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a b s t r a c t

In theHitting Set problem, we are given a collection F of subsets of a ground set V and an
integer p, and asked whether V has a p-element subset that intersects each set in F . We
consider two parameterizations of Hitting Set below tight upper bounds, p = m − k and
p = n−k. In both cases k is the parameter.Weprove that the first parameterization is fixed-
parameter tractable, but has no polynomial kernel unless coNP ⊆ NP/poly. The second
parameterization is W[1]-complete, but the introduction of an additional parameter, the
degeneracy of the hypergraph H = (V , F ), makes the problem not only fixed-parameter
tractable, but also one with a linear kernel. Here the degeneracy of H = (V , F ) is the
minimum integer d such that for each X ⊂ V the hypergraph with vertex set V \ X and
edge set containing all edges of F without vertices in X , has a vertex of degree at most d.

In Nonblocker (Directed Nonblocker), we are given an undirected graph (a directed
graph) G on n vertices and an integer k, and asked whether G has a set X of n − k vertices
such that for each vertex y ∉ X there is an edge (arc) from a vertex in X to y. Nonblocker
can be viewed as a special case of Directed Nonblocker (replace an undirected graph by
a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that Nonblocker has a
linear-order kernel. We obtain a linear-order kernel for Directed Nonblocker.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction, terminology and notation

In the Hitting Set problem, we are given a collection F of subsets of a ground set V and an integer p, and asked whether
V has a p-element subset that intersects each set inF . It is a well-known problemwith various applications, e.g., in software
testing [16], in computer networks [18] and in bioinformatics [24]. Hitting Set is equivalent to the set cover problem and
several of its special cases are of importance (e.g., the vertex cover and dominating set problems).Hitting Set is NP-complete
and its standard parameterization (when p is the parameter) isW[2]-complete. (Weprovide basic parameterized complexity
terminology and notation in Section 1.3.) A few alternative parameterizations of Hitting Set have also been studied and we
briefly overview them below. To facilitate our discussion of various parameterizations ofHitting Set, consider the following
generic parameterization:

HitSet(p,κ)
Instance: A set V , a collection F of subsets of V .
Parameter: κ .
Question: Does (V , F ) have a hitting set S of size at most p? (A subset S of V is called a hitting set if S ∩ F ≠ ∅ for each
F ∈ F .)

In what follows, n stands for the size of V and m for the size of F .
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Aside fromHitSet(p, p), the standard parameterization ofHitting Set, themostwell-knownparameterization isHitSet(p,
p + s), where s is the maximum size of a set in F . This parameterization is fixed-parameter tractable and has a kernel of
size at most sp (see Downey and Fellows [11]). Using the Sunflower Lemma, Flum and Grohe [12] obtained a kernel of size
O(spss!). Abu-Khzam [1] recently proved that HitSet(p, p + s) has a kernel in which the number of elements in the ground
set V is at most (2s−1)ps−1

+p. Dom et al. [10] proved thatHitSet(p, p+ s) does not admit a polynomial-size kernel unless
coNP⊆NP/poly. Dom et al. [10] also proved that HitSet(p, p+m) and HitSet(p, p+ n) have exponential-size kernels but no
polynomial-size kernels unless coNP⊆NP/poly.

In this paper, we study two parameterizations:HitSet(m− k, k) andHitSet(n− k, k), as well asHitSet(n− k, k) with an
additional parameter. Both parameterizations are of the type ‘‘below a tight upper bound’’. Indeed, both m and n are tight
upper bounds as it is easy to see that there is always a hitting set of size atmostm (n, respectively) and to construct an infinite
family of instances of Hitting Set in which no hitting set is of size less than m (n, respectively). A brief overview is given
in Section 1.1 of some well-known results on problems parameterized below tight upper bounds. Section 1.2 is devoted to
hypergraph terminology and notation; note that some terminology and notation that we use is new or nonstandard. A very
brief introduction to fixed-parameter algorithmics is given in Section 1.3.

In Section 2, we prove that HitSet(m − k, k) has a kernel with at most k4k elements of V and at most k4k sets. In our
proof, we use a technique called greedy localization, introduced by Chen et al. [5]. This technique is often compared to
the well-known iterative compression, see, e.g., Dehne et al. [8]. We also prove that HitSet(m − k, k) has no kernel of
polynomial size unless coNP⊆NP/poly. In our proof, we use the result of Dom et al. [10] on HitSet(p, p + m) mentioned
above.

In the problemNonblocker, we are given a graph G = (V , E) and an integer k, and asked whether there is a set X ⊆ V of
size atmost |V |−k such that each vertex v ∈ V \X is adjacent to a vertex in X .Here k is the parameter. Note thatNonblocker
is a below-tight-upper-bound parameterization of the Dominating Set problem. It is well known that Nonblocker can be
reduced to HitSet(n− k,k) (see, e.g., [12], p. 18) and, thus, our no-polynomial-kernel result is in a sharp contrast to a linear-
order-kernel result of Dehne et al. [9] for Nonblocker.

In Section 3, we show that HitSet(n − k, k) is W[1]-complete, but the introduction of the second parameter, the
corresponding hypergraph degeneracy (defined in Section 1.2), makes the problem not only fixed-parameter tractable,
but also one with a linear kernel. Each hypergraph of maximum degree d is d-degenerate, but the family of d-degenerate
hypergraphs has its maximum degree unbounded by any function of d. Thus, our result is an extension of the corresponding
result when the maximum degree is the additional parameter. The Directed Nonblocker problem is an extension of
Nonblocker to directed graphs: we are given a directed graph G = (V , A) and an integer k, and asked whether there is
a set X ⊆ V of size at most |V | − k such that for each vertex v ∈ V \ X there is an arc from a vertex of X to v. Using our
polynomial-size kernel result for HitSet(n − k, k) with the additional parameter, we show that Directed Nonblocker has
a kernel with at most k2 + k − 1 vertices.

In Section 4, we improve the last result by showing that Directed Nonblocker has a kernel with at most 3k− 1 vertices.
To prove this result we use an inequality for the domination number of a digraph with at most one vertex of in-degree zero
and no isolated vertices. Further research is discussed in Section 5.

1.1. Problems parameterized below tight upper bounds

Mahajan and Raman [19] were the first to recognize both practical and theoretical importance of parameterizing
problems above tight lower bounds or below tight upper bounds. Further arguments for the importance of parameterizing
problems above and below tight bounds were given in [20,21]. One example of a problem parameterized below an
upper bound is Maximum Clique parameterized below n, the number of vertices in the input graph. Unlike the standard
parameterization of Maximum Clique which is W[1]-complete, the parameterization below n is fixed-parameter tractable
(and has a linear-order kernel) simply because it is equivalent to the standard parameterization of Vertex Cover. The
parameterization below n is important in bioinformatics applications, where the maximum order of a clique is close to
n [2].

However, in many cases establishing parameterized complexity of a problem parameterized below a tight upper bound
is less straightforward and has been stated as an open question. One suchwell-known problem isDirected Feedback Vertex
Set: given a digraph D and an integer k, decide whether D has an acyclic induced subgraph on at least n − k vertices. The
parameterized complexity of Directed Feedback Vertex Set was a long standing open question solved by Chen et al. [6]
who established its fixed-parameter tractability. Other well-known examples are Bipartization (decide whether a graph
has a bipartite induced subgraph on n−k vertices) which was proved to be fixed-parameter tractable by Reed et al. [23] and
Almost 2-Sat (decide whether there is a truth assignment that satisfies at least m − k clauses in a 2-CNF formula with m
clauses) which was proved to be fixed-parameter tractable by Razgon and O’Sullivan [22]. Interestingly, no polynomial-size
kernel is known for any of the three problems and it is still unknown whether such a kernel exists.

Certainly, not every natural problem parameterized below a tight upper bound is fixed-parameter tractable. A trivial
example of such a problem is Almost 3-Sat (decide whether there is a truth assignment that satisfies at leastm− k clauses
in a 3-CNF formula with m clauses). A less trivial example is the following problem: given a graph G, its maximal matching
M and an integer k, decide whether G has a vertex cover with at most 2|M| − k vertices. This problem was proved to be
W[1]-hard by Gutin et al. [13]. (Here we assume that W[1]≠FPT as widely believed.)
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1.2. Hypergraphs

While studyingHitting Set, it will be more convenient for us to use hypergraph terminology and notation, we introduce
the relevant terminology and notation in this subsection.

A hypergraph H = (V , F ) consists of a nonempty set V of vertices and a familyF of nonempty subsets of V called edges of
H.Note thatF may have parallel edges, i.e., copies of the same subset of V . For any vertex v ∈ V , and any E ⊆ F , E[v] is the
set of edges in E containing v, N[v] is the set of all vertices contained in edges of F [v], and the degree of v is d(v) = |F [v]|.
For a subset T of vertices, F [T ] =


v∈T F [v].

Deleting an edge e from a hypergraph H = (V , F ) results in a new hypergraph H − e with vertex set V and edge set
F \ {e}. Deleting a vertex v from a hypergraph H = (V , F ) results in a new hypergraph H − v with vertex set V \ {v} and
edge set {e \ {v} : e ∈ F }.

A set T of vertices hits all edges in F [T ] and an edge e is hit by any vertex belonging to it. A set S ⊆ V is called a hitting set
of a hypergraph H = (V , F ) if it hits F . Hitting Set can be formulated as a problem in which we are given a hypergraph H
and an integer p and asked whether H contains a hitting set of size at most p.

For a hypergraph H = (V , F ) and a set X ⊂ V , the subhypergraph H ⊖ X is obtained from H by deleting the set E
of all edges hit by X and all vertices contained only in E . A hypergraph H = (V , F ) is d-degenerate if, for all X ⊂ V , the
subhypergraph H ⊖ X contains a vertex of degree at most d. The degeneracy deg(H) of a hypergraph H is the smallest d for
which H is d-degenerate.

The degeneracy of a hypergraph can be calculated in linear time using the following algorithm. Pick a vertex v1 in H of
minimum degree d1, and set H := H ⊖ {v1}. Pick a vertex v2 of minimum degree d2 and set H := H ⊖ {v2}, and so on. Then
d = max{di : i ∈ [n]} is the degeneracy of H . (It is clear that the degeneracy of H must be at least d; the equality follows by
observing that for any X ⊂ V the smallest numbered vertex ui ∈ V \ X has degree at most di in H ⊖ X .)

1.3. Fixed-parameter tractability and kernels

A parameterized problem is a subset L ⊆ Σ∗
×N over a finite alphabet Σ . L is fixed-parameter tractable if the membership

of an instance (I, k) in Σ∗
× N can be decided in time f (k)|I|O(1) where f is a computable function of the parameter k

only [11,12,21]. Given a parameterized problem L, a kernelization of L is a polynomial-time algorithm that maps an instance
(x, k) to an instance (x′, k′) (the kernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L, (ii) k′

≤ h(k), and (iii) |x′
| ≤ g(k)

for some functions h and g . The function g(k) is called the size of the kernel. It is well known [11,12,21] that a decidable
parameterized problem L is fixed-parameter tractable if and only if it has a kernel. Polynomial-size kernels are of main
interest, due to applications [11,12,21], but unfortunately not all fixed-parameter problems have such kernels unless
coNP⊆NP/poly, see, e.g., [3,4,10].

2. Hitting set parameterized belowm

In this section we consider HitSet(m − k, k). Let H = (V , F ) be a hypergraph.
We begin with some reduction rules. The first two reduction rules have been used by previous Hitting Set algorithms

[1,27]. The third is a trivial rule included to simplify later proofs.

Reduction Rule 1. If there exist distinct e, e′
∈ F such that e ⊆ e′, set H := H − e′ and k := k − 1.

Reduction Rule 2. If there exist u, v ∈ V such that u ≠ v and F [u] ⊆ F [v], set H := H − u.

Reduction Rule 3. If there exist v ∈ V , e ∈ F such that F [v] = {e} and e = {v}, then delete v and e.

Lemma 1. Let (H, k) and (H ′, k′) be instances of HitSet(m − k, k) such that (H ′, k′) is derived from (H, k) by repeated
applications of Rules 1–3. Then (H ′, k′) is a Yes-instance if and only if (H, k) is a Yes-instance.

Proof. Rule 1: Any vertex in V which hits e will also hit e′. Therefore a set S ⊆ V is a hitting set for H if and only if it is also
a hitting set for H − e′. In H − e′ the difference betweenm and the size of the desired hitting set is one less, so we reduce k
by 1.

Rule 2: Any edge which is hit by u is also hit by v. Therefore, if S is a hitting set containing u, we can get another hitting
set of equal size or smaller by removing u and adding v. Therefore we may assume u is not in the hitting set and delete u
from H .

Rule 3: The proof is trivial. �

Lemma 2. Let (H = (V , F ), k) be an instance of HitSet(m − k, k) which is reduced by Rules 1–3 and F ≠ ∅. Then for all
v ∈ V , d(v) ≥ 2, and for all e ∈ F , |e| ≥ 2.

Proof. Consider v ∈ V . Suppose d(v) = 0. Then trivially, F [v] ⊆ F [u] for any u ∈ V , and so Rule 2 applies, a contradiction.
Suppose d(v) = 1. Then let e be the single edge containing v. Either e contains another vertex u, in which caseF [v] ⊆ F [u]
and Rule 2 applies, or e = {v}, in which case Rule 3 applies, a contradiction. Thus, d(v) ≥ 2. A similar argument, using
Rule 1 instead of Rule 2, can be used to show that |e| ≥ 2 for all e ∈ F . �
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We now introduce the concept of amini-hitting set. Lemma 3 shows that the problem of finding a hitting set of sizem−k
is equivalent to the problem of finding a mini-hitting set.

Definition 1. A mini-hitting set is a set Smini ⊆ V such that |Smini| ≤ k and |F [Smini]| ≥ |Smini| + k.

Lemma 3. A reduced hypergraph H = (V , F ) has a hitting set of size at most m − k if and only if it has a mini-hitting set.
Moreover,

1. Given a mini-hitting set Smini, we can construct a hitting set S with |S| ≤ m − k such that Smini ⊆ S in polynomial time.
2. Given a hitting set S with |S| ≤ m − k, we can construct a mini-hitting set Smini such that Smini ⊆ S in polynomial time.

Proof. 1. For each edge e not hit by Smini, pick one vertex in e and add it to Smini. The resulting set S contains at mostm − k
vertices and hits every edge of F .

2. If |S| ≤ k then S itself is a mini-hitting set.
If |S| > k, construct Smini as follows. Let S0 = ∅, and for every 0 ≤ i ≤ m − k − 1, let Si+1 = Si ∪ {v},

where v ∈ S\Si is picked to maximize |F [v]\F [Si]|. Suppose for a contradiction that |F [Sk]| < |Sk| + k. Then for
some j < k, |F [Sj+1]| ≤ |F [Sj]| + 1. Thus by construction, |F [Si+1]| ≤ |F [Si]| + 1 for all i ≥ j. It follows that
|F [S]| = |F [Sm−k]| < |Sm−k| + k = m, a contradiction. Therefore |F [Sk]| ≥ |Sk| + k, and thus Sk is the required
Smini. �

We now describe a greedy algorithm which constructs a set S∗
⊆ V . Either S∗ is a mini-hitting set, or F [S∗

] has some
useful properties which will allow us to bound |V |.

Start with S∗
= ∅. While |F [S∗

]| < |S∗
| + k and there exists v ∈ V with |F [v]\F [S∗

]| > 1, do the following: Pick a
vertex v ∈ V such that |F [v]\F [S∗

]| is as large as possible, and add v to S∗.
If S∗ is a mini-hitting set, then by Lemma 3 we are done. We will now assume that S∗ is not a mini-hitting set. Let

C = F [S∗
], and let I = F \C.

Lemma 4. Suppose S∗ is not a mini-hitting set. Then we have the following:

1. |S∗
| < k.

2. |C| < 2k.
3. For all v ∈ V , |C[v]| ≥ 1 and |I[v]| ≤ 1.
4. For all v ∈ V , d(v) ≤ k.

Proof. 1. Suppose for a contradiction |S∗
| ≥ k. Then at some point in the construction of S∗ we have |S∗

| = k. Observe
that at each stage in the construction of S∗, |F [S∗

]| ≥ 2|S∗
|. It follows that when |S∗

| = k, |F [S∗
]| ≥ |S∗

| + k, and the
algorithm stops. Note that S∗ is a mini-hitting set, a contradiction.

2. Suppose for a contradiction that |C| ≥ 2k. Then since |S∗
| < k, |F [S∗

]| = |C| ≥ |S∗
| + k, and so S∗ is a mini-hitting set,

a contradiction.
3. Since |S∗

| < k but S∗ is not a mini-hitting set, the construction of S∗ must stop because |F [v]\F [S∗
]| ≤ 1 for all v ∈ V ,

i.e. |I[v]| ≤ 1. By Lemma 2, d(v) ≥ 2 for all v ∈ V . Since d(v) = |C[v]| + |I[v]|, it follows that |C[v]| ≥ 1.
4. Suppose for a contradiction that there exists v ∈ V with d(v) > k. Then in the construction of S∗, we first add a vertex

u to S∗ with d(u) > k. We therefore have a set S∗ with |S∗
| = 1, |F [S∗

]| ≥ k + 1 = |S∗
| + k, and so the algorithm

terminates and S∗ is a mini-hitting set, a contradiction. �

We now have that F = C ⊎ I, with |C| < 2k, and every vertex in V hits at least one edge in C and at most one edge in
I. Furthermore 2 ≤ d(v) ≤ k for every v ∈ V , and |e| ≥ 2 for every e ∈ F . We are no longer interested in S∗.

Using C and I, we introduce another reduction rule that will bound |V | and consequently |F |.

Reduction Rule 4. Reduce (H, k) using Rules 1–3, and let C be as defined above. For any C ′
⊆ C, let V (C ′) = {v ∈ V : C[v] =

C ′
}. If |V (C ′)| > k, pick a vertex v ∈ V (C ′) and set H := H − v.

Lemma 5. Let (H, k) and (H ′, k) be instances of HitSet(m − k, k) such that (H, k) is reduced under Rules 1–3 and (H ′, k) is
derived from (H, k) by an application of Rule 4. Then (H ′, k) is a Yes-instance if and only if (H, k) is a Yes-instance.

Proof. Let v be the vertex removed from V during an application of Rule 4. By Lemma 3, (H, k) is a Yes-instance if and only
if H has a mini-hitting set. It is therefore enough to show that H has a mini-hitting set if and only if H − v has a mini-hitting
set.

Suppose Smini ⊆ V is a mini-hitting set for H , and assume that v ∈ Smini. By Rule 2, each u ∈ V (C ′) is in a different
edge eu ∈ I. Furthermore, by Lemma 4 part 3, eu ∩ eu′ = ∅ for any u ≠ u′

∈ V (C ′). As |V (C ′)| > k, it follows
that there exists u ∈ V (C ′) such that eu ∩ Smini = ∅, i.e. eu /∈ F [Smini]. Therefore S ′

mini = (Smini\{v}) ∪ {u} hits
eu, which is not hit by Smini, and the only edge which is hit by Smini but not S ′

mini is ev . Therefore |S ′
mini| = |Smini| and

|F [S ′
mini]| ≥ |F [Smini]| ≥ |Smini| + k = |S ′

mini| + k, so S ′
mini is a mini-hitting set that does not contain v. Therefore S ′

mini
is a mini-hitting set for H − v.

The reverse direction is trivial: If Smini is a mini-hitting set for H − v then it is also a mini-hitting set for H . �
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Note that although the number of subsets of C can be exponential in k, Rule 4 can be run in polynomial time. This is
because we do not need to check every subset C ′

⊆ C; it is enough to calculate C[v] for each v ∈ V and only calculate
|V (C ′)| if there exists v ∈ V for which C[v] = C ′.

Theorem 1. HitSet(m − k, k) has a kernel with at most k4k vertices and at most k4k edges.

Proof. Let (H, k) be an instance of HitSet(m − k, k) irreducible by the above four reduction rules and let H = (V , F ). The
number of possible subsets C ′

⊆ C is 2|C| < 22k. Therefore by Rule 4 n = |V | < k22k
= k4k.

To bound m = |F | recall that d(v) ≤ k for all v ∈ V , and |e| ≥ 2 for all e ∈ F . It follows that |F | ≤ k|V |/2 < k222k−1.
We can improve this bound as follows.

Here we make use of Theorem 5, which we prove in the next section. If m ≤ n then obviously m ≤ k4k. Suppose that
m > n. Then finding a hitting set of sizem − k is equivalent to finding a hitting set of size n − k′, where k′

= (n − m) + k is
less than k. By Theorem 5, this has a kernel withm ≤ d(d + 1)k′ < d(d + 1)k, where d is the degeneracy of H . By Lemma 4
part 4, we have d ≤ k and, thus,m ≤ k2(k + 1). Therefore we have a kernel withm ≤ k22k in either case. �

Wenow show that our exponential kernel forHitSet(m−k, k) cannot be improved to a polynomial size one, given certain
complexity assumptions. We make use of a result of Dom et al. [10] who proved the following:

Theorem 2. HitSet(p,m + p) does not have a polynomial kernel, unless coNP ⊆ NP/poly.

Wemay now prove the following theorem:

Theorem 3. HitSet(m − k, k) does not have a polynomial kernel, unless coNP ⊆ NP/poly.

Proof. Assume that HitSet(m− k, k) has a polynomial kernel. We will show that HitSet(p,m+ p) has a polynomial kernel,
a contradiction unless coNP ⊆ NP/poly.

Consider an instance of HitSet(p,m + p), in which we are given a hypergraph H = (V , F ) with |V | = n, |F | = m,
together with an integer p, and are asked to find a hitting set in H of size p. Let k = m − p. Observe that H has a hitting
set of size p if and only if H has a hitting set of size m − k. By our assumption, there is a transformation which produces a
hypergraph H ′

= (V ′, F ′) with |V ′
| = n′, |F ′

| = m′ together with an integer k′, such that H has a hitting set of size m − k
if and only if H ′ has a hitting set of size m′

− k′. Furthermore, m′, n′
≤ P(k) for some polynomial P , and the transformation

takes time polynomial in n and m. We may assume without loss of generality that P is an increasing function.
Let p′

= m′
− k′, and observe that H has a hitting set of size p if and only if H ′ has a hitting set of size p′. Therefore H ′

with parameter p′ is an equivalent instance of HitSet(p,m + p) which can be constructed in time polynomial in m and n,
andm′, n′

≤ P(k) = P(m−p) ≤ P(m+p), i.e. the size of the instance is bounded by a polynomial in the original parameter.
It remains to show that the new parameterm′

+ p′ is also bounded by a function of the original parameter, but this follows
from the fact that p′

≤ m′. �

3. Hitting Set parameterized below n

Unlike HitSet(m − k, k), HitSet(n − k, k) is not fixed-parameter tractable unless FPT = W [1].

Theorem 4. HitSet(n − k, k) is W [1]-complete.

Proof. To show hardness, we use a well-known reduction from independent set, in which we are given a graph G = (V , E)
and are asked whether it contains an independent set V ′

⊆ V set of size k, where k is the parameter. In our instance of
HitSet(n − k, k), we let H be G viewed as a hypergraph. Then for any V ′

⊆ V with |V ′
| = k, V ′ is an independent set in the

graph if and only if every edge contains a member of V\V ′, i.e. V\V ′ is a hitting set.
To show membership in W [1], we reduce HitSet(n − k, k) to the problem p-WSat(Γ −

2,1), described in Flum and Grohe
[12]. Γ −

2,1 is the class of CNF formulas which contain only negative literals. In the parameterized problem p-WSat(Γ −

2,1), we
are given a formula in Γ −

2,1 and an integer parameter k, and we are asked whether the formula has a satisfying assignment
in which exactly k variables are assigned True. It follows from Theorem 7.29 in Flum and Grohe [12] that p-WSat(Γ −

2,1) is in
W [1] (a more general problem is inW [1]).

For an instance ofHitSet(n− k, k), let V = {v1, . . . vn} be the vertices and F = {e1, . . . em} the edges in H . For each edge
e ∈ F , we let the clause Ce =


vi∈e x̄i, and let our formula be


j∈[m]

Cej . Then there is a hitting set of size (n − k) if and
only if the formula has a satisfying assignment in which exactly k variables are assigned True. This is precisely the problem
p-WSat(Γ −

2,1), and so we are done. �

Note that in the hardness proof above, every set in the HitSet(n − k, k) instance was of size 2. This means that
HitSet(n − k, k) is W [1]-hard even for the subcase where the edge size is bounded by r , for any r ≥ 2. Therefore if we
let the parameter be k + maxe∈F |e|, the problem is stillW [1]-hard.

Another approachwould be to consider the degree of the vertices as an additional parameter. Under this parameterization
the problem does turn out to be fixed-parameter tractable; in fact we prove a stronger result by showing that the problem
is fixed-parameter tractable with respect to k+ d, where d is the degeneracy of H . This is the problem HitSet(n− k, k+ d).
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We begin with the following simple result on the chromatic number of a d-degenerate hypergraph. For a hypergraph
H = (V , F ), a mapping c : V → [t] is called a proper t-coloring if each edge e of H of cardinality at least 2 is not
monochromatic, i.e., e has vertices u, v such that c(u) ≠ c(v). Here c(u) is the color of u. The chromatic number χ(H) of
a hypergraph H is the minimum integer t for which H has a proper t-coloring.
Lemma 6. The chromatic number of a d-degenerate hypergraph is at most d + 1.

Proof. The proof is by induction on the number n of vertices of H. If n = 1 then H has no edge of cardinality 1, and so
χ(H) = 1. Now assume that n ≥ 2. Let v be a vertex of minimum degree q in H = (V , F ). By the induction hypothesis and
definition of a d-degenerate hypergraph, χ(H ⊖ {v}) ≤ d + 1. Consider a (d + 1)-coloring of H ⊖ {v} and edges e1, . . . , eq
of cardinality at least 2 containing v. Note that q ≤ d and form a set C of colors by picking one color used in each ei (if any
vertex in ei is colored). If C is empty, add to it color 1. Clearly, |C | ≤ d and, thus, there is a color t not in C among colors
in [d + 1]. Assign v using color t and use one of the colors in C to color all other uncolored vertices. Observe that none of
e1, . . . , eq is monochromatic. �

To get rid of edges of cardinality 1, we use the following rule whose correctness is easy to see.
Reduction Rule 5. If there exist v ∈ V , e ∈ F such that e = {v}, then replace H = (V , F ) by H ⊖ {v}. Keep k the same.

For a hypergraph H , a set S of vertices is independent if S does not contain any edge of H.

Theorem 5. The problem HitSet(n − k, k + d) admits a kernel with less than (d + 1)k vertices and d(d + 1)k edges.

Proof. Let H be a d-degenerate hypergraph. Using Rule 5 as long as possible, we reduce H to a d-degenerate hypergraph
with no edge of cardinality 1. By Lemma 6, χ(H) ≤ d+1. Consider a proper χ(H)-coloring ofH and a largest set S of vertices
of H assigned the same color. Clearly, |S| ≥ |V |/(d + 1).

Now observe that T is a hitting set of H = (V , F ) if and only if V \ T is an independent set. Thus, if |V |/(d + 1) ≥ k, the
answer to HitSet(n − k, k + d) is Yes. Otherwise, |V | < (d + 1)k.

To prove that |F | < d(d + 1)k, choose a vertex v of minimum degree and observe that d(v) ≤ d. Now delete v from V
and F [v] from F , and choose a vertex v of minimum degree again, and observe that d(v) ≤ d. Continuing this procedure
we will delete all edges in F and thus |F | ≤ d|V | < d(d + 1)k. �

In a directed graph G = (V , A), a dominating set is a set V ′
⊆ V such that for every vertex u ∈ V\V ′, there is a vertex

v ∈ V ′ such that there is an arc from v to u. Recall that in Directed Nonblocker, we are given a directed graph G with n
vertices and an integer k, and asked whether G has a dominating set with at most n − k vertices.
Corollary 1. Directed Nonblocker has a kernel with at most k2 + k − 1 vertices.

Proof. Let (G = (V , A), k) be an instance of Directed Nonblockerwith |V | = n. If G has a vertex v of out-degree at least k,
then V \ {w ∈ V : vw ∈ A} is a dominating set of size at most n − k. Thus, we may assume that the maximum out-degree
of G is at most k − 1.

We construct an instance ofHitSet(n−k, k) as follows. LetH = (V , F ), whereF = {N−
[v] : v ∈ V },N−

[v] = {v}∪{u ∈

V : uv ∈ A}. Observe that N−
[v] is hit by a set S ⊆ V if and only if v ∈ S or v is dominated by a vertex in S. Therefore, H

has a hitting set of size |F | − k = |V | − k if and only if G has a dominating set of size |V | − k.
Since the maximum out-degree of G is at most k − 1, the maximum degree of a vertex in H is at most k. Thus, the

degeneracy d of H is at most k and the result follows from Theorem 5. �

4. Directed Nonblocker

In this section, we improve the bound of Corollary 1 for k > 2.
It is well known that every hypergraph H = (V , F ) in which each edge has at least two vertices, has a hitting set of

cardinality at most (|V | + |F |)/3, cf. [26]. We start from a minor extension of this result.
Lemma 7. Let H = (V , F ) be a hypergraph such that every edge has at least two vertices apart from, possibly, one edge that
has just one vertex. If H has a one-vertex edge e = {v}, let there be another edge f of H containing v. Then H has a hitting set of
cardinality at most (|V | + |F |)/3.

Proof. Let n = |V | and m = |F |. The proof is by induction on n ≥ 2. If n = 2, then H has a hitting set of cardinality 1 and
n+m ≥ 3. Now assume that n ≥ 3 and let t(H) be the minimum cardinality of a hitting set in H. If H has a one-vertex edge
e = {v}, then set u = v. Otherwise, let u be a vertex of H of maximum degree. Remove u from H together with all edges
containing u and all vertices contained only in the removed edges. Denote the resulting hypergraph by H ′ and let n′ and m′

be the number of vertices and edges, respectively, in H ′. Then 3t(H) ≤ 3 + 3t(H ′) ≤ 3 + n′
+ m′

≤ n + m. The second
inequality in this chain of inequalities is by the induction hypothesis and the third inequality is due to the fact that either
we remove at least two edges and one vertex or at least two vertices and one edge. �

For a digraph D, let γ (D) denote the minimum size of a dominating set in D. Using Lemma 7, it is easy to prove the
following key lemma of this section.
Lemma 8. Let D a digraph on n vertices, none of which are isolated, and let D have at most one vertex of in-degree zero. Then
γ (D) ≤ 2n/3.
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Proof. We construct an instance H = (V , F ) of HitSet(n − k, k) as in the proof of Corollary 1. The lemma follows from
that facts that H satisfies the conditions of Lemma 7, |V | = |F |, and the minimum cardinalities of a hitting set in H and a
dominating set in D coincide. �

Theorem 6. Directed Nonblocker has a kernel with at most 3k − 1 vertices.

Proof. Let D be a digraph with n vertices. If D has isolated vertices, then delete them without changing the answer to
Directed Nonblocker as all of them must be in any dominating set of D. Thus, we may assume that D has no isolated
vertices. Let S be the set of all vertices of D of in-degree zero. Assume that |S| > 1. Then contract all vertices of S into
one vertex s which dominates all vertices dominated by S. Let D′ be the resulting digraph. Since all vertices of S must be
in any dominating set of D, the answers to Directed Nonblocker on D and on D′ are the same. Thus, we may assume that
|S| ≤ 1. Then, by Lemma 8, γ (D) ≤ 2n/3 and, thus, if n− k ≥ 2n/3, the answer to Directed Nonblocker is Yes. Otherwise,
n − k < 2n/3 and n ≤ 3k − 1. �

To obtain a smaller kernel for Directed Nonblocker, it might be helpful to use further results on hitting sets of
hypergraphs with a lower bound on the minimum size of an edge. Chvátal and McDiarmid [7] and Tuza [25] proved
independently that a hypergraph H = (V , F ) with minimum edge size equal three, has a hitting set of size at most
(|V | + |F |)/4. Thomassé and Yeo [26] showed that if the minimum edge in a hypergraph H = (V , F ) is four and the
minimum size of a hitting set of H is t , then 21t ≤ 5|V | + 4|F |.

5. Further research

For a hypergraph H , let α(H) be the maximum size of an independent set of H . In the proof of Theorem 5, we observed
that HitSet(n − k, k + d) is equivalent to problem of deciding whether α(H) ≥ k for a d-degenerate hypergraph H . This
observation and the inequality α(H) ≥ n/(d+ 1), where n is the number of vertices in H , have allowed us to obtain a linear
kernel forHitSet(n−k, k+d). However, the inequality α(H) ≥ n/(d+1) suggests that, in fact, to have the parameter small
in relevant cases (as it should be in the spirit of parameterized algorithmics) it makes more sense to consider the following
parameterization above tight lower bound: decidewhether for a d-degenerate hypergraphH we haveα(H) ≥ n/(d+1)+κ ,
where κ is the new parameter. (Problems parameterized above tight lower bounds were studied in several papers including
[13–15,19,20].)

It would be interesting to determine the parameterized complexity of the last problem even in the case of graphs. To the
best of our knowledge, the only related result was obtained by Gutin et al. [13] who observed that the last problem has a
linear kernel for graphs of maximum degree at most d. Indeed, in the case of graphs with maximum degree at most d, the
existence of a linear kernel is an easy consequence of the following Brooks’ Theorem [28]: for a graph G with maximum
degree at most d we have χ(G) ≤ d unless one of the connectivity components of G is Kd+1 or, if d = 2 and one of the
connectivity components of G is an odd cycle. Brook’s Theorem was extended to hypergraphs by Kostochka et al. [17] who
proved that for a connected hypergraph H with all edges of cardinality at least 2 and of maximum degree at most dwe have
χ(H) ≤ d unless H has only one edge of cardinality at least 3 or H is a graph (in which case the odd cycle and complete
cases apply). Thus, the observation of [13] can be extended to hypergraphs.
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