
INT J COMPUT COMMUN, ISSN 1841-9836
8(6):901-906, December, 2013.

Design of Congestion Control Scheme for Uncertain Discrete
Network Systems

H. Wang, C. Yu

Hongwei Wang, Chi Yu
Qinhuangdao Branch, Northeastern University
Qinhuangdao, China, 066004
wanghw0819@163.com; yuchi0319@163.com

Abstract: For a class of uncertain discrete network systems, a sliding mode control
algorithm is presented for active queue management (AQM) in order to solve the
problem of congestion control in transmission control protocol (TCP) communica-
tion. First, the sliding surface is designed based on linear matrix inequality (LMI)
technique. Then, we analyze the mechanism of chattering for the discrete-time expo-
nential approximation law, a modified one is presented and applied to the network
systems. Simulation results demonstrate that the proposed controller has good sta-
bility and robustness with respect to the uncertainties of the number of active TCP
sessions, link capacity and the round-trip time.
Keywords: sliding mode control, network systems, linear matrix inequality(LMI)

1 Introduction

As the rapid expansion of network scale, congestion control has become an important issue.
AQM is a router-based control mechanism, which can implement the end system to demand
quality of service. So the combination of TCP and AQM is the main ways to solve the problems
of current network congestion control.

Random early detection (RED) as the earliest well-known AQM algorithm is sensitive to
parameter variations [2]. So some improved RED methods are presented [3-5]. However, these
algorithms can not guarantee high network utilization and low packet loss[6-7]. Recently, some
AQM algorithms have been proposed based on mathematical models, which give the basis for
control theory research. In [6], a fluid-flow model for TCP/AQM networks has been introduced.
The proportional-integral (PI) controller is designed in [8], also some robust control schemes
[9-12], such as intelligent PID, variable structure sliding mode controller, H-infinity controller,
and so on. These methods can obtain well performance for practical network systems.

With the rapid development of computer technology and digital signal processing chips, the
study of discrete-time control theory is rather important. Sliding mode control (SMC) is a
robust technique for its unique ability to withstand external disturbance, it has achieved fruitful
for continuous system. However, sliding mode control schemes are relatively small for discrete-
time system [13-15], a few discrete algorithms are applied to the network control. In this paper,
a robust discrete-time sliding mode controller is designed for TCP network model with uncertain
disturbance. The aim is to avoid network congestion.

2 Problem Statement and Preliminaries

In [6], a model of TCP connection through a congested AQM router is developed.
Ẇ (t) =

1

R(t)
− W (t)W (t−R(t))

2R(t)
p(t−R(t))

q̇(t) =
N(t)

R(t)
W (t)− C(t)

(1)
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where C(t) is the capacity of link, W (t) is the size of TCP congestion window, q(t)is the length of
queue in buffer, p(t) is packet-dropping probability function (0 ≤ p(t) ≤ 1), N(t) is the number
of active TCP link, R (t) is the transfer delay and R (t) = Tp + q (t) /C (t).

To linearize(1), we first assumeR(t) = R0, N(t) = Nand C(t) = Cis normal value of R(t),
N(t) and C(t), the equilibrium point (W0, qd, p0) is defined by Ẇ = 0 and q̇ = 0. Let δW (t) =
W (t)−W0, δq(t) = q(t)− qd, δp(t) = p(t)− p0. A linearized model is given.

δẆ (t) = − 2N

R2
0C

δW (t)− R0C
2

2N2
δp(t−R0)

δq̇(t) =
N

R0
δW (t)− 1

R0
δq(t)

(2)

Let x(t) =
(
δq(t) δ ˙q(t)

)T
=

(
x1 x2

)T
, u(t) = δq(t), (−p0 ≤ u(t) ≤ 1− p0). We have

ẋ(t) = Āx(t) + B̄u(t) (3)

where

x(t) =

[
x1(t)

x2(t)

]
, Ā =

 0 1

− 2N

R3
0C

−
(

1

R0
+

2N

R2
0C

)  , B̄ =

 0

−C2

2N

 .
Then the discrete-time uncertain system can be expressed as the sampling period T .

x(k + 1) = (Ã+∆Ã)x(k) + (B̃ +∆B̃)u(k) (4)

where Ã = eĀT , B̃ = (
∫ T
0 eAT )B̄,∆Ã and ∆B̃ are depending on network parameters.

In the process of designing controller, the following assumptions are taken.
A0. The pair (Ã, B̃) is controllable, and B̃ =

(
B̃1 B̃2

)
, det(B̃2) ̸= 0.

A1. The matrix ∆Ã(k) satisfies mismatch condition and ∆B̃ satisfies ∆B̃ = B̃ ×∆B̂.
We do a linear transformation as follows:

z = Tx =

 In−m −B̃1B̃2
−1

0 B̃2
−1

x (5)

The system (4) is written as follows.

z(k + 1) = (A+∆A)z(k) +B(I +∆B̂)u(k) (6)

where z(k) =

[
z1(k)

z2(k)

]
, A = TÂT−1 =

[
A11 A12

A21 A22

]
, ∆A = T∆ÃT−1 =

[
∆A11 ∆A12

∆A21 ∆A22

]
,

B = TB̃ =

[
0

Im

]
, z1 (k) ∈ Rn−m, z2 (k) ∈ Rm.

We have
z1 (k + 1) = A11z1 (k) +A12z2 (k) + ∆A11z1 (k) + ∆A12z2 (k) (7)

z2 (k + 1) = A21z1 (k) +A22z2 (k) + ∆A21z1 (k) + ∆A22z2 (k) + Im

(
I +∆B̂

)
u (k) (8)
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3 Design of Controller for Discrete-time Network Systems

3.1 Designing Sliding Mode Surface

Without loss of generality, we suppose that the sliding surface is

s (k) = M̄z(k) =
[
−M Im

] [ z1 (k)

z2 (k)

]
= 0 (9)

where M̄ ∈ Rm×n, M ∈ Rm×(n−m). Substituting (9) into (7) gives the sliding motion

z1 (k + 1) = (A11 +∆A11 +A12M +∆A12M) z1 (k) (10)

A2. The ∆A11 (k) and ∆A12 (k) satisfy ∆A11 (k) = DF (k)E1, ∆A12 (k) = DF (k)E2, D and
Ei(i=1, 2) are constant matrices of appropriate dimensions, F (k) satisfies F T (k)F (k) ≤ I.

Lemma 1[16]. Given constant matricesD,Eand symmetric matrixY of appropriate dimen-
sions, the following inequality holdsY +DFE +ETF TDT < 0. where F satisfy F (k)TF (k) ≤ I,
if and only if for some constantε > 0, we haveY + εDDT + ε−1ETE < 0.

Theorem 1. If there exists a symmetric and positive definite matrixP , some matrix Wand
some scalar ε such that the following LMI(11) is satisfied, then the reduced-order discrete-time
system(6) is asymptotically stable by the sliding mode surface(9). −X ∗ ∗

A11X +A12W −X + εDDT ∗
E1X + E2W 0 −εI

 < 0 (11)

whereX = P−1,W =MP−1 and * denotes the transposed elements in the symmetric positions.
Proof: For system (6), we choose the following Lyapunov- Krasovskii function

v (k) = zT1 (k)Pz1 (k) (12)

Differential equation along the trajectory of the system in (10) is given by

∆v (k) = v (k + 1)− v (k)

= zT1 (k)
(
QTPQ− P

)
z1 (k)

where Q = A11 +A12M +DFE1 +DFE2M .If the QTPQ− P < 0, we can the Theorem 1.

3.2 Design of discrete-time sliding mode controller

Discrete-time approximate law is given in [17].

s (k + 1) = (1− ηT ) s (k)− λTsgns (k) (13)

where λ > 0, η > 0, 0 < ηT < 1, T is sampling period.
The (13) can not guarantee the system reaches to point. The modified reaching law is given.

s (k + 1) = (1− ηT ) s (k)−
(
1− e−|s(k)| − η

)
|s (k)|Tsgn (s (k)) (14)

According to the equations (6), (9) and (14), we get the control law as follows.

u(k) = (M̄B)−1[M̄Ax(k) + (1− ηT )s(k)− (1− e−|s(k)| − η)|s(k)|Tsgn(s(k))− M̄f(k)] (15)
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wheref (k) = ∆Az (k) +∆Bu (k). it is an unknown number, the controller can not be achieved.
The system existing unknown disturbances of the dynamics is much slower compared with

the sampling frequency, so we have

f(k − 1) = z(k)−Az(k − 1)−Bu(k − 1) (16)

Considering the practical network system, we can obtain the following controller.

u (k) = −p0 , u (k) < −p0
u (k) =

(
M̄B

)−1 [−M̄Az (k) + (1− ηT ) s (k)−
(
1− e−|s(k)| − η

)
|s (k)|Tsgn (s (k))

− M̄ (z (k)−Az (k − 1)−Bu (k − 1))
]

, − p0 ≤ u (k) ≤ 1− p0
u (k) = 1− p0 , u (k) > 1− p0

(17)

Remark: 1) when s(k) ≥ 0, the modified reaching law (14) is rewritten as follows.

s(k + 1)− s(k) = −(1− e−|s(k)|)s(k)T ≤ 0

2) whens (k) ≤ 0, the modified reaching law (14) is rewritten as follows.

s(k + 1)− s(k) = (1− e−|s(k)|)s(k)T ≤ 0

We can see that the design control law satisfying the sliding mode reaching condition.

4 Simulation Results

Let we choose parameters. N = 50, C = 300 packets/s, R0 = 0.5s, W0 = 3, p0 = 0.22. Ã =[
0.9999 0.0098

−0.0263 0.9671

]
, B̃ =

[
−0.0445

−8.8514

]
,∆Ã =

[
0.0001sin(0.1πk) 0

0 0.0005sin(0.1πk)

]
,∆B̃ =[

−0.0013 −0.2655
]
, ε = 0.01. Using LMI toolbox in the matlab, we can get M = −8.3. Then

choosing λ = 0.1,T = 0.01s, η = 5, x (0) = [ 30 2 ]T . Fig.1 is the control law response curve
based on the proposed control law, which can have much lower packet-dropping probability,
satisfying the demand of system response.
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Figure 1: The motion curve with designed control law u(k) in this paper

We give the system state responses curve based on reaching law (13)and (14). The proposed
control scheme can obtain much better performance both response time and chattering from
Fig.2 and Fig.3.
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Figure 2: State responses with control law (13) Figure 3: State responses with control law (14)

5 Conclusion

This paper gives a discrete sliding mode control algorithm for network systems. A modified
reaching law is presented and applied to the system. Simulation results show that the controller
has better stability and robustness, which can get a faster transient response and smaller steady
state error. The scheme can effectively avoid network congestion.
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