research

Encoding hybridised institutions into first order logic

Abstract

"First published online: 12 November 2014"A ‘hybridization’ of a logic, referred to as the base logic, consists of developing the characteristic features of hybrid logic on top of the respective base logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the semantics (i.e. possible worlds). By ‘hybridized institutions’ we mean the result of this process when logics are treated abstractly as institutions (in the sense of the institution theory of Goguen and Burstall). This work develops encodings of hybridized institutions into (many-sorted) first order logic (abbreviated FOL) as a ‘hybridization’ process of abstract encodings of institutions into FOL, which may be seen as an abstraction of the well known standard translation of modal logic into first order logic. The concept of encoding employed by our work is that of comorphism from institution theory, which is a rather comprehensive concept of encoding as it features encodings both of the syntax and of the semantics of logics/institutions. Moreover we consider the so-called theoroidal version of comorphisms that encode signatures to theories, a feature that accommodates a wide range of concrete applications. Our theory is also general enough to accomodate various constraints on the possible worlds semantics as well a wide variety of quantifications. We also provide pragmatic sufficient conditions for the conservativity of the encodings to be preserved through the hybridization process, which provides the possibility to shift a formal verification process from the hybridized institution to FOL.We thank both Till Mossakowski and Andrzej Tarlecki for the technical suggestion of using the predicates D. The work of the first author has been supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439. The work of the second author was funded by the European Regional Development Fund through the COMPETE Programme, and by the Portuguese Foundation for Science and Technology through the projects FCOMP-01-0124-FEDER-028923 and NORTE-01-0124-FEDER-000060

    Similar works