
On Structural Parameterizations of Hitting Set:
Hitting Paths in Graphs Using 2-SAT?

Bart M. P. Jansen1

Eindhoven University of Technology, The Netherlands. b.m.p.jansen@tue.nl

Abstract. Hitting Set is a classic problem in combinatorial optimiza-
tion. Its input consists of a set system F over a finite universe U and
an integer t; the question is whether there is a set of t elements that
intersects every set in F . The Hitting Set problem parameterized by
the size of the solution is a well-known W[2]-complete problem in param-
eterized complexity theory. In this paper we investigate the complexity
of Hitting Set under various structural parameterizations of the input.
Our starting point is the folklore result that Hitting Set is polynomial-
time solvable if there is a tree T on vertex set U such that the sets in F
induce connected subtrees of T . We consider the case that there is a tree-
like graph with vertex set U such that the sets in F induce connected
subgraphs; the parameter of the problem is a measure of how treelike the
graph is. Our main positive result is an algorithm that, given a graph G
with cyclomatic number k, a collection P of simple paths in G, and an
integer t, determines in time 25k(|G|+ |P|)O(1) whether there is a vertex
set of size t that hits all paths in P. It is based on a connection to the
2-SAT problem in multiple valued logic. For other parameterizations we
derive W[1]-hardness and para-NP-completeness results.

1 Introduction

Hitting Set is a classic problem in combinatorial optimization that asks, given
a set system F over a finite universe U , and an integer t, whether there is a
set of t elements that intersects every set in F . It was one of the first problems
to be identified as NP-complete [14]. Parameterized complexity theory is a re-
fined view of computational complexity that aims to attack NP-hard problems
by algorithms whose running time is exponential in a problem-specific parameter
value, but polynomial in terms of the overall input size. The standard parame-
terization of Hitting Set by the size of the desired solution is unlikely to admit
such a fixed-parameter tractable algorithm, as it is W[2]-complete [8]. The goal
of this paper is to consider other parameterizations of Hitting Set, with the
aim of obtaining FPT algorithms. Our starting point is the folklore result that
Hitting Set is polynomial-time solvable when there is a tree T on vertex set U
such that all sets S ∈ F induce connected subtrees of T . The Hitting Set

? Supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and
NWO Gravity grant “Networks”.

ar
X

iv
:1

50
7.

05
89

0v
2

 [
cs

.D
S]

 2
4

Ju
l 2

01
5

Table 1. Parameterized complexity overview for hitting subgraphs by the minimum
number of vertices, parameterized by measures of structure of the host graph.

parameter complexity for type of subgraphs to be hit

path 3-leaf subtree

cyclomatic number FPT, no kO(1) kernel thm. 2 W[1]-hard thm. 4
feedback vertex number para-NP-complete thm. 5 para-NP-complete thm. 5

problem on such an instance can be solved by a greedy strategy (Section 2).
Motivated by this result, we consider whether Hitting Set can be solved effi-
ciently if there is a graph G that is close to being a tree, such that all S ∈ F
induce connected subgraphs of G. We therefore parameterize the problem by
measures of closeness of G to a tree, which forms an example of parameterizing
by distance from triviality [17].

Our results. One way to measure how close a connected graph is to a tree
is to consider its cyclomatic number k := m − (n − 1). This is the size of a
minimum feedback edge set of the graph, i.e., of a minimum set of edges whose
removal breaks all cycles in the graph. As a tree has cyclomatic number zero, it
is natural to ask if Hitting Set can be solved efficiently if the set system F
can be represented by a graph G on vertex set U having small cyclomatic num-
ber, such that every set S ∈ F induces a connected subgraph of G. To decouple
the difficulty of finding a representation of F in this form from the problem of
exploiting this representation to solve Hitting Set, we consider the situation
when such a representation is given. In this setting, the problem can be phrased
more naturally in graph-theoretical terms: given a graph G of cyclomatic num-
ber k, a collection S of connected subgraphs of G, and an integer t, is there a
vertex set of size t that hits all subgraphs in S?

Our first result for the parameterization by cyclomatic number is a hardness
proof showing this problem to be W[1]-hard. In fact, we prove W[1]-hardness
even when all subgraphs in S are trees with at most three leaves. To establish
this hardness result we prove that a variation of 3-SAT in multiple valued logic
(see Section 2) is W[1]-hard, which may be of independent interest. Concretely,
we show the following. Given a set of n variables x1, . . . , xn that can take values
from 1 to N , and a formula that is a conjunction of clauses of size at most three,
where each literal is of the form xi ≥ c or xi ≤ c for c ∈ [N], it is W[1]-hard
parameterized by n to determine whether there is an assignment to the variables
satisfying all clauses. This parameterized logic problem reduces to the discussed
structural parameterization of Hitting Set in a natural way.

The hardness result motivates us to place further restrictions on the problem
in search of fixed-parameter tractable cases. We consider the situation of hitting
a set P of simple paths in a graph G of cyclomatic number k. This corresponds
to Hitting Set instances where there is a graph G on U such that for all sets S
in F , there is a simple path in G on vertex set S. We prove that this problem is
fixed-parameter tractable and can be solved in time 25k(|G|+ |P|)O(1), which is

2

the main algorithmic result in this paper. The algorithm is based on a reduction
to 25k instances of the 2-SAT problem in multiple valued logic, which is known
to be polynomial-time solvable [3,16]. The reduction exploits the fact that in
tree-like parts of the graph, the local structure of minimum hitting sets can be
determined by greedily computed optimal hitting sets for subtrees of a tree. After
branching in 25k directions to determine the form of a solution, the interaction
between such canonical subsolutions is then encoded in a 2-SAT formula in
multiple valued logic, which can be evaluated efficiently.

There are several other parameters that measure the closeness of a graph
to a tree, such as the feedback vertex number and treewidth (cf. [9]). As these
parameters have smaller values than the cyclomatic number, one might hope to
extend the FPT result mentioned above to these parameters. However, we show
that this is impossible, unless P=NP. In particular, we prove that the problem
of hitting simple paths in a graph of feedback vertex number 2 is NP-complete,
showing the parameterizations by feedback vertex number and treewidth to be
para-NP-complete. Table 1 gives an overview of the results in this paper.

Related work. Several authors [5,10,19] have considered problems parame-
terized by cyclomatic number; this is also known as parameterizing by feedback
edge set. In parameterized complexity, Hitting Set is often studied when the
sets to be hit have constant size. In this setting, several FPT algorithms and
kernelizations bounds are known [1,6,20]. The weighted Set Cover problem,
which is dual to Hitting Set, has been analyzed for tree-like set systems by
Guo and Niedermeier [12]. Recently, Lu et al. [15] considered Set Cover and
Hitting Set for set systems representable as subtrees of a (restricted type of)
tree, distinguishing polynomial-time and NP-complete cases.

Organization. Preliminaries are given in 2. The FPT algorithm for hitting
paths is developed in Section 3. Section 4 contains the hardness proofs.

2 Preliminaries

Parameterized complexity. A parameterized problem is a set Q ⊆ Σ∗ × N,
where Σ is a fixed finite alphabet. The second component of a tuple (x, k) ∈
Σ∗×N is the parameter. A parameterized problem is (strongly uniformly) fixed-
parameter tractable if there is an algorithm that decides every input (x, k) in
time f(k)|x|O(1). Evidence that a problem is not fixed-parameter tractable is
given by proving that it is W[1]-hard. We refer to one of the textbooks [8,11] for
more background.

Graphs. All graphs we consider are simple, undirected and finite. A graph G
consists of a set of vertices V (G) and edges E(G). Notation not defined here is
standard. For a set of vertices S we denote by NG(S) the set

⋃
v∈S NG(v) \ S.

A path in a graph G is a sequence of distinct vertices such that successive
vertices are connected by an edge. The first and last vertices on the path are its
endpoints, the remaining vertices are its interior vertices. Given a graph G and
a vertex subset S ⊆ V (G), the operation of identifying the vertices of S into a
new vertex z is performed as follows: delete the vertices in S and their incident

3

edges, and insert a new vertex z that is adjacent to NG(S), i.e., to all remaining
vertices of G that were adjacent to at least one member of S.

Proposition 1. Let G be a connected graph of minimum degree at least two
with cyclomatic number k. The number of vertices in G with degree at least three
is bounded by 2k − 2.

Proof. Denote by n2 and n≥3 the number of vertices in G with degree two and
at least three, respectively. Let n and m be the total number of vertices and
edges in G, and let d(v) denote the degree of a vertex v. Since k = m− (n− 1)
we have m = k + (n2 + n≥3 − 1). The value of m can also be obtained as half
the degree sum of G:

m =
1

2

∑
v∈V (G)

d(v) ≥ n2 +
3n≥3

2
.

Hence we find:

m = k + (n2 + n≥3 − 1) ≥ n2 +
3n≥3

2
,

from which we obtain n≥3 ≤ 2k − 2 by subtracting n2 + n≥3 on both sides and
multiplying by two. ut

Proposition 2. Let G be a connected graph of minimum degree at least two
with cyclomatic number k and let S be the set of vertices of degree at least three.
If S 6= ∅ then the number of connected components of G−S is at most k+|S|−1.

Proof. As S contains all vertices of degree at least three, every connected com-
ponent C of G − S is a path. Since G has minimum degree at least two, every
endpoint of such a path has a neighbor in S. Hence for every connected com-
ponent C of G − S there are exactly two edges between C and S. Consider
the multigraph H on vertex set S defined as follows. For every component C
of G − S, consider the two edges between C and S and let x, y be their end-
points in S. We add an edge between x and y to H; if x = y this becomes a
self-loop, and there is the chance of creating parallel edges. Since H is a con-
nected topological minor of G it is easy to see that the cyclomatic number k′

of H does not exceed that of G. Since |E(H)| = (|V (H)| − 1) + k′, we find
that |E(H)| = |S| − 1 + k′ ≤ k + |S| − 1. Since connected components of G− S
are in 1-to-1 correspondence with edges of H, this completes the proof. ut

Hitting set. A set system F ⊆ 2U can be viewed as a hypergraph whose
vertices are U and whose hyperedges are formed by the sets in F . A set system F
is a hypertree if there is a tree T on vertex set U such that every set in F induces
a subtree of T . Testing whether a set system is a hypertree, and constructing a
tree representation if this is the case, can be done in polynomial time [18].

We frequently use the fact that a minimum hitting set for a hypertree can
be found in polynomial time (cf. [12, §2] for a view from a dual perspective).
When a tree representation is known, a greedy algorithm can be used to find a

4

minimum hitting set. If we root the tree at a leaf and find a vertex v of maximum
depth for which there is a set S ∈ F whose members all belong to the subtree
rooted at v, then it is easy to show there is a minimum hitting set containing v.
Consequently, we may add v to the solution under construction, remove all sets
hit by v, and remove all elements in the subtree rooted at v from the universe.

This idea can be extended for the following setting. Suppose we have a
graph G that is isomorphic to a simple cycle and a set P of paths in G. To
find a minimum vertex set that hits all the paths in P, we try for each vertex v
of G whether there is a minimum solution containing it. After removing v and
the paths hit by v, the remaining structure is a hypertree since the cycle breaks
open when removing v. The minimum over all choices of v gives an optimal
hitting set. We will use this in our FPT algorithm to deal with a corner case.

Multiple valued logic. The hitting set problems we are interested in turn
out to be related to variations of the Satisfiability problem that have been
studied in the field of multiple valued logic. In a multiple valued logic, variables
can take on more values than just 0 and 1: there is a truth value set containing
the possible values. For our application, the truth value set is totally ordered;
it is a range of integers [N] = {1, . . . , N}. A regular sign is a constraint of
the form ≥ j or ≤ j for j ∈ [N]. By constraining variables with regular signs,
resulting in (generalized) literals of the form xi ≥ j or xi ≤ j, and combining
such literals with the usual logical connectives, one creates totally ordered regular
signed formulas. As expected, the satisfiability problem for such formulas is to
determine whether every variable can be assigned a value in the range [N] such
that the formula is satisfied. We shall be interested in the case of CNF formulas
with clauses having at most two (2-SAT) or at most three (3-SAT) literals.

n-Totally Ordered Regular Signed 3-SAT Parameter: n.
Input: A totally ordered regular signed 3-CNF formula with n variables and
truth value set [N].
Question: Is the formula satisfiable?

For brevity we sometimes refer to this problem as n-TORS 3-SAT. We
also consider TORS 2-SAT, where clauses have at most two literals, which is
polynomial-time solvable [16]. In particular, TORS 2-SAT can be reduced to
the 2-SAT problem in classical logic [3, §3], which is well-known to be solvable
in linear time [2]. For completeness, we sketch the reduction in Appendix A.

3 Algorithms

The goal of this section is to develop an FPT algorithm for the following param-
eterized problem.

Hitting Paths in a Graph Parameter: k.
Input: An undirected simple graph G with cyclomatic number k, an integer t,
and a set P of simple paths in G.
Question: Is there a set X ⊆ V (G) of size at most t that hits all paths in P?

5

The algorithm consists of two reductions. An instance of Hitting Paths
in a Graph is reduced to a hitting set problem on a more structured graph,
called a flower. An instance with such a flower structure can be reduced to a
polynomial-time solvable 2-SAT problem in multiple valued logic. This section is
structured as follows. We first describe the flower structure and the reduction to
2-SAT in Section 3.1. Afterward we show how to build an FPT algorithm from
this ingredient, in Section 3.2.

3.1 Hitting Paths in Flowers

The key notion in this section is that of a flower graph, which is a graph G with
a distinguished vertex z called the core such that all connected components
of G − {z} are paths R1, . . . , Rn of which no interior vertex is adjacent to z.
These paths are called petals of the flower. When working with flower graphs
we will assume an arbitrary but fixed ordering of the petals as R1, . . . , Rn, as
well as an orientation of each petal Ri as consisting of vertices ri,1, . . . , ri,|V (Ri)|.
For ease of discussion we will interpret each petal to be laid out from left to
right in order of increasing indices. We will give an FPT branching algorithm
that reduces Hitting Paths in a Graph to solving several instances of the
following more restricted problem.

Hitting Paths in a Flower with Budgets
Input: A flower graph G with core z and petals R1, . . . , Rn, a set of simple
paths P = {P1, . . . , Pm} in G, and a budget function b : [n]→ N≥1.
Question: Is there a set X ⊆ V (G) \ {z} that hits all paths in P such
that |X ∩ V (Ri)| = b(i) for all i ∈ [n]?

We show that Hitting Paths in a Flower with Budgets can be solved
in polynomial time. The following notion will be instrumental to analyze the
structure of solutions to this problem.

Definition 1. Let Ri be a petal of an instance (G, z,P, b) of Hitting Paths
in a Flower with Budgets and let 1 ≤ ` ≤ |V (Ri)|. The canonical `-th
solution for petal Ri is defined by the following process.

1. If there is a path in P that is contained entirely within {ri,1, . . . , ri,`−1}, then
define the canonical `-th solution to be NIL.

2. Otherwise, initialize Xi,` as the singleton set containing ri,`.

(a) While there is a path in P that is contained entirely within Ri and is not
intersected by Xi,`, consider a path among this set that minimizes the
index j′ of its right endpoint and add ri,j′ to Xi,`.

(b) While |Xi,`| < b(i) and Y := {ri,`, . . . , ri,|V (Ri)|} \ Xi,` 6= ∅, add the
highest-indexed vertex from Y to Xi,`. (Recall that b(i) is the budget for
petal Ri.)

(c) If |Xi,`| = b(i), the canonical `-th solution is Xi,`. If |Xi,`| 6= b(i), define
the canonical `-th solution to be NIL.

6

z
(a) Flower.

1 2 3 4 5 6 7 8 9

(b) 9-vertex petal.

1 2 3 4 5 6 7 8 9

(c) Canonical solu-
tion.

Fig. 1. (1(a)) A flower graph with 4 petals and core z. (1(b)) A 9-vertex petal whose
endpoints are adjacent to z. The target paths within the petal that must be hit by
a solution are drawn stacked on top of each other. (1(c)) The set {3, 8} is the 3-rd
canonical solution of size 2 for the petal, with respect to the target paths drawn in 1(b).
The corresponding partition of {3, . . . , 8} into two subpaths described in Observation 2
is shown above the petal. It includes the singleton path {3}. The canonical 1-st solution
of size 2 is NIL, since the procedure of Definition 1 produces the set Xi,` = {1, 6, 9},
which is too large and is rejected in Step 2c.

A set Xi ⊆ V (Ri) is a canonical solution for petal Ri if there is an integer `
for which Xi is the canonical `-th solution for Ri. A canonical solution is well
defined if it is not NIL. A solution X to the instance (G, z,P, b) is globally
canonical if X ∩Ri is a well-defined canonical solution for all i.

Figure 3.1 illustrates these concepts. For a set Xi ⊆ V (Ri) we will denote
by max(Xi) the highest index of any vertex in Xi, i.e., the index of the rightmost
vertex of Xi. Similarly, we denote by min(Xi) the index of the leftmost vertex
of Xi. The following observations about the procedure will be useful.

Observation 1 If Xi,` is a well-defined canonical solution, then min(Xi,`) = `.

Observation 2 Let Xi,` result from Definition 1, and assume that Step 1 does
not apply and that Step 2b is never triggered during the procedure. Partition
the interval {ri,`, . . . , ri,max(Xi,`)} into |Xi,`| maximal subpaths that each end at
a vertex of Xi,` and contain no other vertices of Xi,`. Then, for every such
subpath R′ except the singleton subpath {ri,`}, there is a path in P contained
entirely within R′.

The main strategy behind our reduction of Hitting Paths in a Flower
with Budgets to TORS 2-SAT will be as follows. We will show that, if a
solution to the hitting set problem exists, then there is a globally canonical
solution. Such a solution can be fully characterized by indicating, for each petal,
the index of the canonical solution on the petal (i.e., the leftmost vertex of the
petal that is in the solution). Hence finding a solution reduces to finding a choice
of canonical solutions on the petals. It turns out that for every path P ∈ P, one
can create a signed 2-clause on the variables controlling the choices on two petals,
such that the path is hit by the selected solution if and only if the indices of the
canonical subsolutions satisfy the 2-clause. This allows the hitting set problem
to be modeled by TORS 2-SAT. We now formalize these ideas. Let us first get
a feeling for canonical solutions by proving the following lemma.

7

Lemma 1. Let (G, z,P, b) be an instance of Hitting Paths in a Flower
with Budgets and let Ri be a petal. The indices for which Ri has a well-
defined canonical solution form a contiguous set of integers.

Proof. Assume for a contradiction that there are `1 < `2 < `3 such that the
canonical solutions for `1 and `3 are well-defined, but that for `2 is not. Let us
consider why the canonical solution for `2 is not well-defined.

1. If Step 1 applies for `2, then the path P ∈ P that is contained entirely
within {ri,1, . . . , ri,`2} also causes Step 1 to apply for `3 > `2, contradicting
the assumption that there is a well-defined canonical solution for `3.

2. If Xi,`2 is too small in Step 2c, then this implies that there are less than b(i)
vertices in {r`2 , . . . , r`|V (Ri)|

}. But this contradicts the fact that Xi,`3 has b(i)
vertices and is a subset of {ri,`3 , . . . , ri,|V (Ri)|} for `3 > `2.

3. If Xi,`2 is too large in Step 2c, then its size exceeds |Xi,`1 | = b(i). Hence the
precondition to Step 2b never applied during the procedure for `2. Consider
the partition of the interval {ri,`2 , . . . , ri,max(Xi,`2

)} into |Xi,`2 | subpaths as
described in Observation 2. Every subpath in the partition contains exactly
one vertex of Xi,`2 , and all vertices of Xi,`2 are in one such subpath. Observe
that ri,`1 ∈ Xi,`1 \Xi,`2 , such that Xi,`1 contains at most b(i)− 1 vertices in
the interval ri,`2 , . . . , ri,|V (Ri)|. Since |Xi,`2 | > |Xi,`1 | = b(i), there are at least
two subpaths in the partition from which Xi,`1 contains no vertex. Hence
there is such a subpath, say R′ := {ri,p, . . . , ri,q}, that is not the singleton
path {ri,`2} and that contains no vertices of Xi,`1 . Then, by Observation 2,
there is a target path P in P that is entirely contained within R′. But Xi,`1

contains no vertex of this path, showing that Xi,`1 does not intersect P ,
which contradicts the fact that the while-loop of Step 2a terminated when
defining Xi,`1 .

As the cases are exhaustive, this concludes the proof. ut

As the procedure of Definition 1 can be implemented in polynomial time,
the set of indices for which a petal has a canonical solution can be computed in
polynomial time. We continue describing the structure of canonical solutions.

Lemma 2. Let (G, z,P, b) be an instance of Hitting Paths in a Flower
with Budgets and let Ri be a petal. If `1 < `2, and the `1-th and the `2-
th canonical solutions are well-defined as Xi,`1 and Xi,`2 , then max(Xi,`1) ≤
max(Xi,`2).

Proof. Assume that max(Xi,`1) > max(Xi,`2). We aim to apply Observation 2
to derive a contradiction. Since both canonical solutions are well defined, Step 1
does not apply to `2. As our assumption implies that the rightmost vertex
of Ri is not in Xi,`2 , it follows that Step 2b never applied during the proce-
dure for `2. Since at least one vertex of Xi,`1 lies right of max(Xi,`2), and Xi,`1

contains vertex ri,`1 that lies left of ri,`2 , the partition of {ri,`2 , . . . , ri,max(Xi,`2
)}

into b(i) subpaths described by Observation 2 contains at least two subpaths
from which Xi,`1 contains no vertex. Hence there is such a subpath R′ that is

8

not intersected by Xi,`1 for which there is a target path P ∈ P contained entirely
within R′. This contradicts the fact that Xi,`1 hits all paths contained entirely
within Ri by Step 2a of Definition 1. ut

We now establish that the hitting set problem has a globally canonical solu-
tion, if it has a solution at all. The proof exploits the fact that, after selecting
the leftmost vertex of a petal to be used in the hitting set, removing it from the
graph, and removing the paths hit by this vertex from the graph, the remainder
of the petal turns into a pendant path that connects to the rest of the graph
at vertex z. The hitting set problem has a greedy solution within this resulting
path, which reflects the structure of the canonical solution. Formalizing this line
of reasoning is tedious but straight-forward.

Lemma 3. Let (G, z,P, b) be an instance of Hitting Paths in a Flower
with Budgets having petals R1, . . . , Rn. If the instance has a solution X ′,
then it has a globally canonical solution X.

Proof. Proof by induction on the number k of petals for which X ′ ∩ Ri is not
a canonical solution. When k = 0 the claim is trivial, so assume k > 0 and
let Ri be a petal such that X ′ ∩ V (Ri) is not a canonical solution. Since X ′ is
a solution, by the definition of Hitting Paths in a Flower with Budgets
we have |X ′ ∩ V (Ri)| = b(i). Let ` be the index of the leftmost vertex from X ′

on Ri. Since b(i) ≥ 1, such a vertex exists. Let X ′i,` := X ′ ∩ V (Ri).

Claim. The `-th canonical solution for Ri is well defined.

Proof. Consider the setXi,` resulting from the process of Definition 1 and assume
for a contradiction that the process defines the canonical `-th solution to be NIL.
There are two cases that yield NIL; we treat them consecutively.

1. If the canonical solution is NIL because there is a path P in P that is
contained entirely within {ri,1, . . . , ri,`−1}, then since ` is the index of the
leftmost vertex from X ′ on Ri we have X ′ ∩ {ri,1, . . . , ri,`−1} = ∅. Conse-
quently, the set X ′ does not intersect path P , contradicting the assumption
that X ′ is a solution.

2. Consider the case that the canonical solution is NIL because the size of Xi,`

is not equal to b(i) in Step 2c.
(a) If |Xi,`| < b(i), then by the while-loop of Step 2b, all vertices of {ri,`, . . . ,

ri,|V (Ri)|} are in Xi,`. Since X ′i,` = X ′ ∩ V (Ri) and the leftmost vertex
of X ′i,` on Ri is `, the set X ′i,` cannot contain more vertices than Xi,`.
But then |X ′i,`| < b(i), showing that X ′ is not a solution.

(b) If |Xi,`| > b(i), Step 2b never applied during the procedure. Consider
the partition of the interval {ri,`, . . . , ri,max(Xi,`)} into |Xi,`| subpaths as
described in Observation 2. Since every subpath in the partition con-
tains exactly one vertex of Xi,`, and all vertices of Xi,` are in one such
subpath, it follows from |Xi,`| > |X ′i,`| = b(i) that there is such a sub-
path, say R′ := {ri,p, . . . , ri,q}, containing no vertices of X ′i,`. Since X ′i,`

9

and Xi,` both contain ri,`, we know R′ is not {ri,`}. Then, by Observa-
tion 2, there is a target path in P that is entirely contained within R′.
But X ′i,` contains no vertex of this path, showing that X ′ is not a solu-
tion.

As we covered all cases that lead to the canonical solution being NIL, this con-
cludes the proof. y

In the remainder, let Xi,` be the `-th canonical solution for Ri, which is well
defined by the previous claim.

Claim. max(X ′i,`) ≤ max(Xi,`).

Proof. Consider the process of Definition 1. If the loop of Step 2b was exe-
cuted at least once, then the rightmost vertex of Ri is in Xi,` and the claim
is trivially true. So assume that this is not the case, and assume for a con-
tradiction that max(X ′i,`) > max(Xi,`). Consider the partition of the inter-
val {ri,`, . . . , ri,max(Xi,`)} as in Observation 2. Since |Xi,`| = |X ′i,`| = b(i) and
at least one vertex of X ′i,` does not lie in the interval {ri,`, . . . , ri,max(Xi,`)}
since max(X ′i,`) > max(Xi,`), it follows that there is a subpath R′ in the par-
tition from which X ′i,` contains no vertices, and which therefore cannot be the
subpath {ri,`}. As there is a path P ∈ P that is entirely contained within R′ by
Observation 2, the fact that X ′i,` and therefore X ′ contains no vertices from R′

shows that X ′ is not a solution; contradiction. y

Using the previous claim we can finish the proof. Consider the set X :=
(X ′ \ X ′i,`) ∪ Xi,`, whose size equals that of X ′. We show that X is a valid
solution to the instance. To see that, observe that the budget constraints are
trivially satisfied since |X ′i,`| = |Xi,`|. To see that all paths in P are hit by X ′,
consider a path P ∈ P. If P is hit by X ′ \X ′i,` then it is also hit by X. If P is
contained entirely within Ri, then by Step 2a of Definition 1 the path P is hit
by Xi,` and thus by X. If P is not contained entirely within Ri and is not hit
by X ′ \X ′i,`, then it enters the petal at the leftmost or rightmost vertex of the
petal and contains a prefix or suffix of the petal. (Here we use the structure of
the flower graph: the interior vertices of petal Ri are not adjacent to any other
vertex in the graph, only to their predecessor and successor on Ri.) Since X ′i,`
hits P , it follows from the structure of the path in the petal that the leftmost or
rightmost vertex of X ′i,` on Ri hits P . But since the leftmost vertex of X ′i,` is ri,`,
which is also in Xi,`, and the rightmost vertex of X ′i,` does not have larger index
than the rightmost vertex of Xi,` by the previous claim, it follows that Xi,` also
hits P . Hence all paths in P are hit by X, which is therefore a valid solution.
Since the number of petals for which X does not contain a canonical solution is
less than for X ′, by induction it follows that there is a solution for the instance
whose intersection with every petal is a canonical solution. ut

Lemma 4. Let (G, z,P, b) be an instance of Hitting Paths in a Flower
with Budgets. There is a polynomial-time algorithm that, given a path P (not
necessarily contained in P) which is a suffix or a prefix of a petal Ri, either

10

correctly determines that no well-defined canonical solution for Ri hits P , or
produces a literal of the form xi ≥ c or xi ≤ c for c ∈ N≥1, such that the
following holds.

1. If X is a globally canonical solution for the instance that hits P and con-
tains the `-th canonical solution for petal Ri, then the literal is satisfied by
setting xi = `.

2. If xi = ` satisfies the literal and the `-th canonical solution Xi,` is well-
defined, then P is hit by Xi,`.

Proof. The definition of the literal depends on whether P is a suffix or a prefix
of a petal. First consider the case that P is a prefix of petal Ri. Observe that
a well-defined canonical solution Xi,` for Ri hits P if and only if ` ≤ max(P),
since max(P) marks the index of the end of the prefix of Ri used by P , and `
is the index of the leftmost vertex of the `-th canonical solution on the petal by
Observation 1. Hence for this case we obtain the literal xi ≤ max(P).

Now consider the case that P is a suffix of petal Ri. The situation is similar:
a well-defined canonical solution Xi,` hits the suffix P if and only if max(Xi,`) ≥
min(P), i.e., when the rightmost vertex of the canonical solution lies right of
the starting point of the suffix P . Since all canonical solutions for Ri can be
computed in polynomial time, we can efficiently find the indices `, if any, for
which a canonical solution is well defined satisfying max(Xi,`) ≥ min(P). The
indices for which a canonical solution is well defined form a contiguous set by
Lemma 1. If max(Xi,`) ≥ min(P) holds for some `, then for all `′ ≥ ` for which
a canonical solution is well defined we have max(Xi,`′) ≥ min(P) by Lemma 2.
Hence we can determine the smallest value `∗ for which this holds, and find that
the canonical solution on Ri hits P if and only if its index is at least `∗. Hence
we obtain the literal xi ≥ `∗. In the case that there is no well-defined canonical
solution that hits the suffix, we report this instead.

The two correctness properties follow directly from the if-and-only-if nature
of our arguments above. ut

Using the lemmata developed so far, we can present a polynomial-time algo-
rithm for the problem in flower graphs.

Theorem 1. Hitting Paths in a Flower with Budgets can be solved in
polynomial time.

Proof. We show how to reduce an instance (G, z,P, b) with petals (R1, . . . , Rn)
to an equivalent instance of the polynomial-time solvable TORS 2-SAT prob-
lem. The main work will be done by Lemma 4 to create the literals of the formula.
Let N := maxi∈[n] |V (Ri)| be the maximum size of a petal. The truth value set
for our multiple valued logic formula will be [N]. We create a variable xi for
every petal i. The clauses in the formula are produced as follows.

1. For every petal index i ∈ [n], we compute the values of 1 ≤ ` ≤ |V (Ri)| for
which the `-th canonical solution for petal Ri is well-defined, using the pro-
cedure of Definition 1. By Lemma 1 these values form a contiguous interval,

11

say `1, . . . , `2. We add the singleton clause xi ≥ `1 to the formula, as well
as the singleton clause xi ≤ `2. If there is no well-defined canonical solution
for Ri then, by Lemma 3, the hitting set instance has no solution. In this
case we simply output the answer no.

2. For every path P ∈ P that is not contained entirely within a single petal
(i.e., for every path that contains the core vertex z of the flower) we do the
following. If P = {z} is the singleton path containing only vertex z, then we
output no as a solution is not allowed to contain vertex z; this path can never
be hit. Otherwise, let P1, P2 be the two connected components of P − {z}.
(In the exceptional case that P −{z} has only a single component because P
has z as an endpoint, take P1 = P2 to be equal to P − {z}.) For k ∈ {1, 2}
let Rik be the petal containing Pk and invoke Lemma 4 on Pk with Rik . If the
invocations for both values of k produce a literal, say φ1 and φ2, then add the
disjunction φ1 ∨ φ2 as a 2-clause to the formula. If one invocation concludes
that no well-defined canonical solution hits the path, but the other invocation
produces a literal, then add a singleton clause with the latter literal. Finally,
if neither P1 nor P2 produces a literal, then neither of the subpaths of P−{z}
are hit by any well-defined canonical solution, and therefore the path P is
not hit by any canonical solution. (Recall that solutions are forbidden to
contain z.) Since, by Lemma 3, a canonical solution exists if a solution exists
at all, it follows that we can safely output no and halt.

The process above results in a totally ordered regular signed 2-SAT formula Φ
on n variables with O(n+|P|) clauses, which is polynomial in the size of the total
input. All numbers involved are in the range [N] which is bounded by the order
of the input graph G. The reduction can therefore be performed in polynomial
time, and produces an instance of TORS 2-SAT of polynomial size, even when
encoding the numbers in unary. It remains to prove correctness of the reduction.

Claim. Formula Φ is satisfiable if and only if (G, z,P, b) has a solution.

Proof. (⇒) Suppose that the formula is satisfiable and consider a satisfying
assignment to the variables x1, . . . , xn. Since the assignment satisfies the first
type of clauses introduced, for every petal index i ∈ [n], if xi = ` then the
`-th canonical solution for Ri is well-defined. Initialize X as an empty solution
set. For each i ∈ [n] add the canonical solution for Ri whose index is given
by xi to the set X. Since well-defined canonical solutions for i have size b(i) by
Definition 1, this satisfies the budget constraints of the problem since the only
vertices of Ri added to X are those of the canonical solution employed on that
petal. As we trivially do not include z in the solution X, to verify that X is a
valid solution it remains to check that X intersects all paths in P. To this end,
consider an arbitrary path P ∈ P.

1. If P is contained entirely within one petal, say Ri, then observe that any
well-defined canonical solution for petal Ri hits P by Step 2a of Definition 1.
Since a canonical solution for Ri is included in X, the path P is hit.

12

2. If P is not contained entirely within one petal, then by the structure of
flower graphs we know that P contains vertex z and was considered in the
second phase of the construction. Consider the clause created on account
of P during the construction above. Since the formula satisfies the clause,
at least one literal is satisfied; say the literal for the subpath Pk of P − {z}
residing in petal Rik . Then Lemma 4 guarantees that the canonical solution
employed on Rik hits Pk, and therefore hits the larger path P as well.

As X hits all paths in P, this proves the forward direction.

(⇐) For the reverse direction, suppose that (G, z,P, b) has a solution. By
Lemma 3 there is a globally canonical solution X. For every petal index i let `i be
such that X includes the `i-th canonical solution on Ri, and assign variable xi the
value `i. Let us check that this assignment satisfies the formula. Every clause of
the first type is satisfied by any setting corresponding to the index of a canonical
solution, which is clearly the case. For the clauses of the second type that are
produced on account of paths P ∈ P, observe that X intersects such a path in
a connected component of P − {z}, since z 6∈ X. By Lemma 4 this implies that
the corresponding literal of the clause is satisfied, implying that the entire clause
is satisfied. Hence all types of clauses are satisfied, showing the formula to be
satisfiable. y

The claim shows that to solve the hitting set problem, it suffices to check the
satisfiability of the polynomial-sized TORS 2-SAT instance. As the latter can
be done in polynomial time, this proves Theorem 1. ut

3.2 Hitting Paths in Graphs

In this section we will show that an instance of Hitting Paths in a Graph can
be reduced to 25k instances of Hitting Paths in a Flower with Budgets.
By the results of the previous section, this leads to an FPT algorithm.

We will frequently use the following observation. It formalizes that if v is a
degree-one vertex in G and we are looking for a set that hits all paths in P, then
either there is a single-vertex path P = {v} ∈ P, forcing v to be in any solution,
or there is an optimal solution that does not contain v.

Observation 3 Let (G, k, t,P) be an instance of Hitting Paths in a Graph
and let v ∈ V (G) have degree at most one.

1. If the singleton path P = {v} is contained in P, then (G, k, t,P) is equivalent
to the instance obtained by decreasing t by one, removing v from the graph,
and removing all paths containing v from P.

2. Otherwise, (G, k, t,P) is equivalent to the instance obtained by removing v
from the graph and replacing every path P ∈ P by P \ {v}.

The cyclomatic number is not affected by these operations.

13

For an instance (G,P, k, t) of Hitting Paths in a Graph and a vertex
subset S ⊆ V (G), the cost of the subgraph induced by S, denoted opt(S),
is defined as the minimum cardinality of a set that hits all paths P ∈ P for
which V (P) ⊆ S. Equivalently, opt(S) is the minimum cardinality of a set that
hits all paths {P ∈ P | V (P) ⊆ S} in the graph G[S]. Observe that if S induces
an acyclic subgraph of G, then this value is computable in polynomial time as
discussed in Section 2. To reduce the general Hitting Paths in a Graph prob-
lem to the version with budget constraints discussed in the previous section, the
following lemma is useful for determining relevant values for the budgets.

Lemma 5. Let (G,P, k, t) be an instance of Hitting Paths in a Graph.
Let S be the vertices of degree unequal to two in G. There is a minimum-size
hitting set X for P such that, for every connected component C of G − S, we
have opt(C) ≤ |X ∩ V (C)| ≤ opt(C) + 1.

Proof. The fact that X ∩ V (C) ≥ opt(C) for all hitting sets of P follows triv-
ially since X ∩ V (C) is a hitting set for the induced subinstance. For the other
inequality we exploit the structure of the graph.

Let X be a minimum-size hitting set for P, whose size may be less than t.
We give a proof by induction on the number of components for which X ∩V (C)
exceeds opt(C) + 1. The statement is trivially true if this number is zero.
Otherwise, fix a component C for which X ∩ V (C) > opt(C) + 1. As C is
a connected subgraph containing only vertices of degree two, the neighbor-
hood NG(C) has size at most two, and is contained within S. Let XC be a
minimum-cardinality hitting set for the instance induced by C, of size opt(C).
Consider the set X ′ := (X \V (C))∪NG(C)∪XC , whose intersection with C has
size opt(C). Since |NG(C) ∪XC | ≤ opt(C) + 2 and X ∩ V (C) ≥ opt(C) + 2,
the set X ′ is not bigger than X. We show it to be a hitting set as well. To see
that, observe that all paths contained in G[C] are hit by XC , as it is a solution
to the subproblem induced by C. Any path intersecting C that is not hit by XC

was not included in the subinstance induced by C, and hence contains a vertex
of NG(C). Such paths are therefore hit by X ′. All paths that do not intersect C
are hit by X \ V (C), and are therefore hit by its superset X ′ as well. It follows
that X ′ is a hitting set of minimum cardinality. As the number of components C
from which it uses at least opt(C) + 2 vertices is strictly smaller than for X
(the vertices of NG(C) belong to S and therefore do not increase this number,
as components are taken of G− S), the proof now follows by induction. ut

Using these ingredients we give an algorithm for Hitting Paths in a Graph.

Theorem 2. Hitting Paths in a Graph parameterized by cyclomatic number
can be solved in time 25k · (|G|+ |P|)O(1).

Proof. When presented with an input (G,P, k, t), the algorithm proceeds as
follows. First, as a preprocessing step, the algorithm repeatedly removes vertices
of degree at most one from the graph using Observation 3. If the resulting graph is
empty, then we can simply decide the problem: the answer is yes if and only if the

14

value of t was not decreased below zero by these operations. Otherwise we obtain
a graph with minimum degree at least two. While this graph is disconnected,
add an arbitrary edge between two distinct connected components. This does
not change the answer to the instance (the paths P to be hit are unchanged)
and leaves the cyclomatic number unchanged. From now on we therefore assume
that the instance we work with has minimum degree at least two and consists
of a connected graph. For ease of notation, we refer to instance resulting from
these steps simply as (G,P, k, t). If G consists of just a simple cycle (i.e., G is
2-regular) then we can decide the problem in polynomial time as discussed in
Section 2, so we focus on the case that the set S of vertices of degree at least
three is nonempty. By Proposition 1, the size of S is bounded by 2k. The main
idea of the algorithm is to use branching make two successive guesses.

– First, we guess which vertices from S are used in a solution. Concretely, we
try all subsets S′ ⊆ S and test whether there is a solution X for which X ∩
S = S′.

– For every such set S′, we do the following. By Lemma 5, there is a minimum-
size hitting set that intersects every component C of G−S (which is a path)
in either opt(C) or opt(C) + 1 vertices. Let C denote the set of these
components. By Proposition 2, we have |C| < k + |S| ≤ 3k. We now guess
the collection C′ ⊆ C of components C for which the solution uses opt(C)
vertices. Every guess C′ defines a budget b(C) for each component C ∈ C as
follows: b(C) = opt(C) if C ∈ C′, and b(C) = opt(C) + 1 otherwise.

Having guessed both S′ and C′, we create an instance of Hitting Paths
in a Flower with Budgets to verify whether there is a hitting set X for
the paths P such that X ∩ S = S′ and for all components C of G − S we
have |X ∩C| = b(C). Observe that these constraints on X completely determine
its size, which must be |S′|+

∑
C∈C b(C). Hence if the size exceeds t, then these

guessed sets will not lead to a hitting set of the desired size, and can therefore be
skipped. When we have a guess that leads to a hitting set size of at most t, we
aim to produce an instance of Hitting Paths in a Flower with Budgets
to check whether there is a solution consistent with the guesses. To this end,
initialize G′ as a copy of G, and P ′ as a copy of P. We modify these structures
to create an input on a flower graph. Throughout these modifications there will
be a clear correspondence between components of G′−S and those of C, so that
we may refer to the budgets of components C of G′−S. For each guess S′ and C′,
we proceed as follows.

1. Remove all the vertices of S′ from the graph G′ and remove all paths hit
by S′ from P ′.

2. For all paths P ∈ P ′ for which there is a component C of G′ − S such that
all vertices of C belong to P and b(C) > 0, remove P from the set P ′. All
hitting sets that contain b(C) vertices from C must hit P , so we can drop
the constraint P because we will introduce a budget constraint on C.

3. For all components C of G′−S such that b(C) = 0, do the following. Remove
the vertices of C from the graph G′. For every P ∈ P ′, replace P by the sub-

15

a b c

d
(a)

a b c

d
(b)

z
(c)

z
(d)

Fig. 2. (2(a)) A graph with cyclomatic number 5, whose vertices of degree ≥ 3 are S :=
{a, b, c, d}. (2(b)) A simple path P in the graph. (2(c)) Illustration of reduction Steps 1
and 4 in the algorithm for the guess S′ = {a, b}. Vertices a and b are deleted, while c
and d are identified into a single vertex z to obtain a flower structure. (2(d)) Merging c
and d into z turns P into a cyclic subgraph P ′. The bottom right petal is contained
entirely within P ′. If its budget is positive, any solution hits P ′ in that petal, causing P
to be removed in Step 2. If its budget is zero, the vertices of the petal are removed
from P ′ instead in Step 3, to eliminate the cycle.

graph P −V (C). This may cause the elements of P ′ to become disconnected
subgraphs, rather than paths, but this will be resolved in the next step.

4. The final step identifies several vertices in the graph into a single core vertex,
to obtain a flower structure. Concretely, update the graph G′ by identifying
all vertices of S \ S′ into a single vertex z. Similarly, update every sub-
graph P ∈ P ′ by identifying all vertices of (S \ S′) ∩ V (P) into a single
vertex z.

Let G∗,P∗ denote the resulting graph and system of subgraphs. Refer to
Figure 2 for an illustration of these steps.

Claim 1 G∗ is a flower with core z and all subgraphs in P∗ are simple paths.

Proof. Let us first verify that G∗ is indeed a flower. As every vertex of S was
either removed or merged into z, we find that G∗ − {z} is a subgraph of G− S.
Since S is the set of vertices of degree unequal to two, and G had no vertices
of degree at most one after preprocessing, every connected component of G− S
consists of vertices that have degree two in G and therefore such components
form paths. As S is not empty, every such component has exactly two neighbors
in S, which are adjacent to the first and last vertex of the path. Hence no interior
vertex of such paths is adjacent to S. Since G∗ − {z} is a subgraph of G − S
it follows that all connected components of G∗ − {z} are paths and no interior
vertex of such a path is adjacent to z. Hence G∗ is a flower with core z.

We continue by proving the second part of the claim. Consider a subgraph P ∗

in the final set P∗, and let P ∈ P be the simple path in G from which it
originated. As P ∗ is present after the last step, it follows that P did not meet the
precondition for removal in Step 1 and therefore P ∩S′ = ∅, showing that P is a
simple path in G−S′. Similarly, as P was not removed by Step 2 we know that P
does not fully contain any component C of G−S with positive budget. Consider

16

what happens when deleting components C with budget zero in Step 3. Since
all vertices of G−S have degree two in G, there are at most two components C
of G − S from which P contains at least one, but not all vertices: these are
the components containing the endpoints of P . Hence if P is transformed into
a disconnected subgraph P ′ by Step 3, then (1) P ′ contains at least one vertex
of S \ S′, and (2) there are at most two connected components in P ′ − S, and
both these components have (in subgraph P ′) a neighbor in S \ S′. This shows
that when all vertices of S \S′ are merged into a single vertex z by Step 4, then
the disconnected subgraph P ′ is transformed into a path P ∗ containing the core
vertex z in its interior. Hence all subgraphs P ∗ in P∗ are simple paths. y

The claim shows that we can use the structures G∗ and P∗ resulting from
the process above to formulate an instance of Hitting Paths in a Flower
with Budgets. To that end, we use G∗ as the flower graph, z as the core,
and P∗ as the set of paths to be hit. We number the connected components
of G∗ − {z}, which are the petals of the flower, as R1, . . . , Rn. Each such petal
corresponds to a connected component of G−S for which we assigned a budget
when guessing C′ ⊆ C; we define the budget function b∗ for the instance by
letting b∗(i) be b(Ci) where Ci is the component of G− S corresponding to Ri.
This results in a valid instance (G∗, z,P∗, b∗) of Hitting Paths in a Flower
with Budgets. For the correctness of the algorithm, the following claim is
crucial.

Claim 2 For every guess of S′ ⊆ S and C′ ⊆ C, the following are equivalent.

1. There is a hitting set X for the paths P in graph G such that X ∩ S = S′

and all components C of G− S satisfy |X ∩ C| = b(C).
2. The produced instance (G∗, z,P∗, b∗) of Hitting Paths in a Flower with

Budgets has a solution.

Proof. (1⇒2) Suppose there is a hitting set X satisfying the stated conditions.
We claim that X∗ := X \S is a solution for (G∗, z,P∗, b∗). By the preconditions,
set X∗ satisfies the budget constraints for the petals. Consider a path P ∗ ∈ P∗
derived from a path P ∈ P. Set X does not hit P in a component of G − S
with b(C) = 0, as X contains no vertices of such components. Set X does not
intersect P in a vertex of S′, as such paths are not present in P∗ due to Step 1.
It follows that X intersects P in a vertex v of V (G) \ S that lies in a connected
component of G−S with positive budget. Hence the component forms a petal Ri

in G∗, and the intersection of P with the petal is contained in P ∗. Hence X∗

hits P ∗ at v. Since all paths in P∗ are hit, the budget constraints are met,
and z 6∈ X∗, it follows that X∗ is a solution to (G∗, z,P∗, b∗).

(2⇒1) For the reverse direction, suppose the flower problem has a solu-
tion X∗. We claim that X := X∗ ∪ S′ is a hitting set for the paths P in G
with |X ∩ C| = b(C) for all components C of G − S. The latter condition
is easily verified: components C with b(C) = 0 were discarded in Step 3, do
not occur in G∗, and therefore X∗ contains no vertices of such components.
For components with positive budget, which also exist in G∗, the budget con-
straints in the definition of Hitting Paths in a Flower with Budgets

17

ensure that |X ∩ C| = |X∗ ∩ C| = b(C). Let us verify that X indeed hits all
paths P in G by considering an arbitrary P ∈ P. If P contains a vertex of S′

then X trivially hits P . Similarly, if P fully contains a component C of G − S
with b(C) > 0, then X∗ contains at least one vertex of C and therefore of P ;
hence X ⊇ X∗ also hits P . In the remaining case, the construction of G∗,P∗
ensures that P∗ contains a path P ∗ such that P ∗ − {z} is a subgraph of P − S.
Since X∗ hits P ∗ in a vertex other than z, this vertex is included in X and
therefore X hits P . It follows that X is indeed a hitting set for all paths in P,
which concludes the proof of the equivalence. y

Using the claim, the final part of the algorithm becomes clear. For every
guess S′ ⊆ S and C′ ⊆ C that leads to a solution of size at most t, we construct
the corresponding instance of Hitting Paths in a Flower with Budgets
and solve it using Theorem 1. Since the flower instances are not larger than the
input instance, this can be done in time (|G|+ |P|)O(1) for every guess. As there
are 2|S| · 2|C| ≤ 22k · 23k options for S′ and C′ to check, the total running time
is bounded by 25k(|G| + |P|)O(1). If one of the Hitting Paths in a Flower
with Budgets instances has answer yes, then we output yes; otherwise we
output no. In one direction, the correctness of this approach follows from the
previous claim together with the facts that flower instances are only produced
when the size of the resulting hitting sets is at most t. For the other direction,
if (G,P, t, k) has a hitting set of size at most t, then by Lemma 5 there is a
minimum-cardinality hitting set X (whose size is at most t) whose intersection
with every component C of G−S is either opt(C) or opt(C)+1. In the branch
where S′ = X ∩ S and C′ consists of the components where we use opt(C)
vertices, this leads to a yes-instance of Hitting Paths in a Flower with
Budgets. This concludes the proof of Theorem 2. ut

We remark that, while the previous theorem shows that Hitting Paths in
a Graph is fixed-parameter tractable parameterized by the cyclomatic number,
this problem is unlikely to admit a polynomial kernel. The general Hitting Set
problem parameterized by the number of universe elements n can be reduced
to an instance of Hitting Paths in a Graph with cyclomatic number O(n2):
if we let G be a complete n-vertex graph, which has cyclomatic number O(n2),
then we can model any subset of the universe as a simple path in G. Hence there
is a polynomial-parameter transformation from Hitting Set parameterized by
the universe size to Hitting Paths in a Graph parameterized by cyclomatic
number. Since Hitting Set parameterized by universe size has no polynomial
kernel unless NP ⊆ coNP/poly [7, Theorem 5.3], the same holds for Hitting
Paths in a Graph parameterized by cyclomatic number.

4 Hardness proofs

In this section we develop several hardness proofs. It turns out to be convenient
to first prove the W[1]-hardness of 3-SAT in multiple valued logic. A similar

18

result concerning the W[1]-hardness of not-all-equal 3-SAT was obtained inde-
pendently by Bringmann et al. [4], who studied the problem under the name
NAE-Integer-3-SAT.

Theorem 3. The problem n-Totally Ordered Regular Signed 3-SAT is
W[1]-hard.

Proof. To establish the theorem we give an FPT-reduction from the W[1]-complete
k-Clique problem [8, Chapter 21]. Let (G, k) be an instance of k-Clique, ask-
ing whether the graph G has a clique of size k. We use an edge representation
strategy to encode this problem into an instance of n-TORS 3-SAT whose pa-
rameter, the number of variables n in the formula, is O(k2). We may assume
that |E(G)| ≥

(
k
2

)
≥ k ≥ 2, as the instance is trivial otherwise. We may also

assume that G has no isolated vertices. The formula is constructed as follows.
There are variables x1, . . . xk corresponding to a choice of k vertices in the

clique. In addition, there are
(
k
2

)
variables xi,j for 1 ≤ i < j ≤ k that correspond

to the edges between these vertices. The truth value set for the formula is the
range of integers from 1 to |E(G)|, so N := |E(G)|. Number the vertices of G
as v1, . . . , v|V (G)|, and the edges from 1 to N , arbitrarily. For every 1 ≤ i < j ≤ k
and for every possible edge index ` ∈ [N], we add four clauses to the formula.
Let {vp, vq} be the endpoints of the `-th edge such that p < q. We add the
following clauses:

(xi,j ≤ `− 1 ∨ xi,j ≥ `+ 1 ∨ xi ≤ p) (xi,j ≤ `− 1 ∨ xi,j ≥ `+ 1 ∨ xi ≥ p),

(xi,j ≤ `− 1 ∨ xi,j ≥ `+ 1 ∨ xj ≤ q) (xi,j ≤ `− 1 ∨ xi,j ≥ `+ 1 ∨ xj ≥ q).

To obtain a valid formula, we omit the literal xi,j ≤ ` − 1 when ` = 1, as do
we omit the literal xi,j ≥ ` + 1 when ` = N . These clauses are automatically
satisfied if xi,j 6= `, i.e., if xi,j does not select the `-th edge. If xi,j = `, however,
then the clauses force xi to have the value p and xj to have value q.

The conjunction of the produced clauses for all valid values of i, j, and ` forms
the output formula. The construction can be performed in polynomial time and
produces an instance of n-TORS 3-SAT whose parameter n is

(
k
2

)
+k ∈ O(k2),

which is suitably bounded. To complete the proof it suffices to show that G has
a k-clique if and only if the formula is satisfiable.

Claim. If G has a k-clique, then the formula is satisfiable.

Proof. Consider a k-clique in G and let the indices of its vertices be u1, u2, . . . , uk
in order of increasing value. For i ∈ [k] assign variable xi value ui, and for 1 ≤ i <
j ≤ k assign variable xi,j the value of the index of the edge between vui

and vuj
.

As observed above, the clauses that are created for values i, j, ` such that xi,j
does not select the `-th edge, are satisfied. It is easy to verify that when xi,j = `,
the third literal of the created clauses is satisfied. Hence all clauses are satisfied
and the formula is satisfiable. y

Claim. If the formula is satisfiable, then G has a k-clique.

19

Proof. Consider an assignment to the variables that satisfies all clauses. Con-
sider the values taken by the variables x1, . . . , xk. Suppose that some variable xi
with i < k has a value exceeding |V (G)|. Then consider the value ` of vari-
able xi,i+1, and the clauses produced for this combination. Since xi,i+1 ≤ `− 1
is false, as is xi,i+1 ≥ `+ 1, we must have xi ≤ p where p is the lowest-indexed
endpoint of the `-th edge; but this contradicts the assumption that xi > |V (G)|.
A similar contradiction is reached when xi = k by considering variable xi−1,i
instead. Hence the variables x1, . . . , xk represent indices of vertices in G.

Next, assume for a contradiction that there are indices 1 ≤ i < j ≤ k such
that xi = xj , and let ` be the value of variable xi,j . As observed above, the
clauses added for the combination i, j, ` are only satisfied if xi and xj represent
the indices of the endpoints of the `-th edge. But since G is a simple graph
without self-loops, these indices are distinct and therefore these clauses cannot
all be satisfied if xi and xj coincide. Hence the variables x1, . . . , xk take k distinct
values in the range of 1 to |V (G)|.

We claim that the k vertices in G whose indices correspond to the values
of x1, . . . , xk form a clique. To see that all pairs of these vertices are adjacent
in G, consider a pair 1 ≤ i < j ≤ k and the value ` taken by variable xi,j . The
clauses produced for i, j, ` are only satisfied if xi is the lower-indexed endpoint of
the `-th edge and xj is the higher-index endpoint of that edge. Given the values
of xi and xj , the clauses can therefore only be satisfied if ` is the index of the
edge between vertices with indices xi and xj . Hence the edge connecting this
pair must be present in G. As i and j were arbitrary, this shows that all vertex
pairs are adjacent. Hence the set of vertices with indices x1, . . . , xk is a k-clique
in G. y

This concludes the proof of Theorem 3. ut

Theorem 3 is used as the starting point for the next hardness proof.

Theorem 4. It is W[1]-hard to determine, given a graph G with cyclomatic
number k, a set S of subgraphs of G, each isomorphic to a tree with at most
three leaves, and an integer t, whether there is a set of t vertices in G that
intersects all subgraphs in S.

Proof. We give an FPT-reduction from n-TORS 3-SAT. Consider an instance
of that problem, consisting of a signed 3-CNF formula over variables x1, . . . , xn
whose truth value set is [N]. We assume that there are no clauses that are
trivially satisfied (that contain literals xi ≤ c1 and xi ≥ c2 for c2 ≤ c1 + 1), as
they can be efficiently recognized and removed without changing the answer.

We construct a hitting set problem on a flower graph G that has a core z
and n petals R1, . . . , Rn. Each petal is a path on N vertices whose endpoints
are adjacent to z. It is easy to see that this gives a cyclomatic number of at
most k = n for the graph G, as removing the n edges from z to the last vertex
of each petal gives an acyclic graph. We seek a hitting set of size at most t := n.

Signed literals of the formula have the form xi ≤ c or xi ≥ c for c ∈ [N]. We
associate every literal to a prefix or suffix of a petal: a literal xi ≤ c corresponds

20

to the prefix {ri,1, . . . , ri,c} of petal Ri, while a literal xi ≥ c corresponds to
the suffix {ri,c, . . . , ri,N}. For every clause C of the formula, we consider the
pre/suffixes associated to its literals. We add the subgraph SC that is induced
by their vertices, together with z, to the set S of subgraphs to be hit. Observe
that, since there are no clauses that are trivially satisfied, each such subgraph SC

induces a tree in G with at most three leaves. In addition, for every petal Ri

we add the path Ri as a subgraph to S. This concludes the description of the
hitting set instance.

Claim 3 There is a hitting set of size at most t if and only if the formula is
satisfiable.

Proof. (⇒) Suppose there is a hitting set X of size t = n. Since every petal Ri is
present as a subgraph in S that must be hit, and the petals are pairwise disjoint,
it follows that X contains exactly one vertex of each petal. In particular, the
core z is not in X. Consider the assignment that sets the value of variable xi to
the index of the vertex in X ∩ V (Ri), which is a number in the range [N]. To
see that an arbitrary clause C is satisfied, consider the subgraph SC created on
account of the clause, which consists of z together with at most three pre/suffixes
of petals, one for each literal of C. As the pre/suffix that is hit by X corresponds
to a literal that is satisfied by the assignment, clause C is satisfied. As C was
arbitrary, the formula is satisfiable.

(⇐) Suppose that the formula is satisfied by a particular assignment to x1, . . . ,
xn. Let X contain vertex ri,xi

for all i ∈ [n]. Then all petals are hit by X, and
all subgraphs SC added on account of a clause C are hit at a pre/suffix corre-
sponding to a literal in the clause that is satisfied. y

The claim shows the correctness of the reduction. It is a valid FPT-reduction
since it can be executed in polynomial time and the new parameter k equals
the old parameter n. Since n-Totally Ordered Regular Signed 3-SAT is
W[1]-hard by Theorem 3, this concludes the proof. ut

By slightly modifying the construction, we can also obtain the following result
which shows that hitting paths in graphs is para-NP-complete [11] parameterized
by the feedback vertex number of the graph.

Theorem 5. It is NP-complete to determine, given a graph G with a feedback
vertex set of size two, a set P of simple paths in G, and an integer t, whether
there is a set of t vertices in G that intersects all paths in P.

Proof. The proof is similar to that of Theorem 4, so we only mention the key
points. An instance of n-Totally Ordered Regular Signed 3-SAT on
variables x1, . . . , xn with truth value set [N] is reduced to an instance of the
hitting set problem as follows. For every variable xi we create a new path Ri on N
vertices in the graph. Finally we add two universal vertices z, z′ to the graph,
adjacent to all vertices on all created paths. The resulting graph G has a feedback
vertex set of size two, being {z, z′}. For every i ∈ [n] we add Ri to S to ensure
that a vertex of Ri is selected in every hitting set. For every clause of the formula,

21

we consider the (at most) three pre/suffixes of the petals Ri corresponding to
its literals, as in Theorem 4. Since both z and z′ are universal vertices, there is a
simple path in G consisting of the first pre/suffix, vertex z, the second pre/suffix,
the vertex z′, and ending with the last pre/suffix. For every clause we add such
a path to P, which ensures that the clause must be satisfied when all paths are
hit. Finally, we set the budget to t := n to ensure that valid solutions select
one value for each variable. Following the argumentation of Theorem 4 it is easy
to see that the reduction is correct. Since the n-Totally Ordered Regular
Signed 3-SAT problem is NP-complete, the theorem follows. ut

We close this section on hardness by a discussion of subexponential-time
algorithms. The construction in Theorem 5 can be used to reduce an n-variable
instance of the classical 3-SAT problem (with binary variables) to the problem
of hitting simple paths in a graph of cyclomatic number O(n). This implies
that, assuming the exponential-time hypothesis [13], the dependence on k in
Theorem 2 cannot be improved to 2o(k).

5 Conclusion

We have analyzed the problem of hitting subgraphs of a restricted form within a
larger host graph, parameterized by structural measures of the host graph. There
are several research directions related to this work that remain unexplored. For
example, we have not touched upon the issue of computing, given a generic hit-
ting set instance consisting of a set system F over a universe U , how complex
graphs on vertex set U must be in which every set in F induces a connected
subgraph. What is the complexity of finding, given F and U , a graph of mini-
mum cyclomatic number that embeds F in this way? Alternatively, what is the
complexity of finding the minimum cyclomatic number of a graph G such that
for every set S ∈ F , there is a simple path in G on vertex set S? Efficient algo-
rithms for this task could be used to transform generic hitting set instances into
inputs of Hitting Paths in a Graph, on which Theorem 2 can be applied.

One can also consider aggregate parameterizations of the hitting set problem
using the measure of structure introduced here. We have shown that Hitting
Paths in a Graph is FPT parameterized by the cyclomatic number. It is well
known that the general Hitting Set problem is FPT parameterized by the
number of sets, as it can be solved by dynamic programming. Suppose we have
a Hitting Set instance where there are k1 arbitrary sets, and there is a graph G
of cyclomatic number k2 such that the remaining sets correspond to paths in G.
Is Hitting Set parameterized by k1 + k2 FPT, when this structure is given?

The complexity of the problem changes significantly when weights are in-
troduced for the elements in the universe and the task is to find a minimum-
weight hitting set. A simple reduction from Vertex Cover shows that finding
a minimum-weight set that hits a prescribed set of three-vertex paths in a star
graph is already NP-complete. This suggests some topics for further investiga-
tion; we list some examples.

22

1. Is the problem of finding a minimum-weight vertex set that hits a prescribed
set of directed paths in a directed tree polynomial-time solvable?

2. What is the parameterized complexity of the problem of hitting weighted
paths in a tree plus k edges, when the largest weight value is bounded by a
constant?

Acknowledgments. We are grateful to Mark de Berg and Kevin Buchin for
interesting discussions that triggered this research.

References

1. F. N. Abu-Khzam. A kernelization algorithm for d-Hitting set. J. Comput. Syst.
Sci., 76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.002.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters,
8(3):121–123, 1979. doi:10.1016/0020-0190(79)90002-4.

3. R. Béjar, R. Hähnle, and F. Manyà. A modular reduction of regular logic to
classical logic. In Proc. 31st Int. Symp. on Multiple-Valued Logic, pages 221–226,
2001.

4. K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen. Parameterized
complexity dichotomy for steiner multicut. In Proc. 32nd STACS, pages 157–170,
2015. doi:10.4230/LIPIcs.STACS.2015.157.

5. D. Coppersmith and U. Vishkin. Solving NP-hard problems in ‘almost trees’:
Vertex cover. Discrete Applied Mathematics, 10(1):27–45, 1985. doi:10.1016/

0166-218X(85)90057-5.
6. H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification

unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.
doi:10.1145/2629620.

7. M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization lower bounds through
colors and IDs. ACM Transactions on Algorithms, 11(2):13, 2014. doi:10.1145/

2650261.
8. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
9. M. R. Fellows, B. M. P. Jansen, and F. Rosamond. Towards fully multivariate algo-

rithmics: Parameter ecology and the deconstruction of computational complexity.
European J. Combin., 34(3):541–566, 2013. doi:10.1016/j.ejc.2012.04.008.

10. J. Fiala, T. Kloks, and J. J. Kratochv́ıl. Fixed-parameter complexity of λ-labelings.
Discrete Applied Mathematics, 113(1):59–72, 2001. doi:10.1016/S0166-218X(00)
00387-5.

11. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New
York, Inc., 2006.

12. J. Guo and R. Niedermeier. Exact algorithms and applications for tree-like
weighted set cover. Journal of Discrete Algorithms, 4(4):608–622, 2006. doi:

10.1016/j.jda.2005.07.005.
13. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential

complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

14. R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

23

http://dx.doi.org/10.1016/j.jcss.2009.09.002
http://dx.doi.org/10.1016/0020-0190(79)90002-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.157
http://dx.doi.org/10.1016/0166-218X(85)90057-5
http://dx.doi.org/10.1016/0166-218X(85)90057-5
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1145/2650261
http://dx.doi.org/10.1016/j.ejc.2012.04.008
http://dx.doi.org/10.1016/S0166-218X(00)00387-5
http://dx.doi.org/10.1016/S0166-218X(00)00387-5
http://dx.doi.org/10.1016/j.jda.2005.07.005
http://dx.doi.org/10.1016/j.jda.2005.07.005
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774

15. M. Lu, T. Liu, W. Tong, G. Lin, and K. Xu. Set cover, set packing and hitting
set for tree convex and tree-like set systems. In Proc. 11th TAMC, pages 248–258,
2014. doi:10.1007/978-3-319-06089-7_17.

16. F. Manyà. The 2-SAT problem in signed CNF-formulas. Multiple-Valued Logic,
2000.

17. R. Niedermeier. Reflections on multivariate algorithmics and problem parameter-
ization. In Proc. 27th STACS, pages 17–32, 2010. doi:10.4230/LIPIcs.STACS.

2010.2495.
18. M. A. Trick. Induced subtrees of a tree and the set packing problem. Technical

Report 377, Institute for Mathematics and Its Applications, 1987.
19. J. Uhlmann and M. Weller. Two-layer planarization parameterized by feedback

edge set. Theor. Comput. Sci., 494:99–111, 2013. doi:10.1016/j.tcs.2013.01.

029.
20. M. Wahlström. Algorithms, Measures and Upper Bounds for Satisfiability and

Related Problems. PhD thesis, Linköpings universitet, Sweden, 2007.

24

http://dx.doi.org/10.1007/978-3-319-06089-7_17
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.1016/j.tcs.2013.01.029
http://dx.doi.org/10.1016/j.tcs.2013.01.029

A Reducing signed 2-SAT to classic 2-SAT

Given a totally ordered regular signed 2-SAT formula, replace each literal of the
form xi ≥ j by ¬(xi ≤ j − 1), noting that if j = 1 the clause is always satisfied
and can be removed instead. The resulting clauses consist of literals xi ≥ j
and ¬(xi ≥ j) for j ∈ [N]. To construct a classical 2-SAT formula, we interpret
every term of the form xi ≥ j as a new variable, such that we have a variable xi ≥
1, another variable xi ≥ 2, and so on. The resulting 2-SAT formula over this
new set of variables consists of the clauses resulting from our conversion process
above, together with clauses (xi ≥ j+1⇒ xi ≥ j) for all i ∈ [n] and j ∈ [N−1].
Observe that such clauses may also be represented as (¬(xi ≥ j+ 1)∨ (xi ≥ j)),
which shows they are valid 2-clauses. Finally, we add singleton clauses (xi ≥ 1)
for all i ∈ [n]. We invite the reader to verify that the resulting classical formula
on variables (x1 ≥ 1), . . . , (x1 ≥ N), . . . , (xn ≥ 1), . . . , (xn ≥ N) is classically
satisfiable if and only if the signed formula is satisfiable over truth value set [N].

25

	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Hitting Paths in Flowers
	3.2 Hitting Paths in Graphs

	4 Hardness proofs
	5 Conclusion
	A Reducing signed 2-SAT to classic 2-SAT

