22 research outputs found

    Optimization of energy efficiency in data and WEB hosting centers

    Get PDF
    Mención Internacional en el título de doctorThis thesis tackles the optimization of energy efficiency in data centers in terms of network and server utilization. For what concerns networking utilization the work focuses on Energy Efficient Ethernet (EEE) - IEEE 802.3az standard - which is the energy-aware alternative to legacy Ethernet, and an important component of current and future green data centers. More specifically the first contribution of this thesis consists in deriving and analytical model of gigabit EEE links with coalescing using M/G/1 queues with sleep and wake-up periods. Packet coalescing has been proposed to save energy by extending the sojourn in the Low Power Idle state of EEE. The model presented in this thesis approximates with a good accuracy both the energy saving and the average packet delay by using a few significant traffic descriptors. While coalescing improves by far the energy efficiency of EEE, it is still far from achieving energy consumption proportional to traffic. Moreover, coalescing can introduce high delays. To this extend, by using sensitivity analysis the thesis evaluates the impact of coalescing timers and buffer sizes, and sheds light on the delay incurred by adopting coalescing schemes. Accordingly, the design and study of a first family of dynamic algorithms, namely measurement-based coalescing control (MBCC), is proposed. MBCC schemes tune the coalescing parameters on-the-fly, according to the instantaneous load and the coalescing delay experienced by the packets. The thesis also discusses a second family of dynamic algorithms, namely NT-policy coalescing control (NTCC), that adjusts the coalescing parameters based on the sole occurrence of timeouts and buffer fill-ups. Furthermore, the performance of static as well as dynamic coalescing schemes is investigated using real traffic traces. The results reported in this work show that, by relying on run-time delay measurements, simple and practical MBCC adaptive coalescing schemes outperform traditional static and dynamic coalescing while the adoption of NTCC coalescing schemes has practically no advantages with respect to static coalescing when delay guarantees have to be provided. Notably, MBCC schemes double the energy saving benefit of legacy EEE coalescing and allow to control the coalescing delay. For what concerns server utilization, the thesis presents an exhaustive empirical characterization of the power requirements of multiple components of data center servers. The characterization is the second key contribution of this thesis, and is achieved by devising different experiments to stress server components, taking into account the multiple available CPU frequencies and the presence of multicore servers. The described experiments, allow to measure energy consumption of server components and identify their optimal operational points. The study proves that the curve defining the minimal CPU power utilization, as a function of the load expressed in Active Cycles Per Second, is neither concave nor purely convex. Instead, it definitively shows a superlinear dependence on the load. The results illustrate how to improve the efficiency of network cards and disks. Finally, the accuracy of the model derived from the server components consumption characterization is validated by comparing the real energy consumed by two Hadoop applications - PageRank and WordCount - with the estimation from the model, obtaining errors below 4:1%, on average.This work has been partially supported by IMDEA Networks Institute and the Greek State Scholarships FoundationPrograma Oficial de Doctorado en Ingeniería TelemáticaPresidente: Marco Giuseppe Ajmone Marsan.- Secretario: Jose Luis Ayala Rodrigo.- Vocal: Gianluca Antonio Rizz

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    A Survey on Energy Consumption and Environmental Impact of Video Streaming

    Full text link
    Climate change challenges require a notable decrease in worldwide greenhouse gas (GHG) emissions across technology sectors. Digital technologies, especially video streaming, accounting for most Internet traffic, make no exception. Video streaming demand increases with remote working, multimedia communication services (e.g., WhatsApp, Skype), video streaming content (e.g., YouTube, Netflix), video resolution (4K/8K, 50 fps/60 fps), and multi-view video, making energy consumption and environmental footprint critical. This survey contributes to a better understanding of sustainable and efficient video streaming technologies by providing insights into the state-of-the-art and potential future directions for researchers, developers, and engineers, service providers, hosting platforms, and consumers. We widen this survey's focus on content provisioning and content consumption based on the observation that continuously active network equipment underneath video streaming consumes substantial energy independent of the transmitted data type. We propose a taxonomy of factors that affect the energy consumption in video streaming, such as encoding schemes, resource requirements, storage, content retrieval, decoding, and display. We identify notable weaknesses in video streaming that require further research for improved energy efficiency: (1) fixed bitrate ladders in HTTP live streaming; (2) inefficient hardware utilization of existing video players; (3) lack of comprehensive open energy measurement dataset covering various device types and coding parameters for reproducible research

    On energy consumption of switch-centric data center networks

    Get PDF
    Data center network (DCN) is the core of cloud computing and accounts for 40% energy spend when compared to cooling system, power distribution and conversion of the whole data center (DC) facility. It is essential to reduce the energy consumption of DCN to esnure energy-efficient (green) data center can be achieved. An analysis of DC performance and efficiency emphasizing the effect of bandwidth provisioning and throughput on energy proportionality of two most common switch-centric DCN topologies: three-tier (3T) and fat tree (FT) based on the amount of actual energy that is turned into computing power are presented. Energy consumption of switch-centric DCNs by realistic simulations is analyzed using GreenCloud simulator. Power related metrics were derived and adapted for the information technology equipment (ITE) processes within the DCN. These metrics are acknowledged as subset of the major metrics of power usage effectiveness (PUE) and data center infrastructure efficiency (DCIE), known to DCs. This study suggests that despite in overall FT consumes more energy, it spends less energy for transmission of a single bit of information, outperforming 3T

    Palvelinkeskusten kasvun purku - kokeellinen tutkielma

    Get PDF
    Due to the massive increase in demand for cloud services, and popularity of mobile devices, the number of data centers and the amount of energy consumed by data centers is constantly growing. IT hardware does become more energy efficient according to Koomey's law, but the power proportinality of, e.g., servers and network switches is still quite poor. In this thesis, the trends in data center energy consumption and efficiency is closely examined, and some alternative methods for reversing the trend of data center power consumption are considered. In the experimental phase, a pilot data center is built and a basic web service architecture is designed on top of it in order to study how optimization and allocation of resources affect the quality of experience of the service. The results from the measurements indicate that, for this particular system, a surprisingly small amount of application processing server instances was required for near optimal quality of experience.Pilvipalveluiden kysynnän ja mobiililaitteiden suosion valtavan kasvun vuoksi palvelinkeskusten lukumäärä ja energiankulutus on maailmanlaajuisesti jatkuvassa kasvussa. Vaikka IT-laitteiston energiatehokkuus paraneekin jatkuvasti Koomeyn lain mukaisesti, on esimerkiksi palvelinten ja verkkokytkinten tehonkulutus edelleen varsin epädynaamista. Tässä opinnäytetyössä tutkitaan palvelinkeskusten energiankulutuksen ja energiatehokkuuden kehityssuuntia ja selvitetään vaihtoisia toimintatapoja yllä mainitun kehityssuunnan kääntämiseksi. Kokeellisesta osiota varten rakennettiin pilottipalvelinkeskus ja sinne suunniteltiin tavanomainen verkkopalveluarkkitehtuuri, jotta olisi mahdollista tutkia kuinka optimointi ja resurssien allokointi vaikuttavat palvelun käyttökokemukseen. Mittausten tulokset osoittivat, että tässä kyseisessä järjestelmässä yllättävän pieni määrä sovelluspalvelimia riittää lähes optimaalisen käyttökokemuksen tarjoamiseen

    Green Computing - Desktop Computer Power Management at the City of Tulsa

    Get PDF
    One type of Green Computing focuses on reducing power consumption of computers. Specialized software like 1E/Nightwatchman aids in reducing the power consumption of desktop computers by placing them in a low power state when not in use. This thesis describes the implementation of 1E/Nightwatchman power management software on two thousand desktop computers at the City of Tulsa. It shows the method used to predict power savings of 100,000.00 per year and compares the prediction to the actual savings after one year of operation.Computer Scienc

    Green Resource Management in Distributed Cloud Infrastructures

    Get PDF
    Computing has evolved over time according to different paradigms, along with an increasing need for computational power. Modern computing paradigms basically share the same underlying concept of Utility Computing, that is a service provisioning model through which a shared pool of computing resources is used by a customer when needed. The objective of Utility Computing is to maximize the resource utilization and bring down the relative costs. Nearly a decade ago, the concept of Cloud Computing emerged as a virtualization technique where services were executed remotely in a ubiquitous way, providing scalable and virtualized resources. The spread of Cloud Computing has been also encouraged by the success of the virtualization, which is one of the most promising and efficient techniques to consolidate system's utilization on one side, and to lower power, electricity charges and space costs in data centers on the other. In the last few years, there has been a remarkable growth in the number of data centers, which represent one of the leading sources of increased business data traffic on the Internet. An effect of the growing scale and the wide use of data centers is the dramatic increase of power consumption, with significant consequences both in terms of environmental and operational costs. In addition to power consumption, also carbon footprint of the Cloud infrastructures is becoming a serious concern, since a lot of power is generated from non-renewable sources. Hence, energy awareness has become one of the major design constraints for Cloud infrastructures. In order to face these challenges, a new generation of energy-efficient and eco-sustainable network infrastructures is needed. In this thesis, a novel energy-aware resource orchestration framework for distributed Cloud infrastructures is discussed. The aim is to explain how both network and IT resources can be managed while, at the same time, the overall power consumption and carbon footprint are being minimized. To this end, an energy-aware routing algorithm and an extension of the OSPF-TE protocol to distribute energy-related information have been implemented
    corecore