reachable set bound can generally result in a controller with a larger gain to achieve better performance for the uncertain dynamical system under control. Based on the L-K method, combined with the delay decomposition approach, sufficient conditions for the existence of ellipsoid-based bounds of reachable sets of a class of linear systems with interval time-varying delay and bounded disturbances, are derived in terms of matrix inequalities. To obtain a smaller bound, a new idea is proposed to minimise the projection distances of the ellipsoids on axes, with respect to various convergence rates, instead of minimising its radius with a single exponential rate. Therefore, the smallest possible bound can be obtained from the intersection of these ellipsoids. This study also addresses the problem of robust sliding mode control for a class of linear discrete-time systems with time-varying delay and unmatched external disturbances. By using the L-K method, in combination with the delay decomposition technique and the reciprocally convex approach, new LMI-based conditions for the existence of a stable sliding surface are derived. These conditions can deal with the effects of time-varying delay and unmatched external disturbances while guaranteeing that all the state trajectories of the reduced-order system are exponentially convergent to a ball with a minimised radius. Robust discrete-time quasi-sliding mode control scheme is then proposed to drive the state trajectories of the closed-loop system towards the prescribed sliding surface in a finite time and maintain it there after subsequent time. Finally, the state estimation problem is studied for the challenging case when both the system’s output and input are subject to time delays. By using the information of the multiple delayed output and delayed input, a new minimal order observer is first proposed to estimate a linear state functional of the system. The existence conditions for such an observer are given to guarantee that the estimated state converges exponentially within an Є-bound of the original state. Based on the L-K method, sufficient conditions for Є-convergence of the observer error, are derived in terms of matrix inequalities. Design algorithms are introduced to illustrate the merit of the proposed approach. From theoretical as well as practical perspectives, the obtained results in this thesis are beneficial to a broad range of applications in robotic manipulators, airport navigation, manufacturing, process control and in networked systems

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques
    corecore