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ABSTRACT
We tackle the problem of disambiguating entities on the Web. We
propose a user-driven scheme where graphs of entities – repre-
sented by globally identifiable declarative artifacts – self-organize
in a dynamic and probabilistic manner. Our solution has the fol-
lowing two desirable properties: i) it lets end-users freely define
associations between arbitrary entities and ii) it probabilistically in-
fers entity relationships based on uncertain links using constraint-
satisfaction mechanisms. We outline the interface between our
scheme and the current data Web, and show how higher-layer ap-
plications can take advantage of our approach to enhance search
and update of information relating to online entities. We describe a
decentralized infrastructure supporting efficient and scalable entity
disambiguation and demonstrate the practicability of our approach
in a deployment over several hundreds of machines.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2.12.a
[Software Engineering]: Interoperability—Data Mapping

General Terms
Algorithms, Design

Keywords
Entity Disambiguation, Linked Data, Emergent Semantics, Peer
Data Management

1. INTRODUCTION
Until recently, the World Wide Web was a hierarchically orga-

nized space separating authoritative content providers from rela-
tively passive information consumers. Today, the organization of
the World Wide Web has flattened, empowering end-users with new
roles. Publishing data on the Web is easier than ever with the advent
of new declarative formats like XML, RDF, or Microformats allow-
ing user-defined information to be encoded in machine-processable
ways.

With an increasing amount of entities getting created online
comes the pressing need to relate and integrate similar entities
published by different end-users. Several initiatives, such as the
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Linked Data movement1 recently suggested the use of various
declarative links to connect semantically related online entities.
As a result, a dynamic and decentralized Web of interlinked data is
currently emerging on the Internet. We argue in the following that
in this new context, entity disambiguation on the Web is drifting
from local, pairwise data integration to large-scale, distributed and
uncertain social data management.

Let us consider personal identity management as an example.
Several formats encoding personal profiles in (semi) structured
ways are today getting widely popular. FOAF [6] (an acronym
of Friend of a Friend), as an example, is an RDF vocabulary
specification describing persons, their activities, and their relations
to other people and objects. XML vCard2 and hCard [2] are two
other examples of standards used to encode personal information
in semi-structured ways. Structured profiles encoded in proprietary
formats can also be found on an increasing list of Web portals
or social communities such as DBLP, Wikipedia, LinkedIn, or
Facebook. To add to the confusion, an ever increasing number
of Web sites create new structured profiles by automatically
combining or reformatting some of the aforementioned sources.
DBpedia3 and Spock4 are two recent examples of this trend.

The result is a flurry of online, disparate, and machine-readable
profiles. Relating these different profiles in a meaningful way
would open the door to distributed, large-scale and automated
personal information management. This remains however
infeasible in practice, as these profiles often refer to different
identifiers for the same identity, erroneously use a single identifier
to refer to several different identities, or present fake identities
altogether. As an example, an online survey aiming at retrieving
online profiles related to Sir Tim Berners-Lee – the famous
computer scientist – revealed the following in mid-2008: we found
109 different structured profiles related to Tim Berners-Lee (see
Table 1). Three of them seemed to be created by Tim Berners-Lee
himself. 53 profiles were managed by third-parties and another
53 profiles were generated automatically by combining several
sources. Some contained legitimate and up-to-date information,
while others were outdated or even fake. Information contained in
these profiles vary from contact details to bibliographic records or
project-related data.

A few of the profiles referred to his FOAF identity
(http://www.w3.org/People/Berners-Lee/card#i), some to his

1http://www.w3.org/DesignIssues/LinkedData.html
2http://www.xmpp.org/extensions/xep-0054.html
3http://dbpedia.org/
4http://www.spock.com/

WWW 2009 MADRID! Track: Semantic/Data Web / Session: Semantic Data Management

591

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147952402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1: A sample of structured profiles found online when
searching for Sir Tim Berners-Lee

Outdated UpToDate Fake
Managed by himself 0 3 0
Managed by 3rd-party 1 12 40
Automatically Generated 16 4 33

FOAF card (http://www.w3.org/People/Berners-Lee/card), his
websites or Wikipedia profiles, while most crafted their own, new
identifier without relating it to any other identifier. Automatically
matching these different profiles is a very difficult task, as entity
matching and spurious data detection cannot give ideal results in
general (see below for a discussion on this point). This situation is
generalizable to other individuals, and more broadly speaking to
many other forms of online identities.

In the following, we tackle the problem of meaningfully orga-
nizing large graphs of digital entities. We propose a radically new
departure for online entity disambiguation based on a probabilis-
tic graph analysis of declarative links relating pairs of entities. We
tackle two specific problems: entity disambiguation and temporal
discrimination. Entity disambiguation is used to relate all online
entities alluding to the same referent. It could for example be used
in the above example to retrieve all legitimate profiles related to
Tim Berners-Lee. Temporal discrimination handles entities at a
finer granularity by distinguishing entities pertaining to the same
referent but taken at different points in time. It could for instance
be used above to retrieve the most up-to-date profile – or a set of
recent profiles – related to Tim Berners-Lee.

1.1 Contributions and Outline
The contributions of this paper include:
1. The identification of two key classes of queries related

to semi-structured online entity management: entity
disambiguation and temporal discrimination.

2. The description of a taxonomy of declarative constructs used
to specify the relationship between entities in a decentralized
fashion.

3. The formalization of two probabilistic inference problems
based on transitive properties of links used to relate entities
in the presence of uncertain information.

4. The description of a fully decentralized, shared-nothing in-
frastructure used to parallelize the entity discrimination pro-
cess in large scale settings.

5. The performance evaluation of our approach using large data
sets distributed over hundreds of machines.

Our scheme takes advantage of both recent advances in automatic
matching techniques and people-powered search [24] and has the
following highly desirable properties:

User-driven: Disambiguating entities is known to be a very dif-
ficult problem. For instance, differentiating an entity referring to
Jie Wu (the computer scientist) from an entity referring to Jie Wu
(the other computer scientist), or disambiguating Jie Wu (the math-
ematician) from Jie Wu (the other mathematician) with limited in-
formation – e.g., based on their name and profession only – is vir-
tually impossible. In many cases, human attention is required to
disambiguate syntactically equivalent information. The same holds
when integrating syntactically different but semantically similar en-
tities, for instance when gathering information for newly married
individuals whose last names have just changed.
Best-effort: Information quality is one of the crucial issues of the
World Wide Web. Inconsistent, conflicting or simply spurious data
can easily shroud more accurate information provided by individ-

ual sources. Even if cryptographic authentication mechanisms are
today proposed to solve all provenance problems on the Web, their
adoption is slow and does not anyway resolve the more general
trust issues. Realistically, a very large portion of the information
found on the web will still come from questionable or unknown
sources in the foreseeable future, and that sea of information cannot
be neglected. In this context, we believe that probabilistic mecha-
nisms are an absolute necessity today in order to be able to process
heterogeneous data in the large. In what follows, we take advan-
tage of all available information relating the entities, but use both
constraint satisfaction and trust-aware mechanisms in order to filter
out uncertain or erroneous information automatically. This results
in a best-effort, probabilistic and self-organizing network of enti-
ties where spurious information gets discarded as more trustworthy
information is fed into the system.

Decentralized: Decentralization is a fundamental architectural
concept of the Internet, both at the logical (end-user space) and at
the physical (i.e., infrastructural) layer. Logical decentralization is
necessary to enforce open spaces where anyone is able to express
himself, offer services or information. Physical decentralization
ensures fault-tolerance: the Internet will continue to function even
if one of its major geographical components – say the US, Europe
or Asia – goes offline. It also promotes scalability by taking
advantage of all independent resources offered to the system. Our
approach ensures logical decentralization by taking advantage of
any possible source, trusted or not, well-known or not, available
on the Internet. Furthermore, we provide a highly-efficient
and decentralized physical architecture supporting our scheme,
and show how to deploy it on large sets of machines running
concurrently.

The rest of this paper is structured as follows: we start by giving
a review of related work in the following section. Section 3 for-
mally defines the problem we want to tackle, i.e., relating online en-
tities in the large given uncertain information. Section 4 describes
a series of simple constructs we propose to declaratively relate var-
ious online entities. We introduce probabilistic models for making
sense out of large graphs of related entities in Section 5. Specif-
ically, we introduce a constraint-satisfaction framework to detect
erroneous links in Section 5.3.1 and a reputation-based trust mech-
anism to handle spurious sources in Section 5.3.2. A decentralized
architecture implementing our scheme is described in Section 6.
We give a performance evaluation of our approach in a real system
deployment running on several hundreds of machines in Section 7,
before concluding.

2. RELATED WORK
Data Linkage: As the Web is increasingly understood as

consisting not only of documents but also of structured data,
several initiatives have recently been launched to interlink Web
data. XFN [7] is an XHTML profile that is used to consolidate
entities by relating URIs through rel:me links. OWL:SameAs
is another popular construct used in a similar manner. Other
declarative constructs, such as Foaf:openid [6] have been proposed
to indirectly link various data by relating them to a common
identifier. Okkam [5] is an ongoing large-scale project5 developing
an infrastructure that maintains globally unique entity identifiers
(OKKAM Ids). They intend to develop a complex entity lineage
management together with entity disambiguation methods. At
this point, none of these approaches take into account the fact
that some (most?) online data might be conflicting, spurious,
or erroneous. Our approach supersedes the various declarative

5http://www.okkam.org
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constructs listed above with a taxonomy of constructs defined
formally. Furthermore, it encompasses a probabilistic framework
to infer entity relationships from a graph of such constructs and
describes an infrastructure to support our probabilistic framework
in large-scale settings.

Entity Resolution: Our problem is directly related to a broad
problem known as entity matching or entity resolution (ER). En-
tity resolution has been studied extensively in the past few years
(see [17] or [18] for recent tutorials). In most solutions, a metric
is first proposed to capture the similarity between pairs of entities.
Machine learning or lexicographic algorithms are then used to de-
termine whether a pair of entities should be matched or not accord-
ing to the metric.

Several recent pieces of work follow this classical approach in
the context of Web data. Raimond et. al [23], for instance, investi-
gate methods towards automatically interlinking music-related data
sets on the Web. Their method takes into account both the simi-
larities of the web resources using literal matching as well as the
similarity of neighboring resources. Ioannou et. al. [15] suggest
the use of Bayesian networks to disambiguate entities based on re-
lated metadata. Jaffri et al. [16] recently investigated entity disam-
biguation in two popular portals (DBLP and DBpedia) and found
that a significant percentage of entities were either conflated or in-
correctly linked. Dong et. al [12] extend reference reconciliation
algorithms in the context of complex information spaces such as
personal information management applications. The authors take
advantage of contextual information (such as contact lists or email
addresses) to reconcile entities and propagate the reconciliation to
other related entities. Other recent approaches (e.g., Shen et. al
[26] or Hogan et al. [14]) exploit semantic constraints – as opposed
to more common syntactic similarities – to consolidate Web data.

All the aforementioned approaches focus on (iteratively) match-
ing pairs of entities while we focus on graphs of entities. Our
approach concentrates on link-analysis rather than entity-analysis,
and as such cannot be used to match pairs of entities. However,
it can take advantage of (uncertain) links created by the aforemen-
tioned matchers and exploit the properties of the resulting graph to
determine whether or not the entities should really be considered as
related. Only a few other link-based entity resolution approaches
have been proposed in the past, in contexts different from the one
we are presently interested in. We discuss these approaches in more
detail in Section 7.3.

3. PROBLEM DEFINITION
The problem we want to solve can be formally introduced as

follows: a set of sources s ∈ S create and share entities e ∈ E .
Each entity is represented by a globally unique identifier such as a
URI, IRI (Internationalized Resource Identifier), or XRI (eXtensi-
ble Resource Identifier). Additionally, arbitrary information can be
attached to the entities like predicates, values etc.

Each entity models a single referent r (e.g., Tim Berners-Lee –
the computer scientist, Tim Berners-Lee – the amateur photogra-
pher, the planet Mars) taken from a set of distinct referents R:
∀e ∈ E ∃r ∈ R | e |= r. For example, one could write:

http://w3.org/Berners-Lee/card#i |= Tim Berners-Lee (CS)

to express the fact that the entity corresponding to the above URL
models Tim Berners-Lee – the computer scientist. Referents can
evolve over time. We write rt1 to denote referent r at time t1.

We say that a pair of entities e1 and e2 are equivalent, and write
e1 ≡ e2, when the entities they stand for model the same referent:
e1 ≡ e2 iff ∃r ∈ R | e1 |= r ∧ e2 |= r. Pairs of entities which
do not satisfy this condition are non-equivalent. We say that an
entity e2 postdates another entity e1 and write e2 � e1 when both

model the same referent, but taken at different times: e2 � e1 iff
∃r | e1 |= rt1 ∧ e2 |= rt2 ∧ t2 > t1.

Using this framework, we want to answer the following two
classes of queries, without having access to any information con-
cerning the referents:
q1) [Entity Disambiguation] Which are the entities equivalent to

a given entity e?
q2) [Temporal Discrimination] Which are the entities postdating

a given entity e?
Those queries cover several recurring problems related to online
entity management. Query q1 would certainly be the most frequent
query posed in practice, for example to retrieve or integrate all data
corresponding to a given online entity. Query q2 is useful to retrieve
the most recent data, to automatically update data, or to keep track
of changes related to online entities.

4. IDMESH CONSTRUCTS
To answer the two aforementioned queries, we introduce a tax-

onomy of simple, declarative constructs that agents can use in or-
der to relate various entities. We introduce the equivalence relation
e1 ≡ e2 and its counterpart, the non-equivalence relation e1 6≡ e2
to allow the sources to express the fact that two entities are equiv-
alent or non-equivalent. Similarly, we introduce the predates (≺),
postdates (�), and equidates (‖) constructs to express a relation
between a pair of equivalent entities, but modeling their referent
at various points of time (t1 < t2, t1 > t2 and t1 = t2 re-
spectively). As they relate entities corresponding to the same ref-
erent, those three constructs all imply equivalence relations, i.e.,
e1{≺,�, ‖}e2 ⇒ e1 ≡ e2. Hence, we actually have to consider a
taxonomy of constructs relating entities at two levels of granularity.

In a perfect world, agents managing some entities would relate
the identifiers they use to represent their entities to related iden-
tifiers using the above constructs and thus explicitly answer the
queries posed above. Realistically on the Internet, however, a po-
tentially large fraction of relations will be missing, uncertain or
even erroneous: with the vibrant activities relating to mash-ups and
automatic entity matching, we can expect the majority of relations
to be created by software agents or programs, usually with a certain
confidence value. Furthermore, some human or software agents
might decide to lure the system for their own benefits (phishing,
spamming etc.) by voluntarily entering erroneous information. Fi-
nally, as individuals do not always agree, have limited knowledge,
and sometimes make mistakes, incorrect or contradicting relations
might be entered by legitimate agents.

We capture the uncertainty related to the relation between two
entities with a confidence value c. Writing e1 ≡c e2 expresses a
probabilistic equivalence between e1 and e2: P (e1 ≡ e2) = c. In
the following, we suppose that certain relations are implied when
confidence values are omitted, e.g, that e1 ≡ e2 and e1 ≡1.0 e2
encode the same information.

Figure 1 shows how to express the different constructs intro-
duced above using an XML serialization of RDF. Note that in a
large-scale deployment, different formats and already existing con-
structs (such as XFN rel:me links or OWL:sameas constructs) could
easily be integrated into this picture by taking advantage of syntac-
tic wrappers and decentralized integration techniques [11].

5. MAKING SENSE OUT OF IT
In the following, we study how to make sense out of the various

probabilistic links we have just described. We introduce a proba-
bilistic inference problem based on graphs of related entities. We
start by a brief example giving an intuitive idea of our method and
an overview of factor-graphs before delving into the core of our
approach.
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...
<rdfs:Class rdf:ID="Entity"/>
<rdf:Property rdf:ID="idMeshProperty"> 

<rdfs:domain rdf:resource="#Entity" /> 
<rdfs:range rdf:resource="#Entity" />

</rdf:Property>
<rdf:Property rdf:ID="LinkConfidence"> 

<rdfs:domain rdf:Statement /> 
<rdfs:range rdf:datatype="&xsd;decimal" />

</rdf:Property>
<rdf:Property rdf:ID="EquivalentTo"> 

<rdfs:subPropertyOf rdf:resource="#idMeshProperty" /> 
</rdf:Property>
<rdf:Property rdf:ID="NotEquivalentTo"> 

<rdfs:subPropertyOf rdf:resource="#idMeshProperty" /> 
</rdf:Property>
<rdf:Property rdf:ID="Predates"> 

<rdfs:subPropertyOf rdf:resource="#EquivalentTo" /> 
</rdf:Property>
<rdf:Property rdf:ID="Postdates"> 

<rdfs:subPropertyOf rdf:resource="#EquivalentTo" />
</rdf:Property>
<rdf:Property rdf:ID="Equidates"> 

<rdfs:subPropertyOf rdf:resource="#EquivalentTo" />
</rdf:Property>

<rdf:Description rdf:about="http://www.epfl.ch/">
<idMesh: NotEquivalentTo rdf:ID="link0001"

           rdf:resource="http://www.ethz.ch"/>
</rdf:Description>
<rdf:Description rdf:about="http://www.epfl.ch/">

<idMesh:EquivalentTo rdf:ID="link0002"
           rdf:resource="http://en.wikipedia.org/wiki/EPFL"/>
</rdf:Description>
<rdf:Description rdf:about="#link0002">

<idMesh:LinkConfidence 
           rdf:datatype="&xsd;decimal"> 0.9 </idMesh:LinkConfidence>
</rdf:Description>

Figure 1: The idMesh constructs expressed in an XML serial-
ization of RDF, along with an example expressing the relations
between three entities corresponding to two Swiss institutes of
technologies.

5.1 An Introductory Example
Figure 2 depicts a simple example where two sources, s1 and

s2, relate four entities e1 to e4 by defining equivalence links lk
between the entities with various confidence values c. We can cre-
ate two graphs from the links defined by the sources: a bipartite
source graph relating sources to the links they define with their
corresponding confidence values (Figure 2 i) and an entity graph
depicting how entities are related through the links (Figure 2 ii).
Let us suppose that source s1 is a trusted source (e.g., a well-known
source, which published his links on an openID-enabled website),
while s2 is an unknown malicious source. We make two observa-
tions by analyzing the graphs we have just introduced. First, we
can process the links differently depending on their sources. For
instance, the two links defined by s2 should be considered with
some care as they are defined by an unknown source. Second,
we can infer additional links by taking advantage of the fact that
the equivalence relation is symmetric and transitive. For instance,
(e1 ≡ e2) ∧ (e2 ≡ e4)⇒ (e1 ≡ e4).

Our probabilistic algorithm systematizes these two observations
to determine the most probable relation between pairs of entities.
For the network of Figure 2 for example, it first detects a conflict
for lk2−4, which is defined as non-equivalent by s1 and equivalent
by s2. Other conflicts are automatically detected, such as for the
links between e1, e3, and e4: s1 defines e1 and e3 as equivalent
and e1 and e4 as non-equivalent, while s2 declares e3 and e4 as
equivalent, which is impossible ((e1 ≡ e3) ∧ (e3 ≡ e4) should
imply (e1 ≡ e4), which is not the case as s1 defines e1 and e4
as non-equivalent). Taking into account all possible observations,
our algorithm lowers the confidence of the links declared by s2 and

lk1-2

e1

e4

lk1-3

lk3-4lk2-4

lk1-4

< e1  ≡ c1  e2 >
< e1  ≡ c2  e3 >
< e1  ≢ c3  e4 >
< e2  ≢ c4  e4 >

c

Trusted Source s1

 < e2  ≡ c5  e4 >
< e3  ≡ c6  e4 >

Unknown Source  s2

i)

ii)

e2 e3

lk1-2

s1 s2

lk1-3 lk1-4 lk2-4 lk3-4

c1 c2 c3 c5 c6c4

Source Graph

Entity Graph

Figure 2: An introductory example where two sources relate
four entities; two graphs can be derived from the statements
on the left: a source graph relating entity links to their sources
(i) and an entity graph capturing the relations between entities
(ii).

x1 x2 x3 x4

fA fB

µfA-x2(x2) µfB-x2(x2)

Figure 3: A simple factor-graph of four variables and two fac-
tors

concludes that e1, e2, and e3 are equivalent and different from e4.
We explain the details of our algorithm in the following.

5.2 A Quick Reminder on Factor-Graphs and
Message Passing Schemes

We use factor-graphs to graphically represent probabilistic vari-
ables and distributions in the following. Note that our approach is
not bound to this representation – we could use series of conditional
probabilities only or any other probabilistic graphical model – but
we decided to use factor-graph for their illustrative merits.

We give below a brief introduction to factor-graphs and
message-passing techniques. For a more in-depth coverage,
we refer the interested reader to one of the many overviews
on this domain, such as [19]. Probabilistic graphical models
are a marriage between probability theory and graph theory.
In many situations, one can deal with a complicated global
problem by viewing it as a factorization of several local functions,
each depending on a subset of the variables appearing in the
global problem. As an example, suppose that a global function
g(x1, x2, x3, x4) factors into a product of two local functions
fA and fB : g(x1, x2, x3, x4) = fA(x1, x2)fB(x2, x3, x4).
This factorization can be represented in a graphical form by the
factor-graph depicted in Figure 3, where variables (circles) are
linked to their respective factors (black squares).

Often, one is interested in computing a marginal of this global
function, e.g.,

g2(x2) =
X
x1

X
x3

X
x4

g(x1, x2, x3, x4) =
X
∼{x2}

g(x1, x2, x3, x4)
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where we introduce the summary operator
P
∼{xi} to sum over all

variables but xi. Such marginals can be derived in an efficient way
by a series of simple sum-product operations on the local function,
such as:

g2(x2) =

 X
x1

fA(x1, x2)

! X
x3

X
x4

fB(x2, x3, x4)

!
.

Interestingly, the above computation can be seen as the product of
two messages µfA→x2(x2) and µfB→x2(x2) sent respectively by
fA and fB to x2 (see Figure 3). The sum-product algorithm ex-
ploits this observation to compute all marginal functions of a factor-
graph in a concurrent and efficient manner. Message passing algo-
rithms traditionally compute marginals by sending two messages –
one in each direction – for every edge in the factor-graph. These
computations are known to be exact for cycle-free factor-graphs;
in contrast, applications of the sum-product algorithm in a factor-
graph with cycles only result in approximate computations for the
marginals [21]. However, some of the most exciting applications
of the sum-product algorithms (e.g., decoding of turbo or LDPC
codes) arise precisely in such situations. We show below that this
is also the case for factor-graphs modeling entity graphs.

5.3 Deriving a Factor-Graph to Retrieve
Equivalent Entities

We start by answering the first query on entity equivalence by
taking advantage of equivalent and non-equivalent relations defined
by the sources. We also indirectly take advantage of the predates,
postdates and equidates constructs which are defined as specialized
cases of equality constructs (see Sections 3 and 4). To answer this
query, we derive a probabilistic network from the entity and the
source graphs (see Figure 4). We describe this probabilistic net-
work in two steps: first its lower part, related to constraint satisfac-
tion, and then its upper part, which handles reputation-based trust
management.

5.3.1 Graph-Based Constraint Satisfaction
We start by defining a graph-based constraint satisfaction prob-

lem from the entity graph. We define constraints by taking advan-
tage of the symmetry and the transitivity of the equivalence rela-
tions. We introduce binary variables lk representing the equiva-
lent and non-equivalent links relating the entities. Link variables
lk can take values eq or noneq depending on whether they repre-
sent equivalence or non-equivalence relations. Obviously, P (lk =
eq)+P (lk = noneq) = 1 for our link variables. The initial values
of these variables can be defined by prior density functions.

Examining the graph of related entities, we observe that series
of equivalent and non-equivalent links form cycles, for example by
going from e1 to e2, e4, and back to e1 by following lk12, lk24, and
lk41 in Figure 4 ii. The equivalence relation we have defined in Sec-
tion 3 is symmetric: ∀e1, e2 ∈ E , e1 ≡ e2 ⇒ e2 ≡ e1. It is also
transitive: ∀e1, e2, e3 ∈ E , e1 ≡ e2∧e2 ≡ e3 ⇒ e1 ≡ e3. As two
entities cannot be at the same time equivalent and non-equivalent,
we observe that no cycle can contain exactly one non-equivalent
link: n−1 equivalent links in a cycle of n links lk1, . . . , lkn oblig-
atory imply – by symmetry and transitivity – that the last link is
equivalent as well. Thus, we pose a graph constraint gc() for each
cycle discovered in the graph to forbid variable assignments where
exactly one link is non-equivalent in the cycle. The graph constraint
function gc() relating links lk12, . . . , lkn can be defined in a com-
pact form by the the following conditional probability function:

P (gc = 1|lk1, . . . , lkn) =


0 if exactly one noneq
1 otherwise

and by fixing the constraint variable gc to 1 to rule out impossible
assignments of lk1, . . . , lkn variables.

This conditional probability function allows us to define a
global constraint satisfaction factor-graph from a network of
interconnected entities. We create the factor-graph by linking
variables representing the equivalence links to constraint functions
whenever a link is part of a cycle in the graph. The algorithm
to derive the constraint satisfaction factor-graph is given in
Algorithm 1. The lower part of Figure 4 iii) – consisting of
link variables lk together with their prior distributions and their
graph constraint functions gc() – gives an example of such a
factor-graph. There are three constraint functions in this graph, as
three cycles can be identified from the entity graph.

Algorithm 1 Deriving a constraint satisfaction factor-graph
/*create variable and prior factor for each lk link*/
for all link lk in entity graph do

add lk.factor to constraint-factor-graph;
add lk.variable to constraint-factor-graph;
connect lk.factor to lk.variable;

end for
for all cycles c in entity graph do

/*create factor representing constraint for each cycle*/
add gc.factor to constraint-factor-graph;
for all link lk in cycle c do

/*connect link variables to cycle constraints*/
connect gc.factor to lk.variable;

end for
end for

The constraint factor-graphs allow us to detect inconsistencies in
the network of entities by inferring posterior probabilities for the lk
variables through iterative sum-product operations (see Section 5.2
above, and the performance evaluation in Section 7). Note that the
cycles are typically not independent of each other in this setting:
two cycles are correlated as soon as they share one equivalence link.
Thus, local updates on the entity graph (e.g., new equivalence link)
can have repercussions on distant variables in the factor-graph.

5.3.2 Reputation-Based Trust Management
After having defined a constraint satisfaction factor-graph, we

define a reputation-based trust management factor-graph for the
sources s ∈ S providing equivalence/non-equivalence links based
on the source graph.

Our goal is this time to maintain probabilistic trust variables t
attached to the different sources s. We define trust variables as tak-
ing value trusted if the corresponding source is trustworthy (i.e.,
provides correct relations between the entities) and untrusted oth-
erwise. Each trust variable has a prior distribution t() capturing
the initial degree of trust for this source. For example, trust vari-
ables can be initialized to high trusted values when agents operate
within a closed domain (e.g., in the http://www.mit.edu domain) or
when they can be authenticated and are well-known. Other mech-
anisms, such as reputation-based trust mechanisms from P2P net-
works [1], or trust metrics for online communities [8] can also be
used to initialize the trust variables. In case no information is avail-
able for some source, prior distributions are initialized to {0.5, 0.5}
by default (maximum entropy principle).

The trust management part of the factor-graph serves three pur-
poses: it takes into account external trust values as described above,
it updates the trust variables whenever conflicts are detected by the
constraint satisfaction graph, and ponders the confidence values at-
tached to the links by taking into account the trust variables of the
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Figure 4: Two sources declaring several links (i) to relate four entities (ii), resulting in a probabilistic network (iii), handling both
graph-based constraint satisfaction (lower part of iii) and reputation-based trust management (upper part of iii).

sources. We introduce initial value variables v taking values eq
when a link is considered as being equivalent and noneq other-
wise. The prior distribution of these variables is initialized with the
confidence values c specified by the sources: {c, 1− c} for equiv-
alence links and {1 − c, c} for non-equivalence links. For a list of
sources s1, . . . , sn with trust variables t1, . . . , tn proposing initial
values v1, . . . , vn for a given link, we compute a combined value
for the link using the following conditional function cv():

P (cv = eq|{(t1, . . . , tn), (v1, . . . , vn)})

=

( P
i 1(vi=eq ∧ ti=trusted)P

i 1(ti=trusted)
if ∃ti|ti = trusted

1/2 otherwise

where 1(cond) is an indicator function equal to 1 when cond is true
and 0 otherwise, and where cv is a binary variable taking values eq
or noneq.

The combined value function cv() combines the different initial
values by systematically considering the values proposed by un-
trustworthy sources as being less important than values proposed
by trustworthy sources. For example, for only one source s with a
probability of being trustworthy pt suggesting an initial value for
a link with a probability c of being equivalent, the trust function
gives as output P (cv = eq) = pt ∗ c + 1/2(1 − pt). That is,
it reduces the values proposed by untrustworthy sources to utterly
uncertain values (P (cv = eq) = 1/2 if pt = 0), while keeping the
values of trustworthy sources intact (P (cv = eq) = c if pt = 1).

In addition, we define constraints to forbid impossible value as-
signments for t1, . . . , tn and v1, . . . , vn. As two entities cannot
be at the same time equivalent and non-equivalent, we rule out
impossible assignments when conflicting values (i.e., both equiv-
alent and non-equivalent values) are simultaneously considered by
trusted sources using the following conditional probability function
tc():

P (tc = 1|{(t1, . . . , tn), (v1, . . . , vn)})

=


1 if vi = vj ∀(vi, vj) | ti = tj = trusted
0 otherwise

and by fixing the constraint variable tc to 1. This constraint would
for example rule out cases where two trustworthy sources (t1 =
t2 = trusted) simultaneously consider a link as being respectively
equivalent (v1 = eq) and non-equivalent (v2 = noneq). Note
that a similar constraint could be defined at the entity graph level
(see preceding section) by considering a multigraph model for the
entity graph and analyzing cycles of length two, at the expense of
producing much bigger probabilistic models.

We construct the factor-graph corresponding to the trust part
by producing one combined value factor cv() for each link in the
source graph, by connecting trust variables t and initial value vari-
ables v to those factors for each source declaring a relation for the
link, and by adding trust constraints factors tc() whenever appro-
priate (see Algorithm 2).

Algorithm 2 Deriving a trust factor-graph from a source graph
/*add combined value factor cv() for each link lk*/
for all link lk in source graph do

add cv.factor to trust-factor-graph;
/*add trust variable and initial value variables*/
for all source s with trust variable t connected to lk in source
graph with initial value v do

add t.variable to trust-factor-graph;
connect cv.factor to t.variable;
add v.variable to trust-factor-graph;
connect cv.factor to v.variable;

end for
/*add trust constraints */
if cv.factor.neighbors() > 2 then

add tc.factor to trust-factor-graph;
for all neighbor in cv.factor.neighbors() do

connect tc.factor to neighbor;
end for

end if
end for

5.3.3 Putting It Altogether
Finally, we connect the trust factor-graphs to the constraint sat-

isfaction factor-graph by replacing the prior values of the link vari-
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ables lk by the values cv given as output by the combined value
functions cv() (see Figure 4). This connection generates more ac-
curate prior values for the link variables lk in the constraint satis-
faction factor-graph. These values are used in the constraint sat-
isfaction problem to infer more plausible values for the link vari-
ables. On the trust factor-graph side, lk variables are now fed to
combined value functions cv() as cv values. These values, derived
from the constraint-satisfaction part, influence the trust values t of
the agents by lowering the trustworthiness of the agents propos-
ing very improbable initial values v from a constraint-satisfaction
perspective. Thus, we create an autocatalytic, reinforcement pro-
cess where constraint-satisfaction helps discovering untrustworthy
sources and where trust management delivers in return more rea-
sonable prior values for the link variables.

5.4 Deriving a Factor-Graph to Retrieve Up-
to-date Entities

To answer the second query we analyze the predate, postdate,
and equidate relations defined by the sources. This case can be seen
as a generalization of the equivalence case described above. Links
are this time defined as ternary variable taking value pre, post, or
equi. The initial values are also mapped onto ternary variables. For
example, if a link is described as lk = pre with confidence c, the
prior distribution of initial value v would be (c, 1−c

2
, 1−c

2
), where

the first element corresponds to the probability of the initial value
being pre, the second to being post and the third to being equi.
We have chosen this model for simplicity but other models such as
Dempster-Shafer belief functions [25] could be used as well.

It should be noted that the links corresponding to pre and post
are directed. As for the equivalence case, constraints arise because
of the transitivity properties of the three relations. As an example,
if e1 ≺ e2 and e2 ≺ e3 then e1 ≺ e3. As a result, no directed cycle
can have a single equi link while all the other links are either pre
or post. Other constraints can be similarly inferred. We pose the
directed cycle constraint function gc() relating links lk1, . . . , lkn

which form a cycle as:

P (gc = 1|lk1, . . . , lkn) =8><>:
0 if exactly one equi, others either pre or post
0 if exactly one pre or post, others equi
0 if all pre or all post
1 otherwise.

By fixing the constraint variable gc to 1 impossible assignments of
the lk1, . . . , lkn variables are ruled out. The trust-related deriva-
tions are similar to the equivalence case, with ternary variables for
the initial values v.

5.5 Query Answering
Once the factor-graphs defined above have been built, answer-

ing the two queries from Section 3 is straightforward. Running an
inference algorithm on the factor-graphs creates posterior values
for the link variables lk. Query q1 can for example be answered
by starting to crawl the entity graph at entity e and returning the
set of entities e′ encountered when following all links lk such that
P (lk = eq) > P (lk = noneq). Query q2 can be answered in a
similar manner, by following all directed links such that P (lk =
pre) > P (lk = equi) ∧ P (lk = pre) > P (lk = post) and
by backtracking on all links such that P (lk = post) > P (lk =
equi) ∧ P (lk = post) > P (lk = pre).

6. SYSTEM PERSPECTIVE
The scheme proposed above defines a probabilistic model with a

potentially very large number of entities originating from a flurry of
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online sources. Storing entities and answering queries on a single
machine would limit the size of the entity graphs that can be han-
dled. In the following, we give a succinct description of idMesh,
a highly parallel, scalable, asynchronous, and shared-nothing peer
data management infrastructure tackling the issue of distributing
our problem over large sets of machines simultaneously.

6.1 Architectural Overview
The design of our system builds on some of our previous work on

peer data management infrastructures [11] and decentralized prob-
abilistic networks for schema mappings [10]. The general architec-
ture of our system is given in Figure 5. idMesh is based on a struc-
tured overlay built on top of the Internet. The overlay layer (middle
part of Figure 5) creates and maintains a load-balanced identifier
space partitioned over the peers. We take advantage of this iden-
tifier space to share identifiers and semi-structured data relating to
entities using the GridVine [11] peer data management system. All
data is kept in local databases at the peers, but indexed globally us-
ing the identifier space of the overlay network. Data can be fed into
the system by Web crawlers or created by the participating peers
directly depending on the application.

6.2 Distributed Probabilistic Inference
In addition to inserting and correctly indexing tuples pertaining

to the entities and the entity links, the peers collaboratively create
a factor-graph to infer equivalence and postdate relations between
entities. The peer responsible for inserting/updating a link is also
responsible for creating probabilistic nodes (variables, factors) and
edges related to this link. It relies on the global index whenever
necessary, for example when searching for link cycles to create the
constraint part of the factor-graph. The roles of the probabilistic
nodes are to receive messages, to compute values using functions,
and to send updated messages to other nodes as described in the
preceding section in order to infer values for the entity links.

We use the identifier space maintained by the overlay layer to
distribute the probabilistic graph. The simplest solution to map
the probabilistic graph to the identifier space is to handle all node
separately by creating an identifier for each node and placing it
at the corresponding peer(s) in the identifier space. This however
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creates significant network traffic between the peers: as explained
in Section 5.2, each round of the inference process requires two
messages per edge in the factor-graph. For instance, our exam-
ple factor-graph (Figure 4) would then generate 62 messages per
inference round. We have thus to find the right tradeoff between
distribution and centralization of the probabilistic nodes over the
identifier space. Distribution is desirable to parallelize the work-
load using as many peers as possible and to provide better fault
tolerance. Centralization is compelling for reducing network traffic
and minimizing the number of updates sent to the peers when a link
is created, updated, or deleted.

Our approach partitions the factor-graph by regrouping logically
related nodes to reduce network traffic while keeping the number
of updates triggered by link creation/deletion small and ensuring a
good degree of distribution on the overlay. We regroup all nodes
directly pertaining to a link (i.e., the inferred link value, the value
function, and the initial link value) at one point in the overlay. We
also regroup the graph constraints and the trust constraints with
one of the links / sources they are related to. In this manner, we
reduce the number of network messages required for an inference
round on our example graph from 62 messages to 26 messages only.
An extensive analysis of the partitioning trade-off is outside of the
scope of this paper. However, we experimentally show in Section 7
that our partitioning provides a good parallelization of the problem
in a P2P deployment.

7. PERFORMANCE EVALUATION
We give in the following a performance evaluation of our

approach deployed within the idMesh system. The system has
many parameters and dimensions. We focus below on what we
believe are the most important results and metrics to capture
the general behavior of our system. Specifically, we focus on
the accuracy of the inference based on the constraint graph,
the trust graph, or both, and on the scalability of our system.
Because of space constraints, we focus on entity disambiguation
factor-graphs only. Constraint-satisfaction factor-graphs for
temporal discrimination are structurally similar and exhibit the
same properties.

7.1 Performance of the Inference Network

7.1.1 Graph-Based Constraint-Satisfaction
We start by studying the accuracy of the inference based on the

constraint-satisfaction part only. For the experiments, we create
networks of i entities, split into i/10 groups of equivalent enti-
ties. We create l equivalence/non-equivalence links by randomly
selecting pairs of entities. For this experiment, we set the prior dis-
tributions of the links to (0.9, 0.1) for the links relating equivalent
entities, and to (0.1, 0.9) for the links relating non-equivalent en-
tities. These values are swapped for erroneous links, which repre-
sent a variable fraction of the links. The results presented hereafter
are averaged over 20 consecutive runs with confidence intervals at
95%.

One important parameter for the graph-based constraint satisfac-
tion is the density of links in the entity graph. This density has
an influence on the number of cycles in the graph, and thus on the
number of constraints. Social networks tend to contain very high
number of long cycles (e.g., in scale-free networks, where the num-
ber of large loops grows exponentially with the size of the loops
considered [4]); the longer the cycle, however, the less interesting
it is from an inference point of view as it relates to a higher number
of variables (and hence represents less precise information). Fig-
ure 6 shows the effect of considering smaller or bigger loops for
networks with various link densities. We show on the graph the

Figure 6: Inference accuracy and coverage for the graph-based
constraint-satisfaction, for networks of 50 entities, 100/150/200
links, 10% erroneous links, and varying cycle length max.

Figure 7: Inference accuracy for the graph-based constraint-
satisfaction, for networks of 50 and 500 entities, 150/3000 links,
and a varying fraction of erroneous links

coverage of the inference, defined as the fraction of links that are
taken into account by the inference (i.e., fraction of links that are in
at least on cycle) and the accuracy of the inference, defined as the
fraction of links inferred correctly.

The accuracy of the inference basically does not depend on the
length of the cycles considered. For dense networks (l = 150
or l = 200), however, considering longer cycles presents a slight
disadvantage because of the reason explained above. Considering
longer cycles is however beneficial for the coverage of the infer-
ence, especially for sparse networks where few shorter cycles exist.
In the following, we consider relatively dense networks and cycles
up to size 4.

Figure 7 shows the accuracy of the graph-based constraint-
satisfaction inference for a varying fraction of erroneous links
from 0 to 50%. Quite naturally, the more erroneous links, the
more difficult it is for the constraints to determine which links
are equivalent or and which are not. Note that taking different
values for the priors (e.g., 0.8 or 0.7) does not change the results
significantly. Note also that the size of the graph has no impact on
the accuracy of the inference: Figure 7 considers two networks,
one with 50 entities and 150 links and a second one with 500
entities and a number of links (3000) chosen to get a density of
cycles similar to the first network.

7.1.2 Trust Management
We now turn our attention to the trust management part of the

graph by discarding all cycles in the entity graph. We consider
three simple classes of sources for illustration purposes: legitimate
sources, which are trusted (P (t = trusted) = 1) and define cor-
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Figure 8: Fraction of matchers inferred as untrustworthy
(P (t = trusted) < 0.25) by the trust management part in a
network of 50 entities, 150 links, 50 sources each declaring val-
ues for 1-10 links, and a growing fraction of matchers

rect links with confidence c = 1. Automatic matcher sources,
which are initially unknown to the system (P (t = trusted) =
0.5), define correct links 90% of the time, and give confidence
c = 0.9 to their links. Spammer sources, finally, are unknown
as well (trust P (t = trusted) = 0.5), define incorrect links, and
give confidence c = 1.0 to their links. Note that our approach
can handle more complex behaviors (e.g., occasional cheaters) in
a comparable manner. We create random networks of 50 entities
interlinked by 150 links. We then create 50 sources, and let each
source define a value for 1 to 10 of the links.

The goal of the trust management part is to determine which
sources can be trusted and which cannot. For populations consist-
ing of a mix of legitimate and spammer sources only, the algorithm
can always determine which sources can be trusted. Things are
more complex when matchers are present, as matchers sometimes
propose correct values, and sometimes not. Figure 8 shows the
fraction of matchers considered as highly untrustworthy (inferred
trust P (t = trusted) < 0.25), starting with a population of spam-
mers or a population of legitimate sources initially, and gradually
replacing a fraction of the sources by matchers. Matchers add here
uncertainty to the trust process. In case no source can be trusted
initially (e.g., no legitimate source initially), matchers get increas-
ingly considered as untrustworthy as more and more conflicting
evidences emerge.

7.1.3 Combined Analysis
Figure 9, finally, gives the accuracy of our approach at inferring

equivalence and non-equivalence relations for the links when in-
tegrating trust management and constraint satisfaction. The graph
considered has 50 entities, 150 links, 50 sources each declaring
values for 1 to 10 links. All sources are legitimate initially, and
then are gradually replaced by matchers or spammers. We observe
that the resulting inference process is very resilient: for example, it
successfully discovers the relations between entities with an accu-
racy of 75% even when 90% of the sources are actually spammers
feeding erroneous information into the system.

7.2 System Scale-Up
All operations related to the factor-graph are handled in a de-

centralized and asynchronous way by the idMesh platform. Infer-
ence is handled by sending local messages between the probabilis-
tic nodes belonging to the same partition, and by sending P2P mes-
sages between different partitions. A probabilistic node sends an
update messages to its neighbors whenever it receives at least half
of the update messages it is expecting from the other nodes. It stops

Figure 9: Inference accuracy for networks of 50 entities, 150
links, 50 sources each declaring values for 1-10 links, and an
initial population of legitimate sources gradually replaced by
matchers or spammers.

Figure 10: Average number of local and distant messages sent
by a peer to solve inference, starting with 50 peers, 1000 en-
tities, 3000 links and 100 sources, and doubling all values at
every step.

sending updates whenever the new value it has to send is within 5%
of the two previous values it has already sent. Implicitly then, the
inference process stops when all probabilistic nodes decide to stop
sending updates.

To measure the scalability of our system, we consider both local
messages sent from one probabilistic node to another probabilistic
node on the same peer, and distant messages sent to another par-
tition and requiring P2P routing. We start with a network of 50
peers, 1000 entities, 3000 links and 100 sources, and double all
values to generate scale-up versions of the graphs for 100, 200, and
finally 400 peers. In this setting, each link receives a value from
two sources. The tests were conducted on a local area cluster with
50 to 400 machines (we run one peer per machine), and averaged
over 5 runs. As can be seen in Figure 10, the number of messages
generated scales sub-linearly with the size of our problem, mainly
due to the rarefaction of short cycles in the larger networks we con-
sider.

7.3 Comparison With Previous Approaches
As discussed in Section 2, classical entity resolution mechanisms

focus on entity-analyses and cannot be used in link-only settings
such as those described above. To the best of our knowledge, all
related link-based entity resolution approaches were developed in
contexts anterior to the linked data emergence and would be ill-
suited to our setting as well, since they do not explicitly take into
account the uncertainty related to the links. Methods based on
geodesic (i.e., path-based) distances in the entity graph such as [13]
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or [20] cannot discriminate uncertain links based on network dis-
persed evidences. They would thus either discard uncertain infor-
mation from the matchers and spammers, or treat uncertain infor-
mation on a uniform basis, generating poor results in both cases
(low precision stemming respectively from low coverage and er-
roneous confidence values for the links). Graph partitioning and
clustering methods such as [3] or [22] would suffer from the same
fundamental problems, in the sense that they would not be able to
disambiguate the links used to analyze the structure of the graph
without the ground-truth related to the trust value of the sources.

In the end, the distinctiveness of our approach lies in the appli-
cation of two core Emergent Semantics [9] principles that cannot
be emulated by previous approaches: the analysis of the transitive
closures of the probabilistic links, and the reinforcement of global
information through network dispersed local evidences.

8. CONCLUSIONS
As the data Web develops, managing heterogeneous online en-

tities is becoming a key problem impeding online data processing
and information reuse. Current approaches mostly focus on match-
ing pairs of entities, either by asking the help of end-users or by
creating automatic matchers. We proposed in this paper a differ-
ent approach, based on an analysis of graphs of interlinked entities.
Our method complements previous approaches, and could be used
in combination with them (in fact, the OKKAM project is investi-
gating such possibilities). Our approach leverages entity relation-
ships to identify constraints and to resolve conflicts by handling
trust metrics attached to the sources declaring the relationships.

The technique we presented can be extended in many ways. One
compelling extension would be to generalize the constructs we de-
fined to answer other classes of queries. An interesting example
would be the relatedness relationship. The semantics of this rela-
tionship are not well defined in general, but could be expressed in
many specific contexts, for example for several variations of rel
tags or FOAF links.
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