4,418 research outputs found

    Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review

    Full text link
    Since the Simple Knowledge Organization System (SKOS) specification and its SKOS eXtension for Labels (SKOS-XL) became formal W3C recommendations in 2009 a significant number of conventional knowledge organization systems (KOS) (including thesauri, classification schemes, name authorities, and lists of codes and terms, produced before the arrival of the ontology-wave) have made their journeys to join the Semantic Web mainstream. This paper uses "LOD KOS" as an umbrella term to refer to all of the value vocabularies and lightweight ontologies within the Semantic Web framework. The paper provides an overview of what the LOD KOS movement has brought to various communities and users. These are not limited to the colonies of the value vocabulary constructors and providers, nor the catalogers and indexers who have a long history of applying the vocabularies to their products. The LOD dataset producers and LOD service providers, the information architects and interface designers, and researchers in sciences and humanities, are also direct beneficiaries of LOD KOS. The paper examines a set of the collected cases (experimental or in real applications) and aims to find the usages of LOD KOS in order to share the practices and ideas among communities and users. Through the viewpoints of a number of different user groups, the functions of LOD KOS are examined from multiple dimensions. This paper focuses on the LOD dataset producers, vocabulary producers, and researchers (as end-users of KOS).Comment: 31 pages, 12 figures, accepted paper in International Journal on Digital Librarie

    Linked Open Data - Creating Knowledge Out of Interlinked Data: Results of the LOD2 Project

    Get PDF
    Database Management; Artificial Intelligence (incl. Robotics); Information Systems and Communication Servic

    idMesh: graph-based disambiguation of linked data

    Get PDF
    We tackle the problem of disambiguating entities on the Web. We propose a user-driven scheme where graphs of entities -- represented by globally identifiable declarative artifacts -- self-organize in a dynamic and probabilistic manner. Our solution has the following two desirable properties: i) it lets end-users freely define associations between arbitrary entities and ii) it probabilistically infers entity relationships based on uncertain links using constraint-satisfaction mechanisms. We outline the interface between our scheme and the current data Web, and show how higher-layer applications can take advantage of our approach to enhance search and update of information relating to online entities. We describe a decentralized infrastructure supporting efficient and scalable entity disambiguation and demonstrate the practicability of our approach in a deployment over several hundreds of machines

    Ubiquitous Semantic Applications

    Get PDF
    As Semantic Web technology evolves many open areas emerge, which attract more research focus. In addition to quickly expanding Linked Open Data (LOD) cloud, various embeddable metadata formats (e.g. RDFa, microdata) are becoming more common. Corporations are already using existing Web of Data to create new technologies that were not possible before. Watson by IBM an artificial intelligence computer system capable of answering questions posed in natural language can be a great example. On the other hand, ubiquitous devices that have a large number of sensors and integrated devices are becoming increasingly powerful and fully featured computing platforms in our pockets and homes. For many people smartphones and tablet computers have already replaced traditional computers as their window to the Internet and to the Web. Hence, the management and presentation of information that is useful to a user is a main requirement for today’s smartphones. And it is becoming extremely important to provide access to the emerging Web of Data from the ubiquitous devices. In this thesis we investigate how ubiquitous devices can interact with the Semantic Web. We discovered that there are five different approaches for bringing the Semantic Web to ubiquitous devices. We have outlined and discussed in detail existing challenges in implementing this approaches in section 1.2. We have described a conceptual framework for ubiquitous semantic applications in chapter 4. We distinguish three client approaches for accessing semantic data using ubiquitous devices depending on how much of the semantic data processing is performed on the device itself (thin, hybrid and fat clients). These are discussed in chapter 5 along with the solution to every related challenge. Two provider approaches (fat and hybrid) can be distinguished for exposing data from ubiquitous devices on the Semantic Web. These are discussed in chapter 6 along with the solution to every related challenge. We conclude our work with a discussion on each of the contributions of the thesis and propose future work for each of the discussed approach in chapter 7

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle

    BioGateway: a semantic systems biology tool for the life sciences

    Get PDF
    Background: Life scientists need help in coping with the plethora of fast growing and scattered knowledge resources. Ideally, this knowledge should be integrated in a form that allows them to pose complex questions that address the properties of biological systems, independently from the origin of the knowledge. Semantic Web technologies prove to be well suited for knowledge integration, knowledge production (hypothesis formulation), knowledge querying and knowledge maintenance. Results: We implemented a semantically integrated resource named BioGateway, comprising the entire set of the OBO foundry candidate ontologies, the GO annotation files, the SWISS-PROT protein set, the NCBI taxonomy and several in-house ontologies. BioGateway provides a single entry point to query these resources through SPARQL. It constitutes a key component for a Semantic Systems Biology approach to generate new hypotheses concerning systems properties. In the course of developing BioGateway, we faced challenges that are common to other projects that involve large datasets in diverse representations. We present a detailed analysis of the obstacles that had to be overcome in creating BioGateway. We demonstrate the potential of a comprehensive application of Semantic Web technologies to global biomedical data. Conclusion: The time is ripe for launching a community effort aimed at a wider acceptance and application of Semantic Web technologies in the life sciences. We call for the creation of a forum that strives to implement a truly semantic life science foundation for Semantic Systems Biology
    • …
    corecore