17,917 research outputs found

    In Homage of Change

    Get PDF

    Music Synchronization, Audio Matching, Pattern Detection, and User Interfaces for a Digital Music Library System

    Get PDF
    Over the last two decades, growing efforts to digitize our cultural heritage could be observed. Most of these digitization initiatives pursuit either one or both of the following goals: to conserve the documents - especially those threatened by decay - and to provide remote access on a grand scale. For music documents these trends are observable as well, and by now several digital music libraries are in existence. An important characteristic of these music libraries is an inherent multimodality resulting from the large variety of available digital music representations, such as scanned score, symbolic score, audio recordings, and videos. In addition, for each piece of music there exists not only one document of each type, but many. Considering and exploiting this multimodality and multiplicity, the DFG-funded digital library initiative PROBADO MUSIC aimed at developing a novel user-friendly interface for content-based retrieval, document access, navigation, and browsing in large music collections. The implementation of such a front end requires the multimodal linking and indexing of the music documents during preprocessing. As the considered music collections can be very large, the automated or at least semi-automated calculation of these structures would be recommendable. The field of music information retrieval (MIR) is particularly concerned with the development of suitable procedures, and it was the goal of PROBADO MUSIC to include existing and newly developed MIR techniques to realize the envisioned digital music library system. In this context, the present thesis discusses the following three MIR tasks: music synchronization, audio matching, and pattern detection. We are going to identify particular issues in these fields and provide algorithmic solutions as well as prototypical implementations. In Music synchronization, for each position in one representation of a piece of music the corresponding position in another representation is calculated. This thesis focuses on the task of aligning scanned score pages of orchestral music with audio recordings. Here, a previously unconsidered piece of information is the textual specification of transposing instruments provided in the score. Our evaluations show that the neglect of such information can result in a measurable loss of synchronization accuracy. Therefore, we propose an OCR-based approach for detecting and interpreting the transposition information in orchestral scores. For a given audio snippet, audio matching methods automatically calculate all musically similar excerpts within a collection of audio recordings. In this context, subsequence dynamic time warping (SSDTW) is a well-established approach as it allows for local and global tempo variations between the query and the retrieved matches. Moving to real-life digital music libraries with larger audio collections, however, the quadratic runtime of SSDTW results in untenable response times. To improve on the response time, this thesis introduces a novel index-based approach to SSDTW-based audio matching. We combine the idea of inverted file lists introduced by Kurth and MĂĽller (Efficient index-based audio matching, 2008) with the shingling techniques often used in the audio identification scenario. In pattern detection, all repeating patterns within one piece of music are determined. Usually, pattern detection operates on symbolic score documents and is often used in the context of computer-aided motivic analysis. Envisioned as a new feature of the PROBADO MUSIC system, this thesis proposes a string-based approach to pattern detection and a novel interactive front end for result visualization and analysis

    A Wavelet-Based Approach to Pattern Discovery in Melodies

    Get PDF

    Convolutional Methods for Music Analysis

    Get PDF

    Adaptive music: Automated music composition and distribution

    Get PDF
    Creativity, or the ability to produce new useful ideas, is commonly associated to the human being; but there are many other examples in nature where this phenomenon can be observed. Inspired by this fact, in engineering, and particularly in computational sciences, many different models have been developed to tackle a number of problems. Music, a form of art broadly present along the human history, is the main field addressed in this thesis, taking advantage of the kind of ideas that bring diversity and creativity to nature and computation. We present Melomics, an algorithmic composition method based on evolutionary search, with a genetic encoding of the solutions, which are interpreted in a complex developmental process that leads to music in the standard formats. This bioinspired compositional system has exhibited a high creative power and versatility to produce music of different type, which in many occasions has proven to be indistinguishable from the music made by human composers. The system also has enabled the emergence of a set of completely novel applications: from effective tools to help anyone to easily obtain the precise music they need, to radically new uses like adaptive music for therapy, amusement or many other purposes. It is clear to us that there is much research work yet to do in this field; and that countless and new unimaginable uses will derive from it

    Ludomusicological Semiotics: Theory, Implications and Case Studies

    Get PDF
    Video games are a challenging object of study for the musicologist because they are never played the same way twice. As video games are interactive texts, the timing of their musical events is dependent on both conventional cues and player interactions. In essence, the musical experience of gameplay may be considered as a text that the player has a non-trivial role in creating. The player’s unique series of actions evolves into an interpretation of the developer’s preconception of the game experience; similarly, the player’s actions shape the music into an interpretation of the musical experience envisioned by the composer. The analysis of these musical events must consequently be able to account for dynamic processes in both reception and creation. An important step towards appropriate analytical methods is the development of a semiotics of video game music. Incorporating a performative approach to interactivity, this thesis proposes a semiotic framework that seeks to address the complex processes of creation and reception/perception belonging to video game music due to its position within the audiovisual text. This semiotic framework is twofold, focussing separately on the music’s initial composition (a primarily poietic set of processes) and on the player’s role during gameplay (simultaneously performing processes of ergodic reception and interactive poiesis). The framework is developed and illustrated using textual case studies. Additionally, the implications of the framework for cross-media studies are explored, including the in-game and extra-game contexts of video game music, and the distinction between video game music and music in other audiovisual texts
    • …
    corecore