779 research outputs found

    Parameterized Study of the Test Cover Problem

    Full text link
    We carry out a systematic study of a natural covering problem, used for identification across several areas, in the realm of parameterized complexity. In the {\sc Test Cover} problem we are given a set [n]={1,...,n}[n]=\{1,...,n\} of items together with a collection, T\cal T, of distinct subsets of these items called tests. We assume that T\cal T is a test cover, i.e., for each pair of items there is a test in T\cal T containing exactly one of these items. The objective is to find a minimum size subcollection of T\cal T, which is still a test cover. The generic parameterized version of {\sc Test Cover} is denoted by p(k,n,T)p(k,n,|{\cal T}|)-{\sc Test Cover}. Here, we are given ([n],T)([n],\cal{T}) and a positive integer parameter kk as input and the objective is to decide whether there is a test cover of size at most p(k,n,T)p(k,n,|{\cal T}|). We study four parameterizations for {\sc Test Cover} and obtain the following: (a) kk-{\sc Test Cover}, and (nk)(n-k)-{\sc Test Cover} are fixed-parameter tractable (FPT). (b) (Tk)(|{\cal T}|-k)-{\sc Test Cover} and (logn+k)(\log n+k)-{\sc Test Cover} are W[1]-hard. Thus, it is unlikely that these problems are FPT

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=mkp=m-k and p=nkp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNP\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each XVX\subset V the hypergraph with vertex set VXV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of nkn-k vertices such that for each vertex y∉Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    Data Reduction for Graph Coloring Problems

    Full text link
    This paper studies the kernelization complexity of graph coloring problems with respect to certain structural parameterizations of the input instances. We are interested in how well polynomial-time data reduction can provably shrink instances of coloring problems, in terms of the chosen parameter. It is well known that deciding 3-colorability is already NP-complete, hence parameterizing by the requested number of colors is not fruitful. Instead, we pick up on a research thread initiated by Cai (DAM, 2003) who studied coloring problems parameterized by the modification distance of the input graph to a graph class on which coloring is polynomial-time solvable; for example parameterizing by the number k of vertex-deletions needed to make the graph chordal. We obtain various upper and lower bounds for kernels of such parameterizations of q-Coloring, complementing Cai's study of the time complexity with respect to these parameters. Our results show that the existence of polynomial kernels for q-Coloring parameterized by the vertex-deletion distance to a graph class F is strongly related to the existence of a function f(q) which bounds the number of vertices which are needed to preserve the NO-answer to an instance of q-List-Coloring on F.Comment: Author-accepted manuscript of the article that will appear in the FCT 2011 special issue of Information & Computatio

    On Structural Parameterizations of Hitting Set: Hitting Paths in Graphs Using 2-SAT

    Get PDF
    Hitting Set is a classic problem in combinatorial optimization. Its input consists of a set system F over a finite universe U and an integer t; the question is whether there is a set of t elements that intersects every set in F. The Hitting Set problem parameterized by the size of the solution is a well-known W[2]-complete problem in parameterized complexity theory. In this paper we investigate the complexity of Hitting Set under various structural parameterizations of the input. Our starting point is the folklore result that Hitting Set is polynomial-time solvable if there is a tree T on vertex set U such that the sets in F induce connected subtrees of T. We consider the case that there is a treelike graph with vertex set U such that the sets in F induce connected subgraphs; the parameter of the problem is a measure of how treelike the graph is. Our main positive result is an algorithm that, given a graph G with cyclomatic number k, a collection P of simple paths in G, and an integer t, determines in time 2^{5k} (|G| +|P|)^O(1) whether there is a vertex set of size t that hits all paths in P. It is based on a connection to the 2-SAT problem in multiple valued logic. For other parameterizations we derive W[1]-hardness and para-NP-completeness results.Comment: Presented at the 41st International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015. (The statement of Lemma 4 was corrected in this update.

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556
    corecore