
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Joint flow routing-scheduling for energy efficient software defined data center
networks
A prototype of energy-aware network management platform
Zhu, H.; Liao, X.; de Laat, C.; Grosso, P.
DOI
10.1016/j.jnca.2015.10.017
Publication date
2016
Document Version
Final published version
Published in
Journal of Network and Computer Applications
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Zhu, H., Liao, X., de Laat, C., & Grosso, P. (2016). Joint flow routing-scheduling for energy
efficient software defined data center networks: A prototype of energy-aware network
management platform. Journal of Network and Computer Applications, 63, 110-124.
https://doi.org/10.1016/j.jnca.2015.10.017

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1016/j.jnca.2015.10.017
https://dare.uva.nl/personal/pure/en/publications/joint-flow-routingscheduling-for-energy-efficient-software-defined-data-center-networks(9a543c18-3ebf-4e90-81c8-feb9281f3ef7).html
https://doi.org/10.1016/j.jnca.2015.10.017


Journal of Network and Computer Applications 63 (2016) 110–124
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
http://d
1084-80

n Corr
E-m
journal homepage: www.elsevier.com/locate/jnca
Joint flow routing-scheduling for energy efficient software defined
data center networks
A prototype of energy-aware network management platform

Hao Zhu a,n, Xiangke Liao b, Cees de Laat a, Paola Grosso a

a System and Network Engineering, University of Amsterdam, The Netherlands
b Department of Computer, National University of Defense Technology, Changsha, China
a r t i c l e i n f o

Article history:
Received 20 March 2015
Received in revised form
3 August 2015
Accepted 5 October 2015
Available online 9 February 2016

Keywords:
OpenNaaS
Energy monitoring
Energy-aware routing
SDN
x.doi.org/10.1016/j.jnca.2015.10.017
45/& 2016 Elsevier Ltd. All rights reserved.

esponding author. Tel.: +86 17077430374.
ail addresses: h.zhu@uva.nl, haozhu@nudt.edu
a b s t r a c t

Data centers are a cost-effective infrastructure for hosting Cloud and Grid applications, but they do incur
tremendous energy cost and CO2 emissions. Today's data center network architectures such as Fat-tree
and BCube are over-provisioned to guarantee large network capacity and meet peak performance
requirement. Networks suffer from inefficient power usage when data center traffic is not high. A
solution to this problem is the adoption of network management platform such as OpenNaaS, which can
be augmented with energy-aware capabilities. We developed a component for energy monitoring and
routing in OpenNaaS. Energy-aware OpenNaaS can support different types of OpenFlow controller; it
inherits and enhances network management capabilities, e.g. dynamically obtaining power and topology.

In this paper we also discuss the evaluation and selection of energy-aware routing strategies based on
an initial prototype of energy-aware OpenNaaS. The target strategies are fine-grained as they combine
flow routing algorithms that make routing decisions for the flows and flow scheduling algorithms that
schedule the flows on the same link. Differently from previous routing work which focuses on power-
minimization problem in data center networks, we aim to optimize energy consumption. Our simulation
shows that the combination of priority-based shortest routing and exclusive flow scheduling achieves
about 5%–35% higher energy efficiency without performance degradation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Data centers are a cost-effective infrastructure for hosting
Cloud and Grid applications but they do incur tremendous energy
cost and CO2 emissions. In the total energy footprint of data cen-
ters, the network component has rarely been considered the most
relevant component for optimization, given its lower contribution
(only 10–20% of the total power Greenberg et al., 2008) in respect
to other components such as servers and cooling. However, the
proportion of energy consumed by the network components can
be up to 50% if optimal power management techniques are used
on the server-side (Abts et al., 2010). This occurs particularly in
scientific data centers where large volumes of data are frequently
transported. It is therefore crucial to reduce the energy con-
sumption of networks in data centers.

Advanced network architectures in data centers such as Fat-tree
(Al-Fares et al., 2008) and BCube (Guo et al., 2009) are usually over-
.cn (H. Zhu).
provisioned, with full-connected topologies and multi-path routing
to guarantee large network capacity and high robustness. A large
number of network resources are used to meet performance
requirements at peak times. However, these resources are usually
underused and rarely work at the peak performance. Unfortunately,
networks in a data center are not power proportional – networks
with low loads still consume more than 90% of the power used
during the busiest hours (Heller et al., 2010). They effectively suffer
from inefficient power usage when traffic is not heavy.

Energy-aware routing techniques are effective approaches that
can fix this problem. They are in essence strategies which focus on
the energy state of the network, e.g. energy consumption or CO2
emission rate. They make routing decisions to aggregate traffic
over a subset of links and devices in over-provisioned networks
and switch off unused network components.

There are two ways to implement energy-aware routing: one is
in IP networks, the other modality is to focus on data centers using
Software Defined Networking (SDN). In IP networks, we can for
example observe the development of a Green OSPF protocol
(Cianfrani et al., 2010). In SDN, in particular when looking at

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://dx.doi.org/10.1016/j.jnca.2015.10.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.10.017&domain=pdf
mailto:h.zhu@uva.nl
mailto:haozhu@nudt.edu.cn
http://dx.doi.org/10.1016/j.jnca.2015.10.017


H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 111
networks adopting OpenFlow (McKeown et al., 2008), control plane
(routing decision) decoupled from data plane (data forwarding) is
moved to a centralized controller. Energy-aware routing could be
easily implemented in the control plane. We work on data centers
using Software Defined Networking in this paper. The question is
what the most effective manner is to achieve this.

Previous studies, which we will further discuss in Section 3,
implemented energy-aware routing using various OpenFlow con-
trollers, such as NOX (NOX, 2014) and Beacon (Ericsson, 2013).
These implementation has two drawbacks. First, neither imple-
mentation can easily be migrated between SDN networks with
different types of SDN controllers because of incompatible struc-
ture and APIs. Second, energy-aware routing techniques rely on
precise information about current topology and traffic, but the
capabilities of the OpenFlow controllers are usually limited in their
ability to obtain this information, e.g. NOX can only discover the
network topology, and most of the controllers cannot obtain
topology or traffic statistics. Existing network management plat-
forms can support multiple types of controller, and this is quite
useful for multi-domain environment. They have no compatibility
problem when integrating new energy-optimizer modules into
them. They can provide the capabilities missing from the con-
trollers. Considering these factors as well as the extensible struc-
ture and powerful network management capabilities of OpenNaaS,
we decided to concentrate on OpenNaaS as a suitable platform for
the implementation of energy-aware routing in SDN.

We used the features of OpenNaaS to provide the capability to
monitor energy usage and make energy-aware routing decisions.
Monitoring capabilities provide the data basis for the decision-
making of energy-aware routing as well as other power manage-
ment techniques in networks, e.g. adaptive link rate (ALR)
(Gunaratne et al., 2005). A previous information model is used to
define data elements and their structure for energy monitoring.
Green routing capabilities can calculate energy-aware paths and
push the paths to OpenFlow switches. We implemented an initial
prototype of energy-aware OpenNaaS and validated its function-
ality using greedy routing algorithm.

Same as greedy routing, previous energy-aware routing algo-
rithms solve the subset of networks for saving power consump-
tion. Considering that energy consumption equals to power con-
sumption multiplied by time, they could not be energy efficient
because they neglect the scheduling of flows on the same link in
their consolidated networks and the overall time of transferring
traffic flows. For the future version of energy-aware OpenNaaS, we
will implement a better routing strategy which can save more
energy than these algorithms. Before that, we aim to determine
this optimized strategy by evaluating the effect of different routing
strategies on energy consumption and network performance by
theoretical analysis and simulation experiments.

Our target routing strategies which are more fine-grained
integrate the routing algorithms and scheduling algorithms. They
are the solutions to optimize energy consumption. Specifically, the
major contributions of this paper are as follows:

� To easily implement energy-aware routing across different
types of OpenFlow controller, we developed an energy-aware
component in an open-sourced network management platform
– OpenNaaS. Energy-aware OpenNaaS can be used for energy
monitoring and routing, and it has powerful network manage-
ment function.

� To study the effect of different scheduling algorithms on energy
optimization, we theoretically prove the exclusive scheduling of
flows on the same link is the most energy efficient.

� To further optimize energy consumption of DCNs, we discussed
and evaluated a set of routing strategies which integrate com-
mon routing algorithms and scheduling algorithms. Our
simulation experiments show that the combination of priority-
based shortest routing and exclusive flow scheduling can
achieve 5%–35% higher energy efficiency than using other
common routing strategies without performance degradation
when traffic consists of large-sized (5 GB) of flows.

The structure of this chapter is as follows: Section 2 presents
the energy-aware routing problem; we follow with a section
detailing the related work on energy-aware routing techniques
and software management platforms (Section 3). Section 4
describes the OpenNaaS framework, while Section 5 introduces
the design of energy-aware OpenNaaS. Section 6 provides a
practical usecase of energy-aware OpenNaaS. After that, Section 7
discusses the design and selection of energy-aware strategies and
Section 8 evaluates the strategies by simulation. Sections 9 and 10
present discussion and conclusions.
2. The energy-aware routing problem

The power consumption of a switch is the sum of static power
and dynamic power, according to the power benchmarking results
of various network devices in Mahadevan et al. (2009) and Zhu
et al. (2015). Static power is constant and it includes power con-
sumed by chassis, fabric, fans, etc. Dynamic power is consumed by
device interfaces and is related to the rate of traffic across the
switch.

If we denote P(u) as the power consumption of a switch, this
will depend on the set of enabled interfaces and the load of each
one of them:

PðuÞ ¼ Pbaseþ
XN

j ¼ 1

aj � pjðujÞ ð1Þ

uj ¼
XK

k ¼ 1

uj;k; 0rujrC ð2Þ

where Pbase is the static power; N is the number of links on the
switch; p(u) is the power consumption of a switch interface at
utilization u; aj is the binary decision variable indicating whether
the interface j is powered on. Given K traffic flows
f 1; f 2;…; f k;…; f K , the utilization of fk along the link j is uj;k; while
the capacity of the link is C.

Multipath routing algorithms (Lin et al., 2014), such as equal-
cost multipath (ECMP), use multiple paths while sending flows,
but do suffer from longer delay and additional control messages.
Splitting flows is typically undesirable due to TCP packet reor-
dering effects (Kandula et al., 2007). In our study we assumed that
no flow is split onto multiple paths, denoted by:

8k; if uj0 ;k40;
XN

j ¼ 1;ja j0
uj;k ¼ 0 ð3Þ

Energy-aware routing is an effective solution to save energy by
aggregating the traffic over a subset of network links or network
devices in over-provisioned networks. Solving the energy-aware
routing problem is equivalent to minimizing energy consumption
of a network:

Min
XM

i ¼ 1

bi � PiðuÞ � tiðuÞ ð4Þ

where PiðuÞ denotes the power consumption of switch i at utili-
zation u; M is the number of switches in the network; bi is the
binary decision variable indicating whether switch i is powered
on; tiðuÞ denotes the time used for transferring the traffic by the
switch i at utilization u.



H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124112
Most previous energy-aware routing studies assume the com-
pletion time tiðuÞ is constant. In fact, they simplify the energy-
aware routing problem as Eq. (5) to find a power-minimized net-
work subset for traffic:

Min
XM

i ¼ 1

bi � PiðuÞ ð5Þ

For a given traffic, the completion time tiðuÞ is variable for
different subsets of a network. It is obvious that the solution to the
power-minimization problem could be not energy efficient. Even
so, finding the optimal flow routing for power-minimization is an
NP-hard problem (Heller et al., 2010; Xu et al., 2013). It is difficult
to solve this problem using a formulation, in particular for large
scale networks. The universal solutions are to compute a path for
each flow and generate a subset of network by combining all the
result paths. We will discuss the state of the art for energy-aware
routing next section.
3. Related work

3.1. Energy-aware routing

Cianfrani et al. (2010) proposed a Green OSPF protocol. Its
energy-aware algorithm only uses a subset of Shortest Path Trees
to select the routing, reducing the number of links used to route
traffic. Bianzino et al. (2012) designed a link-state protocol with a
fully distributed solution to save the power consumption of links.
The above studies focus on the implementation of energy-aware
routing in IP networks.

Existing work that implements energy-aware routing algo-
rithms for data center networks (DCNs) using SDN is mostly the-
oretical, and only a few cases exist of actual implementations.

Several authors have tackled the problem theoretically. Wang
et al. (2012) analyzed the correlation between flows, and they
found that traffic flows within a data center are usually loosely
correlated together. The flows usually do not reach peak capacity
at the same time. Their correlation-aware routing algorithm
greedily consolidates as many weak-correlation flows as possible
onto a path. They further adapted the data rate of each link to save
power as links may not be fully utilized in the routing algorithm.
Their approach is not suitable for data-intensive data centers
which have highly correlated flows. They did not discuss the trade-
off between energy optimization and network quality of service
(QoS). Power can be saved by migrating Virtual machines (VMs) to
a smaller set of servers and powering off unused servers in data
centers (Ahmad et al., 2015). Zheng et al. (2014) combined Wang's
work with VM consolidation for further power saving.

Fang et al. (2012) proposed an energy-aware scheme with
multipath routing. The scheme first selects a minimal subset of
network elements by using the Steiner tree framework, and then
uses a multipath routing algorithm to find multiple routes for each
flow. Finally, it combines the routes that need to activate as few
unselected elements as possible along with the initial subset to
generate the final network subset. Their multipath routing for each
flow can improve network throughput. But the heuristic algorithm
they used for the Steiner tree problem needs long computation
time. Their work is lack of a mechanism to achieve trade-off
between energy optimization and QoS.

Xu et al. (2013) and Shang et al. (2012) proposed a power-
aware routing algorithm for reducing power consumption of high-
density data center networks while meeting the overall through-
put requirement. The idea of the algorithm is to compute a basic
routing path set for all flows and then to remove switches and
links from the path set without violating the demand of overall
network throughput. Its power saving is over 55% than that of
using ElasticTree under the 30% network load. But it does not
consider the transition time between sleep and wake-up for
switches.

Wang et al. (2014) use multi-objective evolutionary algorithm
for route selection in dynamic optical networks. Compared to
Xu et al. (2013) and Shang et al. (2012), their approach supports
multiple QoS requirements in terms of network performance, e.g.
throughput, delay and blocking rate. It further improves the
energy performance of high priority traffic without degrading QoS
by taking energy saving as the secondary objective. But it cannot
support network reliability in the QoS requirements.

The decision-making for energy-aware routing and control in
SDN are centralized, and this mechanism is not scalable for large
networks. Liu et al. (2013) proposed a distributed strategy in each
point of delivery (PoD) of a DCN to find the routing path for ele-
phant flows and make tradeoff between energy consumption and
network performance. They observed that elephant flows easily
lead to network congestion, so their elephant flow routing greedily
selects the path with the least network utilization caused by the
running elephant flows to improve network performance. Their
algorithm powers off the unused network components but its
route selection is not power-aware and it saves less power.

Others have provided actual implementations and prototypes.
Heller et al. (2010) presented ElasticTree for adapting the

power usage in a Fat Tree data center with OpenFlow switches.
ElasticTree uses NOX that is an original OpenFlow controller to
pull traffic data and push computed flow routes to each switch; it
employs an optimizer to compute power-minimization routes
which meet current traffic conditions. ElasticTree proposed and
evaluated two algorithms: (1) Formal model solves power-
minimization problem directly; (2) Greedy bin-packing evaluates
possible paths and chooses the leftmost one with sufficient
capacity for each flow. Unfortunately, formal model is not scalable
for medium or large networks and greedy bin-packing saves less
power. Mahadevan et al. (2011) combined the routing algorithm
used in Elastic Tree and the algorithm of server load consolidation
that migrates jobs to use fewer servers for data center networks.
They found that 74% percent of total network power can be saved.

Thanh et al. (2012) presented a platform to measure and ana-
lyze the power consumption of software-defined DCNs using
energy-aware topology optimization and routing. Topology opti-
mization first calculates the number of active links and switches
based on traffic statistics. Then the platform leverages the same
routing algorithm with ElasticTree in POX controllers based on the
power profiling of NetFPGA switches. Thanh et al. (2013) improved
the previous routing algorithm to enable an adaptive link rate
technique. In order to further save power in data centers, Jin et al.
(2013) converted the VM placement problem into a routing pro-
blem, which combined hosts and network based power optimi-
zation. They use depth-first search to quickly traverse the hier-
archical layers between VM pairs in a DCN, and employ a best-fit
criterion in terms of memory demand of VMs to determine the
link between any two layers. Their prototype integrates the depth-
first best fit rule into the Beacon OpenFlow controller. This work
ignores the cost of VM migration. None of the three work here
considers the impact of the proposed approaches on network QoS.

A summary of the discussed energy-aware routing algorithms
is demonstrated in Table 1. Our work is different from these pre-
vious work in terms of algorithms and implementations. The
studies above focus on power minimization problem (See Eq. (5)).
They neglect the scheduling of flows on the same link in con-
solidated networks. Li et al. (2014) studied an energy efficient
scheduling algorithm, and observed that exclusively transferring
flows on the link is more energy efficient than fair share sche-
duling, however it has no analysis of different routing algorithms.



Table 1
Summary of energy-aware routing algorithms.

Work Prototype Description Pros & Cons

Wang et al. (2012) – CARPO consolidates as many weak-correlation flows as possible
onto a path; It leverages ALR.

It focuses on different flows and saves 17.7% more energy than
ElasticTree. It is not suitable for data centers with highly-cor-
related flows; it is lack of a mechanism to achieve trade-off
between energy optimization and QoS.

Fang et al. (2012) – It computes a minimal node set by using the Steiner tree fra-
mework; then it uses a multipath routing algorithm to find
multiple routes for each flow; finally it combines the routes that
need to activate as few unselected elements as possible along
with the initial subset to generate the final network subset.

Multipath routing for each flow can improve network
throughput. An heuristic algorithm for the Steiner tree problem
needs long computation time; the algorithm is lack of a
mechanism to achieve trade-off between energy optimization
and QoS.

Xu et al. (2013), Shang
et al. (2012)

– It computes a basic routing path set for all flows and then
removes switches and links from the path set without violating
the demand of overall network throughput.

It guarantees the network throughput; its power saving is over
55% than that of using ElasticTree under the 30% network load. It
does not consider the transition time between sleep and wake-
up for switches.

Wang et al. (2014) – It uses multi-objective evolutionary algorithm for route selec-
tion in dynamic optical networks

It supports multiple QoS requirements in terms of network
performance; it further improves the energy performance of
high priority traffic. It does not consider network reliability in
the QoS requirements.

Liu et al. (2013) – Distributed schedulers interact a set of switches and decides the
next hop to forward a flow; it greedily select the path with the
least network utilization for elephant flows.

Distributed control can reduce the network delay and have high
scalability. Its route selection is not power-aware and it saves
less power.

Heller et al. (2010) NOX Two approaches in ElasticTree: (1) Formal model solves power-
minimization problem directly; (2) Greedy bin-packing evalu-
ates possible paths and chooses the leftmost one with sufficient
capacity for each flow.

It proposes and evaluates multiple approaches. Formal model is
not scalable for medium or large networks and greedy bin-
packing saves less power.

Thanh et al. (2012),
Thanh et al. (2013)

POX It calculates the number of active links and switches based on
traffic statistics; then it implements the same routing algorithm
with ElasticTree but enables an ALR technique.

It focuses on different flows; it has a fine-grained optimization
of energy consumption. It doesn't consider the impact of the
proposed approach on network QoS.

Jin et al. (2013) Beacon It uses depth-first search to quickly traverse between hier-
archical switch layers and then it employs a best-fit criterion in
terms of memory demand of VMs to determine the link
between any two layers.

It focuses on both host and network optimization for energy
efficient DCNs. It ignores the cost of VM migration; it doesn't
consider the impact of the proposed approach on network QoS.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 113
The energy-aware routing strategies we evaluated are complete by
integrating routing algorithms and scheduling algorithms. Our
evaluation targets at the original energy-aware routing problem
concerning energy consumption (See Eq. (4)).

Besides, we implemented a prototype based on OpenNaaS. Our
energy-aware component is implemented in this network man-
agement platform rather than only based on SDN controllers. So
energy-aware OpenNaas is highly-compatible because it supports
multiple types of SDN controller. Previous systems, for example
ElasticTree, cannot dynamically discover the topology and monitor
the power consumption of switches and they are blind about the
changing of networks; they assume that the topology and power
are always invariable once they are manually input. Energy-aware
OpenNaaS inherits and enhances powerful network management
capabilities, e.g. dynamically obtaining power and topology
information.

3.2. Cloud/network management platform

Given that OpenNaaS is effectively a full network platform, it is
fair to compare it with existing cloud/network management
platforms that also support SDN technologies.

OpenNebula and OpenStack are both open-source cloud com-
puting platforms for public and private clouds. Cloud operators
can control computing, storage and network resource in clouds
through their APIs. Their network capabilities are limited to IP,
vLANs and SDN currently. OpenNaaS has more sufficient network
capabilities, e.g. Bandwidth on Demand (BoD), topology discovery,
and Generic Routing Encapsulation (GRE) and support more use-
cases, e.g. virtual Customer Premises Equipment (vCPE) than
OpenNebula and OpenStack. We can implement more energy-
aware capabilities like energy-aware BoD by combining energy
monitoring with existing network capabilities in OpenNaaS.
Besides, OpenNaaS has a well-organized structure to enable the
abstraction of underlying network technologies and resources,
easily extended to implement new network technologies.

Nuage Networks (NUAGE, 2014) and the Tail-f Network Control
System (TAIL-F, 2014) both provide general SDN capabilities and
vCPE solutions for data center networks. They offer a virtualization
environment for a data center network, but these software-based
products are not open source, and as such cannot be easily
extended.

RouteFlow (Nascimento et al., 2011) provides remote IP routing
services based on a set of open-source software. RouteFlow does
not make a routing decision, which depends on a virtualized IP
routing engine, Quagga, that provides the implementation of
routing protocols, e.g. OSPF and BGP (Nascimento et al., 2010).
RouteFlow only focuses on routing services and its structure is not
easily extensible for new network functionality.
4. OpenNaaS framework

OpenNaaS (OPENAAS, 2014) is the outcome of the European
Community Mantychore FP7 project. It is as an open source plat-
form for the GÉANT network operations center (NOC), National
Research and Education Networks (NRENs) and other infra-
structure providers of network and computing resources, which
has been proposed to provide NaaS-based services. The main
contributors include Juniper, HEAnet and i2CAT. OpenNaaS is
proposed as a common network management and service
orchestration platform, capable of providing and managing net-
work in a flexible and efficient way. OpenNaaS can take advantage
of SDN and Network Functions Virtualization (NFV) technologies.

OpenNaaS abstracts aside physical resources, enabling physical
topology and vendor-specific details to be decoupled from their
control and management features. The fundamental unit that
OpenNaaS uses to accomplish this is the Resource. A Resource



Capability
Abstracted Resource
Physical Resource

Virtual Infrastructure

Physical
Infrastructure

Op
en
Na
aS

Fig. 1. OpenNaaS abstraction view: resources and capabilities.

Programmable 
Switches

OpenFlow Controller 
(OFC)

OpenNaaSEnergy-aware bundle

OpenFlow bundle

Database

Static Routing 
Module

Flow 
Table

Port 1
Port 2
Port n

REST APIs

REST APIs

Scripting, GUI

OpenFlow 
Protocol

Monitoring

Routing

Description

Event detection 
Module

Fig. 2. Energy-aware OpenNaaS architecture.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124114
models a device and represents a manageable unit inside the NaaS
concept, e.g., a switch, a router, a link, a logical router, or a net-
work. The basic resource considered is the Physical Resource (PR);
Virtual Resources (VRs) are then created by manipulating the PRs.
Capabilities shape resource functionality and provide an interface
onto given resource functionality, e.g. OSPF, IPv6, the ability to
create/manage logical routers, etc for a router. Fig. 1 shows this
OpenNaaS vision in which physical devices are abstracted into
resources and capabilities whose management can be delegated to
upper application layers. The OpenNaaS model aims to be flexible
enough to support different designs and orientations, but fixed
enough so common tools can be built and reused across plugins.

The implementation of OpenNaaS consists of two distinctive
parts: the core and the extensions. The core can be understood as a
provider of basic functionality, e.g. resource management, which
can then be used by the extensions. The extensions provide
functionality for a specific aspect of networking, e.g. configuration
of routers, by defining capabilities the resources have. The struc-
ture of OpenNaaS allows developers to easily implement more
functionality by creating capabilities in a new extension bundle.
We exploited this feature to create an energy-aware bundle (see
Section 5.2).

OpenNaaS has a complete view of the entire network and
interacts directly with the data plane through its SDN capabilities.
It separates the control and data planes and its architecture fol-
lows the SDN paradigm. The OpenNaaS framework is widely used
as an enabler for SDN technologies. OpenNaaS interworks several
SDN platforms OpenDaylight (OPENDAYLIGHT, 2014), RYU (RYU,
2014) and Floodlight controllers (FLOODLIGHT, 2014) to orches-
trate network services on top of SDN-based infrastructures and to
enable new SDN applications for different stakeholders.

OpenNaaS defines an OpenFlow resource model for OpenFlow
switches and create capabilities for OpenFlow resources in the
OpenFlow bundle. The OpenFlow bundle works as an OpenFlow
driver, which accesses the REST APIs of OpenFlow controllers for
port statistics and flow forwarding (allowing developers to create,
remove and get forwarding rules).
5. Design of energy-aware openNaaS

We integrated an energy-aware bundle in OpenNaaS to allow
energy monitoring and green routing capabilities for OpenFlow
networks.

5.1. Architecture

Fig. 2 shows the architecture of the energy-aware OpenNaaS
we developed. The OpenNaaS server runs on top of an OpenFlow
controller (OFC), and the OpenFlow-enabled switches are con-
nected with the OFC. There are two modes to invoke green routing
functionality using REST APIs in OpenNaaS (we will describe the
REST APIs in OpenNaaS in Section 6):

� Network providers directly send green routing requests to
OpenNaaS. OpenNaaS provides virtual routing function as an
NaaS service. The network providers can precreate forwarding
rules for incoming flows when deployment to avoid the delay of
routing control.

� A routing request is sent to the OpenNaaS server by an OFC for a
switch. Different from the first mode, this mode calculates the
path and creates the flow forwarding rules when a new flow
arrives. It does not need the accurate prediction of flow arrivals.

The energy-aware bundle in OpenNaaS receives and handles
routing requests. This bundle is capable of making a routing
decision by calculating a green path. The energy-aware bundle,
which communicates with an OFC through the OpenFlow bundle,
calls the defined REST APIs in the OFC to add static flow rules for
the path. The static routing module in the OFC executes the add
operations by inserting flow entries into the flow tables of the
switches. The event detection module in the OFC detects packet-in
messages from switches, and then sends routing requests to
OpenNaaS. We describe these components in detail in the fol-
lowing sections.

5.2. Energy-aware bundle

The Energy-aware bundle at the core of our design implements
energy-aware description, monitoring and routing capabilities for
OpenFlow resources. Energy-aware routing depends on topology
information, traffic information and energy usage information to
determine the configuration of the network when scheduling
traffic. OpenNaaS can provide the first two pieces of information.
OpenNaaS employs the Link Layer Discovery Protocol (LLDP) to
obtain network topology and uses OpenDayLight to sample cur-
rent traffic flows. There are also other tools and protocols that are



1 The source codes of energy-aware OpenNaaS and its demo are shown here:
https://bitbucket.org/uva-sne/green-routing-demo

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 115
being supported by OpenNaaS for the bandwidth and traffic
monitoring purpose, such as SNMP and NetFlow (Cisco, 2012).

However energy monitoring for networks is challenging due to
the dynamics of infrastructure information and special measure-
ment mechanisms. Various network resources have drastically
different energy-related attributes, and these attributes keep
changing. For example, network devices can switch between
renewable energy and brown energy. Some devices support IEEE
802.3az (802.3az, 2010) while others do not. These information
could impact the method and effect of energy management.
Besides, energy monitoring needs extra instrumentation devices
to measure power consumption. The power is measured on the
instrumentation devices instead of directly on resources. It is
essential to capture the relationship between network resources
and instrumentation devices. Therefore, a complete energy-aware
information model is important for OpenNaaS to describe all the
measurement information and meta information for monitoring
and to exchange the energy information between software com-
ponents. Based on the analysis above, we implemented both
energy monitoring capabilities and energy description
capabilities:

Energy monitoring capabilities obtain and provide energy usage
information from power meters for the observed metrics: (power,
energy, CO2 emission rate, and electricity price) and from data
statistics for the calculated metrics: (total electricity, CO2 emis-
sion, and energy efficiency). The measurement data is saved in an
OpenNaaS database, as shown in Fig. 2. The capabilities are
responsible for communication with power meters. We have cre-
ated power meter drivers for SNMP access to different power
meter vendors, e.g. Rackitivity and APC PDUs. Only numeric Object
Identifiers (OIDs) in the drivers are different for different PDUs.
Each OID identifies a variable that can be read or set via SNMP. The
capabilities not only measure the power usage of a single device,
but also monitor the power usage of a network path. Using SNMP,
the capabilities can obtain and control the power state of switches
and ports.

Energy description capabilities describe and create meta infor-
mation about energy source, power meters, green metric, power
state, etc. in OpenNaaS. We developed Energy Description Language
(EDL) ontology, which reuses Infrastructure and Network Descrip-
tion Language (INDL) ontology to describe the resources and net-
work infrastructure that connects these resources (Zhu et al., 2014;
Ghijsen et al., 2012). INDL can describe a set of network elements
such as topology, ports, links, paths, and so on. EDL itself focuses on
the knowledge representation in the domain of energy monitoring.
With EDL, OpenNaaS instantiates energy information using a
common vocabulary and makes information understandable
between software components. An important piece of information
that EDL can describe is the relationship of power meters and
remote network devices, so that it is understandable which mea-
sured energy usage information from the port of a power meter
belongs to which remote device.

The third set of capabilities we developed is the Green routing
capabilities, needed to calculate the green routing path. Three
green metric options are available for routing: power consump-
tion, electricity cost and CO2 emission, as these metrics are pro-
vided by the monitoring capabilities. In our implementation we
adopted a greedy routing algorithm. Once an OpenNaaS user
selects the green metric, e.g. electricity cost to optimize upon, the
algorithm traverses all the possible network routes between the
original host and destination host of the flow. It uses power
models and electricity price of switches to estimate the overall
electricity costs, and chooses the path with the minimized value.

OpenNaaS includes a model for the description of OpenFlow
route tables and network paths. The switch ports are identified by
number, and a route table is defined by: IP source, IP destination,
Source switch identifier, also named Datapath identifier (DPID), Input
port of the switch and Output port of the switch. The output port
identifies which switch the traffic is sent to on the next hop. A
routing path is a list of route tables.

The calculated path is converted to a list of OpenFlow flow
rules in the specific structure by the OpenFlow bundle according to
the type of OFC. Each flow rule represents a hop of the path. Then
the OpenFlow bundle sends each rule to the OFC. The following is
an example of a flow rule in FloodLight:

{ ”switch”: ”00:00:00:00:00:00:00:01”, ”name”:”flowmod1”, ”coo-
kie”:”0”, ”priority”:”32768”, ”in_port”:”1”,”active”:”true”, ”actions”:”
output¼2”}.

The identifier of an switch indicates where the rule will be
configured and the output port of this switch represents the for-
warding direction. So that the controller can notify the switch
about where they should forward the flow and inserts a new
matching entry in the Flow Table of the switch.

OpenNaaS has knowledge of the network topology that also
depicts the connections between OFCs and switches. So even if
there are multiple OFCs in a network, the OpenFlow bundle knows
which switch the flow belongs to and which OFC controls this
switch. OpenNaaS can add the flow rules to the correct OFC.

5.3. OpenFlow controllers

To support the second mode for invoking green routing func-
tionality, we created the event detection module in the controller to
send a routing request to OpenNaaS when a new flow arrives.
OpenFlow protocol defines a packet-in messages. Each time a
switch receives a packet from a new flow, it tries to match the
packet in a Flow Table. In the case that it does not match for any
entry, the packet is sent to the OFC using the packet-in message.
When the event detection module in the OFC detect this message,
it creates and sends a routing request to OpenNaaS. The arguments
in the request contain the source and destination IP of the packet,
the DPID of the switch and the input port where the packet enters
the switch.

In our design, after the path is calculated OFCs insert flow
forwarding rules for the path in a proactive way. The static routing
module pushes all the flow entries to the switches before traffic
arrives, to save the time of processing routing requests from all the
switches. We did not change the static routing module and its
REST APIs in the OFCs. The OpenFlow bundle in the OpenNaaS
server calls different APIs according to the type of an OFC: Static
Flow Pusher APIs in Floodlight and Static Routing APIs in
OpenDaylight.
6. Prototype

We developed a prototype to show the functionality of energy-
aware OpenNaaS1. The prototype includes a web client GUI,
through which a network provider invokes green routing func-
tionality of OpenNaaS server using the first invoking mode. We list
part of the REST APIs in energy-aware OpenNaaS in Table 2.

We emulated a Mininet network with a topology of 6 Open-
Flow switches and 5 hosts, shown in Fig. 3. The switches have the
same network capacity and are divided into two groups, controlled
by Floodlight and OpenDaylight controllers, respectively. To
simulate different CO2 emission rate (van der Veldt et al., 2014),
we assumed the two groups consume solar and thermal energy,
respectively. We ran the OpenNaaS server in the same machine.

http://bitbucket.org/uva-sne/green-routing-demo


Table 2
Part of the REST APIs in energy-aware OpenNaaS.

Type Description URI (/opennaas/…) Arguments

Energy
description

Set the energy source edlnode/{nodename}/edl_node_setup
/energysource/{es_id}

nodename:SW1, es_id:solar1

Set the electricity price
of energy source

edlnode/{nodename}/edl_node_setup
/energysource/{es_id}/{price}

es_id:solar1, price:0.42

Set the emission rate of
energy source

edlnode/{nodename}/edl_node_setup
/energysource/{es_id}/{emission}

es_id solar1, emission:0.015

Set the power meter edlnode/{nodename}/edl_node_setup
/powermeter?pduname¼
&numOfModule¼&numOfPort

pduname:rpdu-vu01, numOf-
Module:3, numOfPort:8

Set the address of
power meter

edlnode/{nodename}/edl_node_setup
/powermeter/driver/{UDPaddress}

UDPaddress: localhost/16120

Set the outlet edlnode/{nodename}/edl_node_setup
/outlet?moduleNum¼&portNum¼

moduleNum:1, portNum:7

Energy
monitoring

Get the information
about energy source

edlnode/{nodename}/edl_node_powermonitor
/energysource

Get the current moni-
tor log

edlnode/{nodename}/edl_node_powermonitor
/observedgmetric

Get the monitor log for
a period of time

edlnode/{nodename}/edl_node_powermonitor
/gmetric/{period}/{interval}

period: 60, interval: 5

Green routing Set a green metric
option

vrf/routing/greenRouteMetric/{metric} Power

Get a green routing
path

vrf/routing/route /{ipSrc}/{ipDst}/{DPID}/
{inPort}

ipSrc:192.168.1.1,
ipDst:192.168.2.51, DPID:
00:00:64:87:88:58:f6:57,
inPort: 2

Get the configured
route table

openflowswitch/{nodename} /offorwarding/
getOFForwardingRules

nodename: SW1

Fig. 3. A screen shot of the topology and the configured routes in the emulated network environment.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124116
Fig. 4 presents a flowchart of the usecase in our emulated
environment. A provider creates a set of abstract OpenFlow
resources and loads the OpenFlow capabilities and energy-aware
capabilities for the resources using OpenNaaS (Step 1).

After creating the resources, the provider sets the energy
source information for the network, as well as the connections
between switches and the outlets of power meters according to
APIs for energy description in Table 2 (Step 2). For our prototype,
we interfaced OpenNaaS with an actual power meter to provide
the power readings of emulated resources. At this point the pro-
vider sends the monitoring request with the specific metric (Step
3). OpenNaaS translates this request and forwards an SNMP sam-
pling command to the power meter (Step 3.1) and reads the
measurement data out (Step 3.2). The data is described by EDL, and



Provider

6. Routing request

4 Formatted data return 

6.3 Return routing path

7. Path return 

1.Create abstract network

2. Set energy source info 
and power meter info

3. Send a monitoring
 request 3.1 Sampling

command
3.2 Data return 

6.1 estimate power 
and calculate green path

5. Set green metric

OpenNaaS SDN 
Controller

Power 
Meter

6.4 Power on/off 
command

Fig. 4. The flowchart of a general usecase of energy-aware OpenNaaS (Steps 1–Step 7).

Table 3
An example of switch (SW1) information monitored by OpenNaaS.

DPID 00:00:64:87:88:58:f6:57
Controller IP controllersVM
Controller Port 8080
Power Consumption 70.0 Watt
Energy Source
ID Solar1
Price 0.42 Euros/kWh
CO2 emission rate 0.015 kg/kWh

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 117
data is saved in a database and is sent back to the provider (Step 4).
Table 3 shows the energy information for switch SW1 at a certain
moment. The measurement data is to collect once when the
deployment of a switch. Providers conduct experiments to make a
switch run at idle state and fully-used state when deployment. In
this case, the static and dynamical power consumption are known;
all the interfaces are powered on at full utilization. So the power
consumption of an interface can be known. A linear power model
of the switch (See Eq. (1)) can be derived.

Our prototype also proves that OpenNaaS can measure the
energy usage information of a specified routing path. Fig. 3 lists all
the configured routes in the network and presents the total power
consumption, electricity rate and emission rate of each path.

At this point the provider decides on a green optimization
metric using the first API for green routing in Table 2 (Step 5) and
submits a request to OpenNaaS for a path between a source and a
destination (Step 6) using the second API for green routing.
OpenNaaS cannot support the routing request with bandwidth
demand. We will implement this in future by using existing BoD
capabilities. OpenNaaS estimates the energy information of all the
possible network routes between the end points based on power
models (Step 6.1). OpenNaaS greedily selects the path and interacts
with the OFCs to create flow forwarding rules in the switches (Step
6.2). We will discuss the details of the power-greedy algorithm in
Section 7.1. At the end, the formatted path information is returned
to the provider if the flow rules are successfully created (Step 6.3).
According to the result path, OpenNaaS sends power on/off com-
mand to the power meter via SNMP and then the power meter
changes the state of switches and links (Step 6.4). Fig. 3 shows a
routing path we found between host1 and host3 using energy-
aware OpenNaaS.

The benefits for adopting energy-aware OpenNaaS are many-
fold. First, OpenNaaS has lightweight management costs. Network
users and providers can configure their network through unified
capabilities published in OpenNaaS that are transparent to specific
technologies and hardware details. The control centralized in the
OpenNaaS server manages the network as a whole rather than as a
number of individual devices. Second, energy-aware OpenNaaS
allows network users and providers to understand their energy
usage information. They can profile the energy information for their
network for further analysis, e.g. troubleshoot power shortage
problems in data centers and prepare for the design a new network
infrastructure. Network providers can even implement their own
power management methods with the profiling information.

Our prototype implemented a simple usecase where OpenNaaS
creates a path with a greedy routing algorithm when receiving a
routing request from a network provider. Similar to previous
energy routing work, the greedy algorithm is for the power
minimization problem. For the next version of energy-aware



SW1 SW2 SW3 SW4

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124118
OpenNaaS we decided to focus on a routing strategy for the ori-
ginal energy-aware routing problem; before implementing it, we
evaluated a set of algorithms and found out a suitable one to
replace the greedy algorithm next section.
H1 H2 H3 H4 H5 H6 H7 H8

SW6

SW8 SW12

SW5 SW9 SW10

SW7 SW11

Fig. 5. An example of partial Fat Tree network (Li et al. 2014).
7. Energy-aware routing strategies

Energy-aware routing is a bin-packing problem, and it is not
possible to find an optimal solution, especially for large scale
networks. Therefore, rather than directly solving the energy-aware
routing problem, we analyze the energy efficiency of common
routing algorithms that already exist. We use the routing algo-
rithms to find routes, and the switches and links on unused routes
will be powered off.

Traffic aggregation in these routing algorithms could make
flows run on the same link. Different flow scheduling algorithms
can influence the time of transferring the flows on the same path.
So we will also analyze the energy efficiency of flow scheduling
algorithms as post of optimized energy-aware routing strategy.

7.1. Flow routing

As discussed in Section 2, solutions to the power minimization
problem rely on the assumption that the completion time of traffic
is constant. They find a routing path for each flow and combine all
the result paths to generate a subset of the network topology.
Power-greedy routing is a simple solution to the power minimiza-
tion problem (See Algorithm 1). For each flow, power-greedy
routing find out all possible paths with sufficient capacity (lines
1–2); it traverses the paths and selects a routing path with the
least increase of total network power consumption (lines 5–13).
The estimation of power consumption using a path depends on
the power models derived from historical measurement data
(line 9).

Algorithm 1. PowerGreedyRouting(G,f,rb).
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
ut:
Inp
1:

GðV ; E;UÞ: data center network topology and link
utilization;
2:
f: the target flow in a request
3:

4:
rb: required bandwidth for flow f.
tput:
5:
Ou

p: the path for flow f.
6:
PathsX’Get_all_simple_pathsðG; f Þ

7:
PathsY’Get_available_pathsðPathsX; rbÞ

8:
if PathsY is empty then

9:
return None
10:
else

11:
forpathy in PathsX
12:
i’0

G0’Add_network_utilizationðG;pathy; rbÞ

power½i�’Get_powerðG0Þ

i’iþ1
end for

index’Get_IndexðargminðpowerÞÞ

return PathsX½index�
end if
14:

Shortest path routing pursues low-delay and high throughput
for data transmission. It selects a routing path with the least
number of lengths or weights. Shortest path routing is not power-
aware, but it could lead to low completion time.
In data center networks, networks are over-provisioned. Mul-
tiple paths with similar length between two hosts are likely to
exist, so their performance is similar, e.g. there are multiple par-
allel paths between any two hosts in a BCube network and some of
paths have the same length (Guo et al., 2009). The same applies to
a Fat Tree network. If we observe Fig. 5, which is an example of
partial Fat Tree network, we see that 4 shortest paths exist
between any two hosts. For example, the shortest paths between
Host1 and Host5 are as follows:

path1 : SW7-SW5-SW1-SW9-SW11
path2 : SW7-SW5-SW2-SW9-SW11
path3 : SW7-SW6-SW3-SW10-SW11
path4 : SW7-SW6-SW4-SW10-SW11

Algorithm 2. PriorityRouting(G,f,rb).
ut:
Inp

G: data center network topology

f: the target flow in a request

rb: required bandwidth for flow f.

tput:
Ou

p: the path for flow f.

PathsX’Get_all_shortest_pathsðG; f Þ

PathsY’Get_available_pathsðPathsX; rbÞ

if PathsY is empty then

return None
else

forpathy in PathsX

i’0

active_SW ½i�’Get_number_of _active_switchesðG; pathyÞ

i’iþ1
end for

index’Get_Indexðargminðactive_SWÞÞ

return PathsX½index�
end if
13:

It is reasonable to select an energy efficient path among mul-
tiple shortest paths. Thus, we propose priority-based shortest
routing (See Algorithm 2). It first finds all the shortest paths with
sufficient capacity (lines 1–2). The priority of a routing path is
differentiated by the use of switches in the path. For each path, its
priority is measured by the number of currently used switches
(line 8). Priority-based shortest routing selects the one with the
highest priority from all the shortest paths (lines 11–12). For
example, if SW6 and SW4 are currently working or not being
powered off, path4 has the highest priority and should be selected.



1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 119
The basic reasoning is to use as few network resources as possible
to achieve the same network performance. Random routing, which
randomly selects a routing path from possible paths, is the base-
line for the three other routing algorithms.

7.2. Flow scheduling

Traffic aggregation in flow routing might make multiple flows
run on the same link and share the overall bandwidth. Exclusive
flow scheduling (EXR) is an alternative to link sharing; EXR
transfers the flows one by one and only allows each flow exclusive
use of the overall link bandwidth. We can prove that EXR is a more
efficient scheduling algorithm comparing to link-shared schedul-
ing. This is well illustrated with an example based on Fig. 5. This
fact is also correct for other network topologies. Let us assume that
two flows are transferred at the same time in this Fat Tree net-
work, namely “flow1: H1 to H5” and “flow2: H1 to H7”with size of
s1 and s2, respectively. For simplicity, we assume that only a set of
switches (SW7, SW5, SW1, SW9, SW11 and SW12) and only the links
with data transmission are currently active. The completion time
of two flows are t1 and t2. Let α be the proportion of bandwidth
used by flow1 and 1�α be the proportion used by flow2. We
assume the flow1 is finished first (The result can be proved
accordingly if the flow2 is finished first), so the range of α is as
follows:
s1

s1þs2
oαr1 ð6Þ

Since most data center networks employ a homogeneous set of
switches to interconnect servers, we assume all the switches have
same static power Pbase and all the links of the switch have the
same power model p(u). The network energy E of transmitting
flow1 and flow2 can be calculated as follows:

E¼ ESW7þESW5þESW1þESW9þESW11þESW12

¼ ðPbaseþpðαCÞÞ � t1þ5Pbase � t2þ4pðCÞ � t2
þpðCÞÞ � ðt2�t1Þþpðð1�αÞ � CÞ � t1

¼ ðPbaseþpðαCÞÞ � s1
αC

þ5Pbase �
s1þs2

C
þ4pðCÞ � s1þs2

C

þpðCÞÞ � s1þs2
C

� s1
αC

� �
þpðð1�αÞ � CÞ � s1

αC
¼ Pbase

C
5s1þ

s1
αC

þ5s2
� �

þpðαCÞ
αC

s1þ
pðCÞ
c

5s1�
s1
α
þ5s2

� �
þpðð1�αÞ � CÞ

αC
s1 ð7Þ

According to the power profiling of networking devices in
previous experiments (Zhu et al., 2015), the power consumed by
the link is small compared to the static power consumption; the
power consumption of an idle link is quite close to that of a full
load . We can assume pðð1�αÞ � CÞ, pðαCÞ and p(C) are equal.
Therefore, Eq. (7) can be simplified as follows:

E¼ Pbase

C
5s1þ

s1
α
þ5s2

� �
þpðCÞ

C
5s1þ

s1
α
þ5s2

� �
ð8Þ

When α equals to 1, Eq. (8) reaches a minimized value. So, the
network has the least energy consumption when a flow is trans-
ferred exclusively on a link.

Based on the above analysis, the combination of priority rout-
ing and EXR scheduling (See Algorithm 3) could be more energy
efficient. This combined strategy defines two flow lists (Factive and
Fsuspend) to monitor active flows and suspended flows. This strategy
first calculates the routing path for any new incoming flow using
Algorithm 2 (lines 1–2). But the Algorithm 2 needs a modification.
The line 2 of the Algorithm 2 is replaced by Get_idle_paths to
guarantee that no path is shared by flows. Then, this strategy
needs to determine the scheduling state of the flow. If no idle path
is found, this strategy must put the flow into the suspended list
(lines 3–4). If an idle path exists, this strategy adds the flow into
the active list, inserts the flow and its path to a set, and updates
the state of the network (lines 5–8). When an active flow is fin-
ished, the flow is removed and the network state is updated (lines
10–12). This strategy finds a suspended flow which has an idle
path by traversing the suspended list (lines 13–17), and makes the
flow active (lines 18–22).

Algorithm 3. Combination of EXR scheduling and priority routing.
ut:
Inp

GðV ; E;UÞ: data center network topology and link
utilization

Factive: list of active flows

Fsuspend: list of suspended flows

cp: capacity of a link.

tput:
Ou

PS¼{〈f ; p〉 8flow f AFactive}, p is a path.

if a new flow f arrives then

p’PriorityRoutingðG; f ; cpÞ

if p is empty then
FSuspend’FSuspendþ f

else
Factive’Factiveþ f

insert o f ; p4 into PS

G’Add_network_utilizationðG; f ; cpÞ
end if

else if a flow f in Factive finishes

Factive’Factive� f

G’Reduce_network_utilizationðG; f ; cpÞ

for fsuspend in Fsuspend do
p’PriorityRoutingðG; f suspend; cpÞ

if p is empty then

continue
else

FSuspend’FSuspend� f

Factive’Factiveþ f

insert o f ; p4 into PS

G’Add_network_utilizationðG; f suspend; cpÞ

break
end if

end for
end if

return PS
26:

In the next section we will validate our analysis by conducting
comparative studies by simulation.
8. Evaluation

In our simulation we use two common data center topologies –
Fat Tree using 4-port switches (Fat Tree(4)) and 3-level BCube using
2-port switch (BCube(2,3)). The capacity of each link in the simu-
lated topologies is 1 Gbps; the total number of server is 16 servers.
There are 32 switches in BCube(2,3) and 20 switches in Fat Tree(4).
We present two groups of flows with totally different flow size to
study their potential in extreme situations. We simulate the flows
with a typical size (64 MB) in Hadoop data centers and a large size
(5 GB) in scientific data centers. In each group of flows, the size of
each flow changes in a pretty small range (less than 1%). The source
and destination servers of each flow are random. The arrival rate of
flows follows the Poisson distribution. We simulate the flows
coming in one minute and the maximum number of flows are about
3000. The average throughput of flows is 500 MB/s.



Fig. 6. Network energy efficiency and mean flow completion time against the arrival rate of large flows (5 GB) in the BCube network.

Fig. 7. Mean flow completion time with standard error against the arrival rate of
large flows (5 GB) in the BCube network.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124120
All the switches in the same network are homogeneous.
According to the power profiling of networking devices in our
experiments (Zhu et al., 2015) and from other studies in Heller
et al. (2010), we assume the dynamic power consumption
accounts for less than 10% of total power consumption. We use a
linear model to capture the relation between dynamic power
consumption and network load.

For the simplicity of our simulation, we focus on small-sized
networks. This is because power-greedy routing is not scalable, we
have to calculate all possible paths (without loops) and compare
their power consumption. The algorithm to find all the paths has a
computational complexity of OðV !Þ (Sedgewick, 2001). V repre-
sents the number of switches in the network. Priority-based
shortest routing and shortest routing are both fundamentally
scalable. Using the Dijkstra algorithm to find a shortest routing has
a computational complexity of OðV2Þ. Priority-based shortest
routing finds n shortest routing paths, and n is a small integer
usually. Its computational complexity is Oðn3 � VðEþV log VÞÞ,
where E is the number of links in the network.

We explore how much energy to consume for data transmis-
sion with different routing strategies that include the combination
of routing algorithms and flow scheduling algorithms. The flow
scheduling algorithms are differentiated by whether flows are
allowed to share link bandwidth. We define the Energy Efficiency
metric as the amount of data transmission per unit of energy
consumption. The Mean Flow Completion Time is the mean time
interval between arrival and completion of flows, used to qualify
network performance.

Fig. 6(a) and (b) shows network energy efficiency and mean
flow completion time by the different routing algorithms against
the big flow arrival rate in the BCube network. The solid lines
represent the strategies with shared flow scheduling and the
dotted lines describe the strategies with EXR. In Fig. 6(a), we
observe that the BCube network's energy efficiency rises with the
growth of the arrival rate. It proves higher network utilization
makes the network more energy efficient. The strategies with EXR
offer significant energy saving compared to the strategies with link
sharing. For example, priority-based routing with EXR is about 35%
higher energy efficiency over priority-based routing with link
sharing. In regard to the same scheduling algorithm, shortest
routing has a growing advantage (at most 20%) on the energy
efficiency than greedy routing when the flow arrival rate increases.
The energy efficiency of priority-based routing is about 5% higher
than that of shortest routing when the arrival rate of flows is
over 10.
In Fig. 6(b), we observe that the strategies with link sharing
have longer mean flow completion time than the strategies with
EXR. Priority-based and shortest routing algorithms have similar
performance, which are better than greedy routing. During
exclusive scheduling, the performance of greedy routing is as bad
as random routing.

Fig. 7 shows the standard error of completion time for all the
flows. The completion time of the strategies with link sharing
change in a similar range as the strategies with EXR.

Fig. 8(a) illustrates that network energy efficiency can improve
2.5 times when the big flow arrival rate increases from 0.1 to 20 in
the Fat-Tree network. The strategies with EXR still offers an
obvious improvement of energy efficiency over the strategies with
link sharing. Although priority-based shortest routing is the most
energy efficient most of the time, the advantage of the shortest
and greedy routing algorithms in the Fat Tree network is slight
compared to that of the BCube network.

Fig. 8(b) shows the mean flow completion time against the big
flow arrival rate in the Fat-Tree network. The strategies with link
sharing are worse than the strategies with EXR. The mean flow
completion time using the priority-based algorithm and using the
shortest routing algorithm are nearly the same; they are smaller
than that of the other two routing algorithms.



Fig. 8. Network energy efficiency and mean flow completion time against the arrival rate of large flows (5 GB) in the Fat Tree network.

Fig. 9. Network energy efficiency and mean flow completion time against the arrival rate of small flows (64 MB) in the BCube network.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 121
Fig. 9(a) and (b) shows network efficiency against the small
flow arrival rate in the BCube network. The two figures reiterate
that the strategies with link sharing are less energy efficient and
have longer completion time than the strategies with EXR.

This is also observed in Fig. 10(a) and (b) for the BCube net-
work. Compared to the experiments using traffic with big flows,
the energy efficiency of the BCube and Fat Tree networks improves
less (at most 1 time) when the small flow arrival rate increases;
the energy efficiency of the networks for small flow transmission
are lower. Energy efficiency of the shortest, priority-based and
greedy routing algorithms are similar, and the mean flow com-
pletion time of these routing algorithms are the same. Although
these routing algorithms could compute different routing paths for
the same flow, the difference of route selection impacts the net-
work power consumption quite lightly for small flows because
they are completed in very short time.

In the above experiments we assume no transition time for
switches. But in a real network environment, the switches usually
take a few seconds to power on/off after receiving off/on signals
(Nedevschi et al., 2008). In order to simulate the vendors with
different transition times, we study network energy efficiency
against the transition time. A switch does not goes off if the arrival
interval between two flows along it is less than the transition time.
The flow arrival rate is fixed at 10 flows per second and the size of
all the flows is 5 GB. The result of Fat-Tree and BCube networks is
shown in Fig. 11(a) and (b). We can find that network energy
efficiency declines slowly and remains stable when the transition
time is large enough. In regard to the same scheduling algorithm,
we can observe that the energy efficiency of priority-based routing
is about 5% higher than that of shortest routing, while shortest
routing has about 5–20% higher energy efficiency than greedy
routing.

We conclude all the experiments as follows. Power-greedy
routing is a power-minimization algorithm, but it could not find
an optimal routing for all the flows because its result is in essence
a local optimization. Besides, power-greedy routing degrades the
completion time of flows. That is the reason that our experiments
indicate that the power-greedy algorithm is less energy efficient.
Exclusive flow scheduling is much more energy efficient than
scheduling with link sharing regardless of which routing algo-
rithm is used. The strategy we highlight is the combination of
priority-based shortest routing and exclusive flow scheduling. It
has the obvious improvement of energy efficiency for big file
transmissions in the BCube network. In this case, the priority-
based routing with EXR is about 5–35% higher energy efficiency
than other common strategies. When the transition time of



Fig. 10. Network energy efficiency and mean flow completion time against the arrival rate of small flows (64 MB) in the Fat Tree network.

Fig. 11. Network energy efficiency against transition time of switches under large flows (5 GB) in Fat Tree and BCube networks.

H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124122
switches is considered, it is still more energy efficient, compared
to either the routing algorithms or the scheduling algorithms used.
The network performance of this strategy does not degrade. Its
mean flow completion time is nearly same as the strategies with
shortest routing. Considering that the size of traffic is fixed, its
mean network throughput is nearly the same as the strategies
with shortest routing.
9. Discussion

We will implement the exclusive flow scheduling algorithm in
the prototype in future. OpenNaaS and OFCs needs to be modified
to enable exclusive flow scheduling. OpenNaaS has to define two
flow lists to maintain active flows and suspended flows. OpenNaaS
asks the OFCs to suspend or permit the flow. Some general fea-
tures of EXR should also be carefully considered. Exclusive flow
scheduling can improve on the mean flow completion time but
could increase this value for small flows, compared to shared flow
scheduling. Therefore, for the applications which have strict QoS,
e.g. response time for small flows, exclusive flow scheduling is not
the best option even if it does save energy consumption. NRENs in
Europe are the important users of OpenNaaS, and the majority of
applications hosted by NRENs are scientific computing that are
tolerant of execution time. So exclusive flow scheduling can meet
their requirements. Also, the algorithm for fetching the suspended
flow could be first-in-first-out, smallest or biggest flow first, etc.
We can choose one according to QoS requirements of future
implementations. Large-sized flows easily lead to network con-
gestion (Liu et al., 2013), so giving large flows higher priority can
further improve the mean network performance, while giving
small flows higher priority can reduce the delay in
completing them.

In the first mode of invoking green routing in energy-aware
OpenNaaS, we assume that network providers have complete
knowledge of incoming traffic about the origin node and desti-
nation node, bandwidth requirements and the amount of flows in
order to plan ahead for expected traffic peaks and reduce the delay
of flow control. Such an assumption is not realistic now. The
possible way is to predict the incoming traffic for network provi-
ders based on historical traffic. There exists some work about
workload prediction (Khotanzad and Sadek, 2003; Di et al., 2012)
we can use in future.



H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124 123
Energy-aware routing strategies power off unused network
components and they impact the oversubscription rate of date
center networks. If a burst of traffic arrives, the unused network
components require some time to become available. Reliability is
an important factor in QoS for some data centers, and a certain
oversubscription ratio is required to guarantee the reliability of the
DCN. In the process of traffic consolidation, we can guarantee the
network availability by checking whether selecting a routing path
which powers off some unused switches or links would reduce the
requested oversubscription ratio. As a result, the tradeoff between
energy savings and network reliability can be achieved. Enabling
energy-aware routing strategies only at the non-peak time can
lower this negative impact on reliability. During this period, the
tolerance for link failure is also higher than at peak time.
10. Conclusion

OpenNaaS is a network management platform that includes
SDN support and it interworks several SDN platforms to orches-
trate network services; this makes it a suitable management
platform for adoption in data centers moving to SDN. The energy-
aware OpenNaaS we developed for energy monitoring and routing
builds on the consolidated OpenNaaS framework. Our prototype
shows we can also measure the energy, cost and sustainability
information of networks for providers or users. Based on the
prototype, we discuss the combination of flow routing and flow
scheduling algorithms. The priority-based shortest routing finds
the most power efficient paths from multiple shortest paths. The
exclusive scheduling speeds up all the flows on the same link. The
simulation results show that this combined strategy can effectively
improve network energy efficiency, in particular when traffic
contains big size of flows. Meanwhile, this strategy achieves nearly
the same mean network throughput with the common shortest
routing strategy.
Acknowledgements

This work was supported by NWO through the GreenClouds
project, by RAAK-MKB through the Greening the Cloud project, by
the Dutch national program COMMIT and by the European Com-
munity Seventh Framework Programme under grant agreement
no. 605243 (GN3plus). The author thanks Jose Aznar and Isart
Canyameres from i2CAT for their providing technical details about
OpenNaaS.
References

802.3az, 2010. IEEE Std 802.3az-2010 (Amendment to IEEE Std 802.3-2008).
Abts D, Marty MR, Wells PM, Klausler P, Liu H. Energy proportional datacenter

networks. In: Proceedings of the 37th annual international symposium on
Computer architecture (ISCA). New York, New York, USA; 2010. pp. 338.

Ahmad RW, Gani A, Hamid SHA, Shiraz M, Yousafzai A, Xia F. A survey on virtual
machine migration and server consolidation frameworks for cloud data centers.
J Netw Comput Appl 2015;52(0):11–25.

Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network
architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication. SIGCOMM '08. ACM, New York, NY, USA; 2008. pp. 63–74.

Bianzino AP, Chiaraviglio L, Mellia M. Distributed algorithms for green IP networks.
In: Proceedings – IEEE INFOCOM; 2012. pp. 121–26.

Cianfrani A, Eramo V, Listanti M, Marazza M, Vittorini E. An energy saving routing
algorithm for a green ospf protocol. In: INFOCOM IEEE Conference on Computer
Communications Workshops, March 2010. pp. 1–5.

Cisco, Introduction to Cisco IOS NetFlow – A Technical Overview. Cisco White
Paper; 2012.
Di S, Kondo D, Cirne W. Host load prediction in a google compute cloud with a
Bayesian model. In: High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for November 2012. pp. 1–11.

Erickson D. The Beacon OpenFlow Controller; 2013.
FangW, Liang X, Sun Y, Vasilakos AV. Network element scheduling for achieving energy-

aware data center networks. Int J Comput Commun Control 2012;7(2):241–51.
FLOODLIGHT, 2014. Floodlight. 〈http://www.projectfloodlight.org/〉, visited Feb-

ruary 2015.
Ghijsen M, van der Ham J, Grosso P, de Laat C. Towards an Infrastructure Descrip-

tion Language for Modeling Computing Infrastructures. In: 10th IEEE Interna-
tional Symposium on Parallel and Distributed Processing with Applications
(ISPA), Madrid; 2012. pp. 207–14.

Greenberg A, Hamilton J, Maltz DA, Patel P. The cost of a cloud: research problems in data
center networks. SIGCOMM Comput Commun Rev 2008;39(December (1)):68–73.

Gunaratne C, Christensen K, Nordman B. Managing energy consumption costs in
desktop PCs and LAN switches with proxying, split TCP connections, and
scaling of link speed. Int J Netw Manag 2005;15(September (5)):297–310.

Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S, Bcube: a high
performance, server-centric network architecture for modular data centers. In:
Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication.
SIGCOMM '09, ACM, New York, NY, USA; 2009. pp. 63–74.

Heller B, Seetharaman S, Mahadevan P. ElasticTree: Saving Energy in Data Center
Networks. In: The 7th USENIX Conference on Network Systems Design and
Implementation (NSDI); 2010. pp. 2–17.

Jin H, Cheocherngngarn T, Levy D, Smith A, Pan D, Liu J, Pissinou N. Joint host-
network optimization for energy-efficient data center networking. In: Pro-
ceedings – IEEE 27th International Parallel and Distributed Processing Sym-
posium, IPDPS 2013; 2013. pp. 623–634.

Kandula S, Katabi D, Sinha S, Berger A. Dynamic load balancing without packet
reordering. SIGCOMM Comput Commun Rev 2007;37(March (2)):51–62.

Khotanzad A, Sadek N. Multi-scale high-speed network traffic prediction using
combination of neural networks. In: Proceedings of the International Joint
Conference on Neural Networks, 2003, vol. 2; July 2003. pp. 1071–1075.

Li D, Shang Y, Chen C. Software defined green data center network with exclusive
routing. In: IEEE INFOCOM 2014 – IEEE Conference on Computer Commu-
nications, April 2014. pp. 1743–51.

Lin G, Soh S, Chin K-W, Lazarescu M. Energy aware two disjoint paths routing. J
Netw Comput Appl 2014;43(0):27–41.

Liu R, Gu H, Yu X, Nian X. Distributed flow scheduling in energy-aware data center
networks. IEEE Commun Lett 2013;17(4):801–4.

Mahadevan P, Banerjee S, Sharma P, Shah a, Ranganathan P. On energy efficiency for
enterprise and data center networks. In: Communications Magazine, IEEE 49
(August); 2011. 94–100.

Mahadevan P, Sharma P, Banerjee S. A Power Benchmarking Framework for Net-
work Devices. In: Proceedings of the 8th International IFIP-TC 6 Networking
Conference; 2009. pp. 795–808.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker
S, Turner J. Openflow: enabling innovation in campus networks. SIGCOMM
Comput Commun Rev 2008;38(March (2)):69–74.

Nascimento MR, Rothenberg CE, Salvador MR, Corrêa CN, de Lucena SC, Magalhães
MF. Virtual routers as a service: the routeflow approach leveraging software-
defined networks. In: Proceedings of the 6th International Conference on
Future Internet Technologies, ACM; 2011. pp. 34–7.

Nascimento MR, Rothenberg CE, Salvador MR, Magalhães MF. Quagflow: partnering
quagga with openflow. In: ACM SIGCOMM Computer Communication Review,
vol. 40, ACM; 2010. pp. 441–2.

Nedevschi S, Popa L, Iannaccone G, Ratnasamy S, Wetherall D. Reducing Network
Energy Consumption via Sleeping and Rate-Adaptation. In: Proceedings of the
5th USENIX Symposium on Networked Systems Design and Implementation;
2008. pp. 323–36.

NOX, 2014. NOX and POX OpenFlow controller. 〈http://www.noxrepo.org/〉, visited
February 2015.

NUAGE, 2014. Nauge network. 〈http://www.nuagenetworks.net/〉, visited December 2014.
OPENAAS, 2014. Open platform for networks as a service. 〈http://www.opennaas.

org〉, visited December 2014.
OPENDAYLIGHT, 2014. OpenDaylight. 〈http://www.opendaylight.org/〉, visited Feb-

ruary 2015.
RYU, 2014. Ryu SDN framework. 〈http://osrg.github.io/ryu/〉, visited February 2015.
Sedgewick R. Algorithms in C third edition Part 5 Graph Algorithms. Addison-

Wesley Professional; 2001.
Shang Y, Li D, Xu M. A Comparison Study of Energy Proportionality of Data Center

Network Architectures. In: 32nd International Conference on Distributed
Computing Systems Workshops; June 2012. pp. 1–7.

TAIL-F, 2014. Tail-f network control system. 〈http://www.tail-f.com/network-con
trol-system/〉, visited December 2014.

Thanh N, Nam P, Truong T, Hung N, Doanh L, Rastin P. Enabling experiments for
energy-efficient data center networks on OpenFlow-based platform. In: 2012
4th International Conference on Communications and Electronics, ICCE 2012
(2), 2012. pp. 239–44.

Thanh NH, Nam PN, Huong TT, Thuan TN, Duong NM, Van GN, Hung NT, Thu NQ,
David H, Christian S. Modeling and experimenting combined smart sleep and
power scaling algorithms in energy-aware data center networks. Simul Model
Pract Theory 2013;39(0):20–40 s.I.Energy efficiency in grids and clouds.

http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref3
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref3
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref3
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref3
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref10
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref10
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref10
http://www.projectfloodlight.org/
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref13
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref13
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref13
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref14
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref14
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref14
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref14
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref18
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref18
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref18
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref21
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref21
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref21
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref22
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref22
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref22
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref25
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref25
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref25
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref25
http://www.noxrepo.org/
http://www.nuagenetworks.net/
http://www.opennaas.org
http://www.opennaas.org
http://www.opendaylight.org/
http://osrg.github.io/ryu/
http://www.tail-f.com/network-control-system/
http://www.tail-f.com/network-control-system/
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref38
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref38
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref38
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref38
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref38


H. Zhu et al. / Journal of Network and Computer Applications 63 (2016) 110–124124
van der Veldt K, Monga I, Dugan J, de Laat C, Grosso P. Carbon-aware path provi-
sioning for NRENs. In: 2014 International Green Computing Conference (IGCC).
Dallas TX USA; 2014.

Wang J, Chen X, Phillips C, Yan Y. Energy efficiency with QoS control in
dynamic optical networks with SDN enabled integrated control plane.
Comput Netw 2014;78:57–67.

Wang X, Yao Y, Wang X, Lu K, Cao Q. CARPO: Correlation-aware power optimization
in data center networks. In: Proceedings IEEE INFOCOM; March 2012. pp. 1125–
33.

Xu M, Shang Y, Li D, Wang X. Greening data center networks with throughput-
guaranteed power-aware routing. Comput Netw 2013;57(October (15)):2880–
99.
Zheng K, Wang X, Li L, Wang X. Joint Power Optimization of Data Center Network
and Servers with Correlation Analysis. In: IEEE INFOCOM 2014 - IEEE Con-
ference on Computer Communications; 2014.

Zhu H, van der Veldt K, Grosso P, de Laat C. EDL: an energy-aware semantic model
for large-scale infrastructures. Technical report uva-sne, no. 2014-02, University
of Amsterdam; February 2014.

Zhu H, van der Veldt K, Zhao Z, Grosso P, Pavlov D, Soeurt J, Liao X, de Laat C. A
semantic enhanced power budget calculator for distributed computing using
ieee 802.3az. Clust Comput 2015;18(1):61–77.

http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref40
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref40
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref40
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref40
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref42
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref42
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref42
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref42
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref45
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref45
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref45
http://refhub.elsevier.com/S1084-8045(16)00047-3/sbref45

	Joint flow routing-scheduling for energy efficient software defined data center networks
	Introduction
	The energy-aware routing problem
	Related work
	Energy-aware routing
	Cloud/network management platform

	OpenNaaS framework
	Design of energy-aware openNaaS
	Architecture
	Energy-aware bundle
	OpenFlow controllers

	Prototype
	Energy-aware routing strategies
	Flow routing
	Flow scheduling

	Evaluation
	Discussion
	Conclusion
	Acknowledgements
	References




