126 research outputs found

    Logics of Formal Inconsistency enriched with replacement: an algebraic and modal account

    Get PDF
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold for several systems of the hierarchy of paraconsistent logics known as Logics of Formal Inconsistency (LFIs). Because of this, these logics are uniquely characterized by semantics of non-deterministic kind. This paper offers a solution for two open problems in the domain of paraconsistency, in particular connected to algebraization of LFIs, by obtaining several LFIs weaker than C1, each of one is algebraizable in the standard Lindenbaum-Tarski's sense by a suitable variety of Boolean algebras extended with operators. This means that such LFIs satisfy the replacement property. The weakest LFI satisfying replacement presented here is called RmbC, which is obtained from the basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in addition a neighborhood semantics is defined for such systems. It is shown that RmbC can be defined within the minimal bimodal non-normal logic E+E defined by the fusion of the non-normal modal logic E with itself. Finally, the framework is extended to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be sound and complete w.r.t. BALFI semantics

    Suszko's Problem: Mixed Consequence and Compositionality

    Full text link
    Suszko's problem is the problem of finding the minimal number of truth values needed to semantically characterize a syntactic consequence relation. Suszko proved that every Tarskian consequence relation can be characterized using only two truth values. Malinowski showed that this number can equal three if some of Tarski's structural constraints are relaxed. By so doing, Malinowski introduced a case of so-called mixed consequence, allowing the notion of a designated value to vary between the premises and the conclusions of an argument. In this paper we give a more systematic perspective on Suszko's problem and on mixed consequence. First, we prove general representation theorems relating structural properties of a consequence relation to their semantic interpretation, uncovering the semantic counterpart of substitution-invariance, and establishing that (intersective) mixed consequence is fundamentally the semantic counterpart of the structural property of monotonicity. We use those to derive maximum-rank results proved recently in a different setting by French and Ripley, as well as by Blasio, Marcos and Wansing, for logics with various structural properties (reflexivity, transitivity, none, or both). We strengthen these results into exact rank results for non-permeable logics (roughly, those which distinguish the role of premises and conclusions). We discuss the underlying notion of rank, and the associated reduction proposed independently by Scott and Suszko. As emphasized by Suszko, that reduction fails to preserve compositionality in general, meaning that the resulting semantics is no longer truth-functional. We propose a modification of that notion of reduction, allowing us to prove that over compact logics with what we call regular connectives, rank results are maintained even if we request the preservation of truth-functionality and additional semantic properties.Comment: Keywords: Suszko's thesis; truth value; logical consequence; mixed consequence; compositionality; truth-functionality; many-valued logic; algebraic logic; substructural logics; regular connective

    Tense distributive lattices: algebra, logic and topology

    Full text link
    Tense logic was introduced by Arthur Prior in the late 1950s as a result of his interest in the relationship between tense and modality. Prior's idea was to add four primitive modal-like unary connectives to the base language today widely known as Prior's tense operators. Since then, Prior's operators have been considered in many contexts by different authors, in particular, in the context of algebraic logic. Here, we consider the category tdlat of bounded distributive lattices equipped with Prior's tense operators. We establish categorical dualities for tdlat in terms of certain categories of Kripke frames and Priestley spaces, respectively. As an application, we characterize the congruence lattice of any tense distributive lattice as well as the subdirectly irreducible members of this category. Finally, we define the logic that preserves degrees of truth with respect to tdlat-algebras and precise the relation between particular sub-classes of tdlat and know tense logics found in the literature

    Deductive Systems in Traditional and Modern Logic

    Get PDF
    The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    Non-deterministic semantics for quantum states

    Get PDF
    In this work, we discuss the failure of the principle of truth functionality in the quantum formalism. By exploiting this failure, we import the formalism of N-matrix theory and non-deterministic semantics to the foundations of quantum mechanics. This is done by describing quantum states as particular valuations associated with infinite non-deterministic truth tables. This allows us to introduce a natural interpretation of quantum states in terms of a non-deterministic semantics. We also provide a similar construction for arbitrary probabilistic theories based in orthomodular lattices, allowing to study post-quantum models using logical techniques

    Decidability of Order-Based Modal Logics

    Get PDF
    • …
    corecore