16 research outputs found

    Modal tableaux for verifying stream authentication protocols

    Get PDF
    To develop theories to specify and reason about various aspects of multi-agent systems, many researchers have proposed the use of modal logics such as belief logics, logics of knowledge, and logics of norms. As multi-agent systems operate in dynamic environments, there is also a need to model the evolution of multi-agent systems through time. In order to introduce a temporal dimension to a belief logic, we combine it with a linear-time temporal logic using a powerful technique called fibring for combining logics. We describe a labelled modal tableaux system for the resulting fibred belief logic (FL) which can be used to automatically verify correctness of inter-agent stream authentication protocols. With the resulting fibred belief logic and its associated modal tableaux, one is able to build theories of trust for the description of, and reasoning about, multi-agent systems operating in dynamic environments

    A graph-theoretic account of logics

    Get PDF
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics

    LDS - Labelled Deductive Systems: Volume 1 - Foundations

    No full text
    Traditional logics manipulate formulas. The message of this book is to manipulate pairs; formulas and labels. The labels annotate the formulas. This sounds very simple but it turned out to be a big step, which makes a serious difference, like the difference between using one hand only or allowing for the coordinated use of two hands. Of course the idea has to be made precise, and its advantages and limitations clearly demonstrated. `Precise' means a good mathematical definition and `advantages demonstrated' means case studies and applications in pure logic and in AI. To achieve that we need to address the following: \begin{enumerate} \item Define the notion of {\em LDS}, its proof theory and semantics and relate it to traditional logics. \item Explain what form the traditional concepts of cut elimination, deduction theorem, negation, inconsistency, update, etc.\ take in {\em LDS}. \item Formulate major known logics in {\em LDS}. For example, modal and temporal logics, substructural logics, default, nonmonotonic logics, etc. \item Show new results and solve long-standing problems using {\em LDS}. \item Demonstrate practical applications. \end{enumerate} This is what I am trying to do in this book. Part I of the book is an intuitive presentation of {\em LDS} in the context of traditional current views of monotonic and nonmonotonic logics. It is less oriented towards the pure logician and more towards the practical consumer of logic. It has two tasks, addressed in two chapters. These are: \begin{itemlist}{Chapter 1:} \item [Chapter1:] Formally motivate {\em LDS} by starting from the traditional notion of `What is a logical system' and slowly adding features to it until it becomes essentially an {\em LDS}. \item [Chapter 2:] Intuitively motivate {\em LDS} by showing many examples where labels are used, as well as some case studies of familiar logics (e.g.\ modal logic) formulated as an {\em LDS}. \end{itemlist} The second part of the book presents the formal theory of {\em LDS} for the formal logician. I have tried to avoid the style of definition-lemma-theorem and put in some explanations. What is basically needed here is the formulation of the mathematical machinery capable of doing the following. \begin{itemize} \item Define {\em LDS} algebra, proof theory and semantics. \item Show how an arbitrary (or fairly general) logic, presented traditionally, say as a Hilbert system or as a Gentzen system, can be turned into an {\em LDS} formulation. \item Show how to obtain a traditional formulations (e.g.\ Hilbert) for an arbitrary {\em LDS} presented logic. \item Define and study major logical concepts intrinsic to {\em LDS} formalisms. \item Give detailed study of the {\em LDS} formulation of some major known logics (e.g.\ modal logics, resource logics) and demonstrate its advantages. \item Translate {\em LDS} into classical logic (reduce the `new' to the `old'), and explain {\em LDS} in the context of classical logic (two sorted logic, metalevel aspects, etc). \end{itemize} \begin{itemlist}{Chapter 1:} \item [Chapter 3:] Give fairly general definitions of some basic concepts of {\em LDS} theory, mainly to cater for the needs of the practical consumer of logic who may wish to apply it, with a detailed study of the metabox system. The presentation of Chapter 3 is a bit tricky. It may be too formal for the intuitive reader, but not sufficiently clear and elegant for the mathematical logician. I would be very grateful for comments from the readers for the next draft. \item [Chapter 4:] Presents the basic notions of algebraic {\em LDS}. The reader may wonder how come we introduce algebraic {\em LDS} in chapter 3 and then again in chapter 4. Our aim in chapter 3 is to give a general definition and formal machinery for the applied consumer of logic. Chapter 4 on the other hand studies {\em LDS} as formal logics. It turns out that to formulate an arbitrary logic as an {\em LDS} one needs some specific labelling algebras and these need to be studied in detail (chapter 4). For general applications it is more convenient to have general labelling algebras and possibly mathematically redundant formulations (chapter 3). In a sense chapter 4 continues the topic of the second section of chapter 3. \item [Chapter 5:] Present the full theory of {\em LDS} where labels can be databases from possibly another {\em LDS}. It also presents Fibred Semantics for {\em LDS}. \item [Chapter 6:] Presents a theory of quantifers for {\em LDS}. The material for this chapter is still under research. \item [Chapter 7:] Studies structured consequence relations. These are logical system swhere the structure is not described through labels but through some geometry like lists, multisets, trees, etc. Thus the label of a wff AA is implicit, given by the place of AA in the structure. \item [Chapter 8:] Deals with metalevel features of {\em LDS} and its translation into two sorted classical logic. \end{itemlist} Parts 3 and 4 of the book deals in detail with some specific families of logics. Chapters 9--11 essentailly deal with substructural logics and their variants. \begin{itemlist}{Chapter10:} \item [Chapter 9:] Studies resource and substructural logics in general. \item [Chapter 10:] Develops detailed proof theory for some systems as well as studying particular features such as negation. \item [Chapter 11:] Deals with many valued logics. \item [Chapter 12:] Studies the Curry Howard formula as type view and how it compres with labelling. \item [Chapter 13:] Deals with modal and temporal logics. \end{itemlist} Part 5 of the book deals with {\em LDS} metatheory. \begin{itemlist}{Chapter15:} \item [Chapter 14:] Deals with labelled tableaux. \item [Chapter 15:] Deals with combining logics. \item [Chapter 16:] Deals with abduction. \end{itemlist

    Encoding hybridised institutions into first order logic

    Get PDF
    "First published online: 12 November 2014"A ‘hybridization’ of a logic, referred to as the base logic, consists of developing the characteristic features of hybrid logic on top of the respective base logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the semantics (i.e. possible worlds). By ‘hybridized institutions’ we mean the result of this process when logics are treated abstractly as institutions (in the sense of the institution theory of Goguen and Burstall). This work develops encodings of hybridized institutions into (many-sorted) first order logic (abbreviated FOL) as a ‘hybridization’ process of abstract encodings of institutions into FOL, which may be seen as an abstraction of the well known standard translation of modal logic into first order logic. The concept of encoding employed by our work is that of comorphism from institution theory, which is a rather comprehensive concept of encoding as it features encodings both of the syntax and of the semantics of logics/institutions. Moreover we consider the so-called theoroidal version of comorphisms that encode signatures to theories, a feature that accommodates a wide range of concrete applications. Our theory is also general enough to accomodate various constraints on the possible worlds semantics as well a wide variety of quantifications. We also provide pragmatic sufficient conditions for the conservativity of the encodings to be preserved through the hybridization process, which provides the possibility to shift a formal verification process from the hybridized institution to FOL.We thank both Till Mossakowski and Andrzej Tarlecki for the technical suggestion of using the predicates D. The work of the first author has been supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439. The work of the second author was funded by the European Regional Development Fund through the COMPETE Programme, and by the Portuguese Foundation for Science and Technology through the projects FCOMP-01-0124-FEDER-028923 and NORTE-01-0124-FEDER-000060

    An Analytic Propositional Proof System on Graphs

    Get PDF
    In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalization of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalized connective

    An Analytic Propositional Proof System on Graphs

    Get PDF
    In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalisation of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalised connective

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore