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Abstract. To develop theories to specify and reason about various aspects of
multi-agent systems, many researchers have proposed the use of modal logics
such as belief logics, logics of knowledge, and logics of norms. As multi-agent
systems operate in dynamic environments, there is also a need to model the evo-
lution of multi-agent systems through time. In order to introduce a temporal di-
mension to a belief logic, we combine it with a linear-time temporal logic using
a powerful technique called fibring for combining logics. We describe a labelled
modal tableaux system for the resulting fibred belief logic (FL) which can be
used to automatically verify correctness of inter-agent stream authentication pro-
tocols. With the resulting fibred belief logic and its associated modal tableaux,
one is able to build theories of trust for the description of, and reasoning about,
multi-agent systems operating in dynamic environments.

Keywords: belief logic, temporal logic, fibring logics, system-specific trust the-
ories, modal tableaux, security protocols.

1 Introduction

Multi-agent systems (MASs for short) consist of a collection of agents that interact with
each other in dynamic and unpredictable environments. Agents communicate with one
another by exchanging messages, and they have the ability to cooperate, coordinate and
negotiate with each other to achieve their objectives. A fundamental problem regarding
security of communication in MAS is that whether a message sent by an agent is reliably
received by other agents and whether the message received is regarded as reliable in the
view of receivers. The problem generally depends on the trust that agents would put
in the security mechanisms of a system [10/27]. The notion of trust is fundamental
for understanding the interactions between agents such as human beings, machines,
organizations, and other entities [32].

In order to develop theories to specify and reason about various aspects of multi-
agent systems including security and trust, many researchers have proposed the use
of modal logics such as belief logics [3/9] and logics of knowledge [6/19]. Many of
such formalisms have successfully been used for dealing with some particular aspects
of agents, but they generally ignore other aspects that are also important. For instance,
stream authentication protocols used for communication between agents are often dif-
ferent from the standard class of authentication protocols previously analysed by many
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researchers using belief logics and/or model checking techniques. They involve not only
a key management scheme but also its critical use of timing. Therefore it is essential for
a logic for an agent-based system to have the ability for modelling and reasoning about
the evolution of the system in which they are applied [12]].

Several researchers have recently proposed approaches based on temporal epistemic
logics for analysing security protocols such as the TESLA (Timed Efficient Stream
Loss-tolerant Authentication) protocol [26] and the Needham-Schroeder protocol [8].
In our opinion, these logics are steps in the right direction. It has also been argued that
any logical system used for modeling active agents should be a combined system of
logics of knowledge, belief, time and norms [14] since these are among the essential
concepts to be reasoned about. There is therefore a pressing need for a systematic ap-
proach through which salient features of security protocols could be identified, reasoned
about, and generalised to other protocols. Accordingly, the aim of this paper is not to
provide a complete analysis of stream authentication protocols, but to show how combi-
nations of multi-modal logics can provide effective tools for this task. Specifically our
aim is to illustrate how to provide solutions based on logic for analysing communica-
tion protocols for autonomous agent-based systems; we are motivated to study suitable
logics for specifying and reasoning about agent beliefs, norms and time in dynamic
and multi-agent systems; to identify sufficient techniques for combining those logics;
to investigate methods for formalizing authentication protocols with theories of trust in
combined logics; and to develop techniques for reasoning about security properties that
such a protocol may satisfy.

One particular combination technique (called adding a temporal dimension or tem-
poralisation [11]) can be used to combine logics in a hierarchical way and it could lead
to a combined logic suitable for a particular domain. For instance, Liu et al. [25] have
proposed a temporalized belief logic that provides a logical framework for users to spec-
ify the dynamics of trust and model evolving theories of trust for multi-agent systems.
However, in this logic there are certain restrictions on the use of temporal and belief
operators because of the hierarchical combination of belief and temporal logics used.
Temporal operators can never be within the scope of a belief operator, hence we cannot
express a statement asserting that some agent believes an event to happen at some time,
e.g., the logic does not have a formula such as B, first holds(bob, k), which could be
used to express an assertion that “John believes that at the initial time Bob holds the key
k. Such kind of assertions are often needed, for example, in analysing security proto-
cols, in particular, stream authentication protocols, therefore temporalisation is unlikely
to be sufficient as a combination technique in the general case.

We therefore consider a more powerful technique called fibring [[14] for combining
logics of beliefs, knowledge, norms and time that treats operators of each logic equally
in the resulting combined logic. Fibring also allows for the development of proof pro-
cedures such as (labelled) tableaux from the constituent logics in a rigorous way. In this
paper, we combine, using the fibring technique, the logic TML [25]], a variant of the
modal logic KD of beliefs, with the temporal logic SLTL which is suitable for speci-
fying events, such as those found in reactive systems, that may run on different clocks
(time-lines) of varying rates of progress [23l24]]. We show that in the resulting fibred
belief logic (FL) we can specify and reason about not only dynamics of agent beliefs but



also the timing properties of a system effectively. In order to analyse stream authentica-
tion protocols it is necessary to have a logic that can satisfactorily deal with all aspects
of those concepts. We also describe a labelled modal tableaux system for FL which can
be used to automatically verify correctness of inter-agent stream authentication proto-
cols. Tableaux based proof procedures are well suited to implementing practical proof
procedures and they benefit from the underlying Kripke structures effectively [3].

The fibred logic developed in this paper naturally has more expressive power than a
temporalised belief logic such as TML™ [23] does. It allows us to express the evolution
of beliefs of an agent as well as the beliefs of agents about the evolution of a system.
With this logical system one is able to build theories of trust for the description of, and
reasoning about, multi-agent systems operating in dynamic environments. For further
discussion and motivation on the combination of logics and their relative merits, we
refer the reader to the literature [37].

The rest of the paper is organised as follows. Section 2 introduces the TESLA stream
authentication protocol. Section 3 briefly discusses two logics SLTL and TML. Sec-
tion 4 presents the fibring technique as specifically applied for combining TML with
SLTL, and provides an axiomatisation for the fibred logic called FL. Section 5 adapts
KEM [2/15]], a labelled modal tableaux system to reason with FL. Section 6 develops a
theory of trust in FL for specifying the TESLA protocol and discusses its correctness.
Section 7 concludes this paper with a brief summary.

2 The TESLA Protocol

Multi-agent systems, typically real world systems, need to employ application specific
protocols for transferring data, such as video, audio and sensory data, among agents.
As an example protocol, we consider TESLA (Timed Efficient Stream Loss-tolerant
Authentication), a multicast stream authentication protocol proposed by Perrig et al.
[31]]. In TESLA, authentication is based on the timing of the publication of keys and
the indirect relation of each new key to an original key commitment. The process for
verifying data packets received to be authentic depends on trust of the receiver in the
sender, and belief on whether an intruder can have prior knowledge of a key before it is
published by the protocol. Note that TESLA does not address denial-of-service attacks.

Perrig et al. [31] proposed five schemes for the TESLA Protocol. We consider
scheme I (called The Basic Scheme), and simply call it the PCTS (Perrig-Canetti-
Tygar-Song) scheme in the rest of the paper. As noted by Perrig, the PCTS scheme
cannot tolerate packet loss. In other words, once a packet is lost no further packets can
be authenticated. Other schemes of TESLA such as those for tolerating packet loss and
achieving faster transfer rates will be analysed in future work.

In the following, the symbols S, R and I are always used to denote the sender,
the receiver and the intruder, respectively. We also use the tuple (X,Y) to denote the
concatenation of X and Y, where X and Y are the parts to be concatenated. A stream ¢
is divided into chunks M; (called messages), so we may have o = (M, M,,... ,M;). A
message authentication code (MAC) is derived by applying an authentication scheme,
together with a secret key, to a message.



In the PCTS scheme, the basic idea is that each message M; is sent in a packet
P,, along with additional authentication information [4J31]]. The sender issues a signed
commitment to a key. The key is only only known to the sender. To send message M;,
the sender uses that key to compute a MAC on a packet F;, and later discloses the
key in packet P11, which enables the receiver (or receivers, when multiple receivers are
involved) to verify the commitment and the MAC of packet P;. A successful verification
will imply that packet P, is authenticated and trusted.

The sequence of message packets can be formulated as follows:

Pyr. R—S: (ng)

Pos. S— R: ({f(K1),nr}sk(s))
Pi. S—R: (M1, f(K2)),MAC(K], (M, f(K2))))

P. S—R: (Di,MAC(K!,D;)) (foralli>2)

where D; = (M;, f(Ki+1),Ki—1) forall i > 2, K} = f'(K;) forall j> 1, and f and f’ are
two different pseudo-random functions.

In packet Py,, the receiver R sends his nonce ng (generated by himself) to the server
S for ensuring freshness. In packet Py, the signature on f(K;) acts as an authenticated
commitment to Kj. Thus, when R receives K; in P, he can be sure that it was really
sent by S.

Apart from the initial messages Py,, Pys; and Py, any packet P, has the standard form
(Di,MAC(K!,D;)) for all i > 2. To send message M;, the sender first picks a fresh ran-
dom key K; to construct packet P, = (D;, MAC(K!,D;)), then sends the packet to the
receiver. When the packet P; is received, the receiver cannot verify the MAC immedi-
ately, since it cannot reconstruct K] without knowing K;, which is contained in packet
P+ 1. Therefore, only once Py is received, the receiver is able to verify the MAC.
Packet | = (Diy1,MAC(K], |, Dj;1)) discloses K; and allows the receiver first to ver-
ify that K; is correct (f(K;) equals the commitment which was sent in P,_;); and second
to compute K! = f’(K;) and check the authenticity of packet F; by verifying the MAC
of P,.

In analysing the TESLA protocol it is assumed that [31]:

— The sender is honest and works correctly, following all requirements of the protocol
strictly.

— The receiver accepts packet P, as authentic only when it believes the key com-
mitment and the MAC of the packet have been successfully verified. A stream
o = (My,My,...,M;) is considered valid iff the receiver accepts that all packets
P1,P,. .., P are successfully authenticated.

— The intruder has the ability to capture, drop, resend, delay, and alter packets, can
access to a fast network with negligible delay, and can perform efficient compu-
tations, such as computing a reasonable number of pseudo-random function appli-
cations and MACs with negligible delay. Nonetheless, the intruder cannot invert a
pseudo-random function with non-negligible probability.



The security property for the TESLA protocol we need to guarantee is that the
receiver does not believe any packet P; to be authenticated unless the message M; con-
tained in the packet was actually sent by the sender. To prevent any successful attack
by an intruder, the receiver only needs to be sure that all packets P; arrive safely such
that the intruder has no time to change the message and commitment in 7; and forge the
subsequent traffic.

To analyse the TESLA protocol and show that a particular scheme is secure, we first
need a formal framework for formalizing the protocol. As we have mentioned earlier,
we consider fibring of a belief logic with a temporal logic in a systematic way.

3 Two Logics: SLTL and TML

We now give a brief introduction to the logics SLTL and TML. Typed Modal Logic
(TML) is a variant of the modal logic KD of beliefs [25] which is suitable for modelling
agent beliefs. In Simple Linear-Time Temporal Logic (SLTL), truth values of formulae
vary over clocks (time-lines) of varying rates of progress [23124].

The choice of these two logics, and consequently of their combination, is motivated
by the need to capture some basic notions used in the representation of the TESLA pro-
tocols: in the first instance, the notion that an agent believes that a message has been
authenticated. The protocols do not impose any condition on the property of beliefs.
Thus we have opted for the minimal modal logic for a belief operator satisfying the
conditions that the agent is rational (i.e., does not have inconsistent beliefs). Similarly,
the TESLA protocols, are based on sequences of messages, and for the temporal prop-
erties we need to be able to capture the time when the first packet of a message has been
sent (and we can identify this instant with the origin of time, as far as the protocol and
the message are concerned), and the packet sent at successive steps. To model this we
require two temporal operators: first for the origin and next for modelling the succes-
sive instant in a time-line. The next operator is standard in temporal logic; first (used
in conjunction with successive applications of next) allows us to move to any instant
along the time-line.

3.1 SLTL: Simple Linear-time Temporal Logic

SLTL offers two operators, first and next, which refer to the initial moment and the next
moment in time respectively. The formulae of SLTL are built with the usual formation
rules from standard connectives and quantifiers of classical first order logic, and the
temporal operators first and next.

The collection of moments in time is the set of natural numbers. We define the
global clock as the increasing sequence of natural numbers, i.e., (0,1,2,...), and a local
clock is an infinite subsequence of the global clock. Thus, we have

Definition 1 (time models) A time model for the logic SLTL has the forme = (C,<,V),
where C = (to,11,t,...) is a clock, < is the usual ordering relation over C and v is an
assignment function giving a value v(t,q) € {true, false} for any atomic formula g at
timet inC.



We write ¢, |= A to stand for “A is true at time 7 in the model ¢”. Then the semantics of
the temporal operators with the notion of satisfaction in SLTL is given as follows:

- ¢, f; =first Aiff e, 1o = A.
- ¢,f; Enext Aiff e, 1;4) EA.
— satisfaction in the model ¢ = (C, <, V) is defined as satisfaction at some point on C.

A minimal axiomatic system for the propositional temporal logic consists of the
following axioms (axiom schemata). We let 57 stand for first or next.

AQ. all axioms of classical first order logic.
Al. y(first A) < first A.
A3. S7/(AAB) « (VA)A (Y B).

Axiom AOQ says that initial truths persist. Axiom A2 says that temporal operators are
self-dual (over functional frames). Axiom A3 says that the temporal operators commute
with A.

Apart from the generic substitution rule, SLTL has two rules of inference defined as
follows:

MP. From ¢ and ¢ — v infer y. (Modus Ponens)
TG. From ¢ infer 57 ¢ (Temporal Generalisation)

The soundness and completeness of the axiomatisation system for SLTL with respect
the class & of all local clocks are straightforward [23]].

3.2 TML: Typed Modal Logic

TML is a variant of the modal logic KD of beliefs [20]. We assume that there are n
agents ay, .. .,a, and, correspondingly, n modal operators By, ...,B,, in the logic, where
B; (1 <i < n) stands for “agent g; believes that”.

Let @ be a set of countably many atomic formulae of the (typedﬂ) first-order logic.

Definition 2 syntax We define £,,,; as the smallest set of well-formed formulae (wffs)
of the logic TML such that:

- Dy C Limi;

— ifQisin Ly, so are ~@Q and B; @ for all i (1 <i<n);

if  and y are in Ly, then @ AN is in Ly, and

if ©(X) is in £ where X is a free variable, then VX ¢(X) is, too.

We assume the fixed-domain approach to quantification, that is, the domain of quantifi-
cation is the same in all possible worlds. This mean than we have the standard first-order
logic semantics for the ¥V and 3 quantifiers. We also employ rigid denotations for terms,
that is, the only dynamic objects are predicates. We also assume that in TML all the
wifs built according to the usual formation rules are correctly typed.

4 By typed we mean that the domain objects (values) are classified into types and each term can
only have values of a certain type (e.g., messages).



Definition 3 (Kripke model) A classical Kripke model [21)] for the logic TML is a
tuple
m=(S,D,Ry,...,R,, @),

where S is the set of states or possible worlds; D is the domain of the model; each
Ri(1 <i<n)isaserial relation over S, consisting of state pairs (s,t) such that (s,t) € R;
iff, at state s, agent a; considers the state t possible; T is the interpretation function,
which associates every term of the language an element of the domain, and gives the
extension of predicates for every possible world.

— 7(x,s) € D (global interpretation of variables/terms);
- Vs, ¥ € W,n(x,s) = nt(x,r) (rigidity of variables/terms);
— (@1, x0),5) C D

Each R; called the possibility relation according to agent a;. We write m, s = @ to stand
for “@ is true at the state s in the model m” or “@ holds at s in m”.

The semantics definition for the belief operators with the notion of satisfaction in TML
given an interpretation 7 is as follows:

- m,s = Q(xi,...,x,) iff (m(x1,5),...,7(xn,5)) € T(Q,s);

— Standard valuation conditions for negation and boolean connectives;

- m,s = B;o iff, for all 7 such that (s,7) € R;, m, = .

- m,s = VxA(x) iff for every d € 7 (where .7 is the type of x), m,s = A(x), based
on the interpretation 7/, like 7 except for mapping x to d.

— A formula ¢ is satisfiable in a model m if there exists s € S such that m,s = ¢.

In preparation for fibring TML with SLTL, we now consider monadic models for TML
defined as follows:

Definition 4 (monadic models) A monadic model for TML is a structure
m=(S,D,Ry,...,R,, 7, u)

where {(S,D,R1,...,Ry, ) is a classical model for TML and u € S is called the actual
world. @ is satisfiable in the monadic model m if and only if m,u = ¢.

We define 7, as a class of monadic models of the form (S,Ry,...,R,, T,u), where the
set of states is assumed to be

1 S= {x | E|Rl‘] "'Rik MR,‘] O--~0Rikx7Ri],---7Rik S {R],...,Rn}},

where R; o R represents the relative product (or composition) of R; and R;. This means
that a monadic models in u is connected and rooted, where the root is u. Alternatively,
a monadic model is a generated model.

Note that this assumption does not affect satisfaction in models as points not ac-
cessible from u by any composition of some of these relations, Ry,..., and R,, can not
affect truth values of a formula at u. Furthermore, using the notation m for a model in
Himi, WE Write m = <S<m),R§m), ... ,R,(lm) ,w(m), u(m)>, and we also use the notation m*
to denote the model rooted in u. In addition we assume:



(2) if my # my, then S™) N 5(M2) — g,
(3) m; = my iff u™) = y(m2),

Assumption (2) indicates that all sets of possible worlds in %}, are all pairwise dis-
joint, and that there are infinitely many isomorphic (but disjoint) copies of each model;
assumption (3) means that a model in %, can in fact be identified by the actual world
in it.

TML is axiomatised by the following axiom schemata and inference rules:

BO. all axioms of classical first-order logic.
Bl. Bi(¢ — w)AB;p — By foralli(1<i<n).
B2. B;(—¢) — —(B;p) foralli (1 <i<n).
B3. VXB;p(X)— BVX@(X) foralli(1<i<n).

I1. From ¢ and ¢ — y infer y. (Modus Ponens)
12.  From VX ¢@(X) infer ¢(Y). (Instantiation)
I3.  From ¢(X) infer VX ¢(X). (Generalisation)
I4.  From ¢ infer B;¢ for all i (1 <i<n). (Necessitation)

The soundness and completeness of the axiomatisation system for TML can be proved
in a standard pattern [20].

4 FL: Fibred Logic

In this section, we discuss how the logic FL is obtained through the use of fibring
technique for combining the logics TML and SLTL. The formulae of FL may contain
any number of applications of the temporal operators and/or the belief operators without
any restrictions. To be able to interpret a formula of TML whose main operator is a
temporal operator, we need to use the meaning of the temporal operators with a time
reference. To be able to interpret a formula whose main operator is a belief operator,
similarly, we need to use the meaning of the belief operators with a state reference.
This will require us to move between time references and state references freely. The
fibring method [14] is used to interweave the semantics of the constituent logics using
fibring functions (that move context between time references and state references) in
such a way that any formula of FL is interpreted in its proper context. What the fibred
logic (FL for short) looks like depends on the conditions on the fibring and assignment
functions F and 7, which will be discussed later.

Let & = {By,...,B,,first,next} be the set of modal connectives of FL. Then the
formulae of FL are obtained from the usual formation rules. As before we assume that
in FL all the wffs are correctly typed. Then we have

Definition 5 (syntax) Let Py be a set of countably many atomic formulae of the
(typed) first-order logic, then Ly as the smallest set of well-formed formulae (wffs)
of the logic FL is defined by the following formation rules:

1. &y C tol;
2. ifQisin Ly, soare ~@ and \7 @ forall 7 € O;
3. if g and y are in Ly, then Ay is in Lpy; and



4. if (X) is in Ly where X is a free variable, then VX ¢(X) is, too.

The discussion of the fibred semantics in the case of the Kripke monadic models for
TML with time models for SLTL can be laid out in three levels: using a single time
model, or considering a set of time models with the same clock, or based on different
clock models. In this paper we restrict ourselves to the first level. Following Gabbay
[[14], we define the fibred semantics arising from the Kripke models for TML with a
single time model based on simplified fibred models (simply, sfm models) defined as
follows:

Definition 6 (sfm models) A simplified fibred model or sfm model is a tuple

(W,D,S,R,n,F)
where

1. W is a set of possible worlds;

. Dis a (typed) domain of individuals;

. S'is a function giving for each w a set of possible worlds, " CW;

. R is a function giving for each w, a relation R” C S" x §";

. T is an interpretation function as in Definition 3}

. F, the fibring function, is a function ¥ : O x W — W. A fibring function F is a
Sfunction giving for each <7 and each w € W another point (actual world) in W as
follows:

AN W

F(,w) = w ifwe S" and u™ is a semantics for <7
Vo W otherwise, where w' € S”, and v(™ is a semantics for <.

The above definition is based on the above intuition: (i) for every world w we associate
to it a model m™) = (S",R,,,w,w) and we have to ensure that it is a model for one
of the logic to be combined; and (ii) whenever we evaluate a modal operator, first we
check the type of model we are in. If the model is a semantics for the modal operator,
we use the standard evaluation conditions for it; otherwise we use the fibring function
to move to a new model (world) in the appropriate semantics.

An sfm model for FL can be generated from fibring the semantics for SLTL and
TML. The detailed construction runs as follows

Definition 7 (Model for FL) Let % and € be respectively set of monadic modals and
time model. Let W), be the set of worlds in % and W; the set of natural number in €.
Then an sfm-model for FL is

<W,D7S7R07R17' . 'aRnaTC7F7W0>
where

1. W=W,UW,;

2. D is the set of the (typed) individual common to all models in % and € ;

3. Fors €Wy, 8 ={x|sR; o---oR;x, for someR;,...,R; € {Ry,...,R,}} such that
(1) S NW, =0, (2) for s,r € Wy, if s # r, then S®) N SU) = ¢;



4. Ro={(x,y)lx,y € Wi&x <y},

5. Ri=Uges

6. F is such that,
— if 7 is first or next, then F(7,w) = w if w € W,, otherwise F(s7,w) € W,
- if 7 is B, then F(s7,w) = wif w € W,, otherwise F(s7,w) € W,.

Notice that condition 3jmeans that for each s € W, we associate a model of TML which
is an isomorphic copy of a submodel generated by s.

Definition 8 (semantics) The semantics of formulae for the logic FL is defined induc-
tively with respect to an sfm-model (W,Ro,Ry,...,Ry, m,F,wy). For anyw € W,

given an intepretation T, s |= @(x1,...,Xn) ff (m(x1,8),...,T(Xy,5)) € T(P,s5);

w = —@ iff it is not the case that w = .

wE(@AY)iffw@andw = y.

w EVXQ(X) iff, foralld € 7, where T is the type of X, w = @(d), based on the
interpretation 7y, like T except for mapping x to d.

wEY @ iffF(v,w) Ev e

w = first @ when w € W; iff min{z |t € W;} = @.

w = next @ when w € W, iff min{r |wRot} = @.

w =B when w ¢ W; and 1 <i <n iff, for all s such that wR;s, s |= @, assuming
s€S™ and m e .

KN~

G0N

With the sfm model (W,Ro, Ry, ...,R,, T, F, wo) we say that it satisfies the formula ¢ iff
wo = ¢@. Furthermore, m = (W,Rg, Ry, ...,R,, m,F) is called a regular fibred semantics
model for the logic FL. We say ¢ is valid in the model m, and written as m |= @, if, for
all wy € W, the model (W,Ry,R1,...,R,, 7, F, wy) satisfies ¢; we say that ¢ is satisfied
in the model m if, for some wy € W, the model (W,Ry,R1,...,R,, 7T,F, wy) satisfies @.
Let %}, be the set of regular fibred semantics models which defines the fibred logic FL,
then we say ¢ is valid in the logic FL if, for all m € ¢y, m |= ¢.

The axiom set of FL consists of the combination of the axioms for SLTL and TML
and their inference rules; we omit the details.

The soundness for the logic FL. depends on the soundness theorems for logics TML
and SLTL, and is not difficult to prove; the completeness can be proved by the tech-
niques used in Gabbay [14].

5 Labelled Tableaux for FL

In this section we show how to adapt KEM, a labelled modal tableaux system, to rea-
son with FL. The system can be used to automatically check for formal properties of
security protocols, in particular for TESLA, in FL.

A tableaux system is a semantic based refutation method that systematically tries
to build a (counter-)model for a set of formulae. A failed attempt to refute (invalidate)
a set of formulae generates a model where the set of formulae is true. To show that a
property A follows from a theory (a protocol) By,...,B, we verify whether a model for
{Bi,...,By,—A} exists. If it does not then A is a consequence of the protocol.



In labelled tableaux systems, the object language is supplemented by labels meant
to represent semantic structures (possible worlds in the case of modal and temporal
logics). Thus the formulae of a labelled tableaux system are expressions of the form
A : i, where A is a formula of the logic and i is a label. The intuitive interpretation of
A :iis that A is true at (the possible world(s) denoted by) i.

KEM [2416417]] is a labelled tableaux for logics admitting possible world semantics
whose inferential engine is based on a combination of standard tableaux linear expan-
sion rules and natural deduction rules supplemented by an analytic version of the cut
rule. In addition it utilises a sophisticated but powerful label formalism that enables the
logic to deal with a large class of (quantified) modal and non-classical logics. Further-
more the label mechanism corresponds to fibring thus it is possible to define tableaux
systems for multi-modal logic by a seamless combination of the (sub)tableaux systems
for the component logics of the combination.

5.1 Label Formalism

KEM uses Labelled Formulas (L-formulae for short), where an L-formula is an expres-
sion of the form A : i, where A is a wff of the logic, and i is a label. For FL we have a
type of labels to various modalities for each agent (belief) plus a type of labels for the
temporal modalities. The set of atomic labels is

o=drUl ) _, P

icAgt
where @7 = {f9,t1,...} and every @' is partitioned into (non-empty) sets of vari-
ables and constants: ¢ = @}, U DL where P, = {W] Wj,...} and ®L = {w',wh,...}.
Finally we add a sets of auxiliary unindexed atomic labels @4 = @é U @é where
D} = {W,Ws,...} and P2 = {wy,w,...}. @ will be used in unifications and proofs.
@®c and Dy denote the set of constants and the set of variables.

Definition 9 (labels) The set of labels S is then defined inductively as follows:

3 = U3k where 3y, k € N :
81 =PcUdy;
32 =31 x D¢
S =3 XSn,(n> 1).

According to the above definition a label is either a (i) an element of the set P, or (ii)
an element of the set @y, or (iii) a path term (', u) where (iiia) ' € ®¢c U @y and (iiib)
u € ¢ oru=(V,v) where (v/,v) is a label. As an intuitive explanation, we may think
of a label u € &¢ as denoting a world (a given one), and a label u € &y as denoting
a set of worlds (any world) in some Kripke model. A label u = (v/,v) may be viewed
as representing a path from v to a (set of) world(s) v accessible from v (the world(s)
denoted by v).

For any label u = (V',v) we shall call ' the head of u, v the body of u, and denote
them by h(u) and b(u) respectively. If b(u) denotes the body of u, then b(b(u)) will
denote the body of b(u), and so on. We call each of b(u), b(b(u)), etc., a segment of u.



The length of a label u, £(u), is the number of world-symbols in it. s” (1) will denote the
segment of u of length n and we shall use /" (u) as an abbreviations for a(s"(u)). Notice
that /(u) = h*® (u). Let u be a label and «’ an atomic label. We use (u'; 1) as a notation
for the label («',u) if u # h(u), or for u otherwise.

For any label u,f(u) > n, we define the counter-segment-n of u, as follows (for
n<k<{£(u)):

¢ (1) = h(u) x (- x (K () x (- > (0" (), w0)))

where wq is a dummy label, i.e., a label not appearing in u (the context in which such
a notion occurs will tell us what wg stands for). The counter-segment-n defines what
remains of a given label after having identified the segment of length n with a ‘dummy’
label wy. The appropriate dummy label will be specified in the applications where such
a notion is used. However, it can be viewed also as an independent atomic label in the
set of auxiliary labels.

So far we have provided definitions about the structure of the labels without regard
of the elements they are made of. The following definitions will be concerned with the
type of world symbols occurring in a label.

We say that a label u is T-preferred iff T =i and h(u) € &', or T =t and h(u) € Pr;
a label u is T-pure iff each segment of u of length n > 1 is t-preferred. With 3/ we
denote the set of i-preferred labels where i € Agt.

5.2 Label Unifications

One of the key features of KEM is its logic dependent label unification mechanism. In
the same way as each modal logic is characterised by a combination of modal axioms
(or semantic conditions on models), KEM defines a unification for each modality and
axiom/ semantic condition and then combines them in a recursive and modular way. In
this case for SLTL we have to provide a characterisation of the two modalities first and
next in terms of relationships over labels; similarly for TML we have to give conditions
on labels for the B; modal operators. In particular we use what we call unification to
determine whether the denotation of two labels have a non empty intersection, or in
other terms whether two labels can be mapped to the same possible world in the possible
worlds semantics.

The second key issue is the ability to split labels and to work with parts of labels.
The mechanism permits the encapsulation of operations on sub-labels. This is an im-
portant feature that, in the present context, allows us to correlate unifications and fibring
functions. Given the modularity of the approach the first step of the construction is to
define unifications (pattern matching for labels) corresponding to the single modality in
the logic we want to study.

Every unification is built from a basic unification defined in terms of a substitution
p : @ +— 3 such that:

p:lec
®i, — 3 for every i € Agt
&3



This means that a substitution p replaces a constant with the same constant; a variable of
type i can be replaced by any i-preferred label, while an auxiliary variable can be freely
replaced by any label. This is in agreement with the intuitive meaning of labels that a
constant stands for a possible world, and a variable stands for a set of possible worlds
(of the appropriate type). Accordingly, we have that two atomic (‘“world”) labels « and
v o-unify iff there is a substitution p such that p(u) = p(v). We shall use [u;v]c both
to indicate that there is a substitution p for u and v, and the result of the substitution.
The o-unification is extended to the case of composite labels (path labels) as follows:

[w;v]o =ziff 3p : h(z) = p(h(u)) = p(h(v)) and b(z) = [b(u);b(v)|C

For example given the labels u = (W/, (w},wq)) and v = (Wi, (W5, wp)), the o-unification
of the two labels is w = (W] (w},wp)), where each h"(w) has been obtained as the uni-
fication of A"(u) and 4" (v). Clearly o is symmetric, i.e., [u;v]o iff [v;u]c. Moreover
this definition offers a flexible and powerful mechanism: it allows for an independent
computation of the elements of the result of the unification, and variables can be freely
renamed without affecting the result of a unification.

We are now ready to introduce the unifications corresponding to the modal operators
at hand. For these unification we assume that the labels involved are 7-pure. The first
unification is that for first.

[1;v] ot = (19 [h! (u); 1! (v)]©) iff h(u) = h(v) =10 and [h' (u);h! (v)] o
The unification for first (oi*t-unification) corresponds to a constant function (the ini-
tial time is unique for the model). Accordingly if two labels end with the same atomic
label (7o) then the two labels denote the same time instant, namely the start of the clock.

For the unification for next we will use the fact that the time line is a discrete total
order, thus two labels denote the same time instant if they have the same length.

[u;v]o = wiff £(u) = £(v), [A' (u);h' (v)]o and ¢! (u),c! (v) do not contain 7.

The unification for the logic SLTL is defined by the combination of the unifications for
first and next. Formally

[ ]G [u;v] Gﬁrst

u;v|OSLTL =
[c"(u);c™(W)]o, wo = [s"(u);s™ (v)]Osere
For example, according to the above definition of the unification for the SLTL, we
have that the labels u = (14, (3, (t0,(t1,20)))) and v = (¢, (f5,%0)) Osrrr-unify, since
we can split the labels as follows: ¢*(u) = (t4,(t3,w0)), s°(u) = (to,(t1,%)) and
c'(v) = (t6, (ts,wp)), and s'(v) = 1o, it is immediate to see that [c¢}(u);c!(v)]o and
[ ()ss' (v)] ot

The belief logic can be understood a the combination of multiple KD modal logics,

one for each agent i € Agr. Thus we first give the unification for each of such logics and
then we combine in a single unification to be used with the unification for SLTL for FL.

[u;v)o™E = [u;v]o



where u and v are i-pure. Notice that using the mechanism of counter-segment it is
always possible to split labels into pure sub-labels. Accordingly the definition of the
unification for TML is

[u;v) oML
[wsvlorme = § [c"(u);c™(v)]oT™™Li ¢ (u),c™(v) are i-pure, and

wo = [s”(u);sm(v)]GTML.

u,v are i-pure, or

The logic FL is is the fibred combination of TML and SLTL, thus according to the
results in Gabbay and Governatori [[L5]] we can obtain the unification for it based on the
unifications for the component logics. With o TBL we understood either o777, Or Grur.
The unification for FL is:

[u;v]oTBL

[usvlopr = < [c"(u);c™(v)|oTBE ¢ (u),c™(v) are i-pure, and

wo = [8"(u);s™ (v)]oFL

Theorem 1 The oy -unification of two labels u and v can be computed in linear time.

Proof. The complexity of ¢i™t is O(1): all we have to do is to compare the first and
last element of the two labels. For ¢ the complexity is O(n), we count the number
of elements in the two labels and we check that the right-most elements unify. For
osrrr, we have O(n) again. This unification can be computed by counting the elements
of labels starting from the right-most element and reset the count to 0 every time we
encounter #y. Accordingly, two labels oy -unify if they have the same count.

For 6"MLi the complexity is O(n). The definition of ¢ implies that the two labels
have the same length and thus we perform » unification of pairs of atomic labels, where
the unifications of atomic labels can be computed in constant time. For o7y again
the complexity is O(n). We split each labels into maximal i-pure counter-segments.
This operation can be computed in linear time, and then we perform at most n (n <
max{/(u),£(v)}) oTMLi_unifications of linear complexity.

Finally for orz we split the labels into maximal T-pure counter-segments and we
have n linear unifications. =

5.3 Inference Rules

For the presentation of the inference rules we assume familiarity with Smullyan-Fitting
unifying notation [[13]].

o:u AAB:u —(AVB):u —-(A—B):u
o u A:u —-A:u A:u (@)
0 u B:u -B:u -B:u

The ¢-rules are just the familiar linear branch-expansion rules of the tableau method.
For the B-rules (formulae behaving disjunctively) we exemplify only the rules for im-



plication (—>)E]

ﬁctu(l.:m) A—B:u  A—B:u
Bi v Ay -B:y (B)
ﬁ3,,' : [u;v]GFL B: [u;v]GpL —A: [M;V]GFL

The B-rules are nothing but natural inference patterns such as Modus Ponens, Modus
Tollens and Disjunctive syllogism generalised to the modal case. In order to apply such
rules it is required that the labels of the premises unify and the label of the conclusion
is the result of their unification.

Y:iu VxP(x):u —3xP(x):u
yo(xn) ‘u P(xn) ‘u jP()Cn) ‘u

(v)

The ¥ rules are the usual “universal” rules of tableaux method with the usual proviso
that x, is a variable not previously occurring in the tree [[13\2].
:u IxP(x):u  —VxP(x):u

Oo(cn):u  Plen):u  —P(cy):u

()
The 6 rules are the usual “existential” rules of the tableau method, where c,, is a constant

that does not occur previously in the tree.

v BA:u . -B/A:u (1s)
A Wha) T EA: (wha Ha

where W,/ and w', are new labels.

The rules for B; are the normal expansion rule for modal operators of labelled
tableaux with free variables. The intuition for the v rule is that if B;A is true at u,
then A is true at all worlds accessible via R; from u, and this is the interpretation of
the label (W u); similarly if B;A is false at u (i.e., =B;A is true), then there must be a
world, let us say wil accessible from u, where —A is true.

firstA:u —firstA:u nextA:u —nextA:u ()
A o) —A:(ou) A:(mu) —A:(tnu) Hr

where t,, 1S new.

Given the functional interpretation of the temporal accessibility relation and that the
initial instant is fixed, we have the same expansion of the labels and there is no need to
introduce variables.

T AL (PB)
A:u | -A:u
The “Principle of Bivalence” represents the semantic counterpart of the cut rule of the
sequent calculus (intuitive meaning: a formula A is either true or false in any given
world). PB is a zero-premise inference rule, so in its unrestricted version can be applied
whenever we like. However, we impose a restriction on its application. PB can be only

5> Where B¢ denotes the complement of f3;.



applied w.r.t. immediate sub-formulae of unanalysed f3-formulae, that is 8 formulae for
which we have no immediate sub-formulae with the appropriate labels in the tree.

A(x):u

ZAO) Y it usv) oy, and x and y unify] (PNC)

The rule PNC (Principle of Non-Contradiction) states that two labelled formulae are
orr-complementary when the two formulae are complementary (i.e., the terms in the
formula unify according to the standard unification for terms) and their labels og -unify.

5.4 Proof Search

Let I' = {Xy,...,Xin} be a set of formulae. Then .7 is a KEM-tree for I if there ex-
ists a finite sequence (.77, .%,...,.7,) such that (i) 7] is a 1-branch tree consisting of
{X1:t1,.. ., Xm 2 tm )5 (1) F, = 7, and (iii) for each i < n, ;4 results from .7} by an
application of a rule of KEM. A branch 6 of a KEM-tree .7 of L-formulae is said to be
orp-closed if it ends with an application of PNC, open otherwise. As usual with tableau
methods, a set I of formulae is checked for consistency by constructing a KEM-tree
for I'. Moreover we say that a formula A is a KEM-consequence of a set of formu-
lae ' = {X1,..., Xy} (I' Fgppry A) if a KEM-tree for {Xi @ uy,..., X 1 up, A 1 v} is
closed using the unification for the logic L, where v € @2, and u; € ®{}. The intuition
behind this definition is that A is a consequence of I" when we take I as a set of global
assumptions [13], i.e., true in every world in a Kripke model.

We now describe a systematic procedure for KEM. First we define the following
notions. Given a branch 6 of a KEM-tree, we shall call an L-formula X : u E-analysed
in O if either (i) X is of type o and both ¢ : ¢ and o : u occur in 8; or (ii) X is of type
B3 and one of the following conditions is satisfied: (a) if B : v occurs in 6 and [u;v]oFy,
then also f3; : [u;v]op, occurs in 6, (b) if BE : v occurs in 6 and [u;v]opy, then also
B : [u;v]OFL occurs in 6; or (iii) X is of type u and i : («',u) occurs in 6 for some
appropriate u’ of the right type, not previously occurring in 6, or (iv) X is of type ¥ and
Yo(xp) : u occurs in O for some variable x, not previously occurring in 6 or (v) X is of
type 8 and &(cy) : u occurs in 6 for some variable ¢, not previously occurring in 6.

We shall call a branch 0 of a KEM-tree E-completed if every L-formula in it is E-
analysed and it contains no complementary formulae which are not 67y -complementary.
We shall say a branch 0 of a KEM-tree completed if it is E-completed and all the L-
formulae of type B in it either are analysed or cannot be analysed. We shall call a
KEM-tree completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of {X; :
u,...,X, : v} and applies the inference rules until the resulting KEM-tree is either
closed or completed.

At each stage of proof search (i) we choose an open non completed branch 6. If 6 is
not E-completed, then (ii) we apply the 1-premise rules until 8 becomes E-completed.
If the resulting branch 6’ is neither closed nor completed, then (iii) we apply the 2-
premise rules until 8 becomes E-completed. If the resulting branch 8’ is neither closed
nor completed, then (iv) we choose an L-formula of type B which is not yet analysed



in the branch and apply PB so that the resulting LS-formulae are f; : «’ and ﬁlc o (or,
equivalently B, : «’ and B§ : ), where u = ' if u is restricted (and already occurring
when h(u) € ®¢), otherwise ' is obtained from « by instantiating /2(«) to a constant not
occurring in u; (v) (“Modal PB”) if the branch is not E-completed nor closed, because
of complementary formulae which are not ofy-complementary, then we have to see
whether a restricted label unifying with both the labels of the complementary formulae
occurs previously in the branch; if such a label exists, or can be built using already
existing labels and the unification rules, then the branch is closed, (vi) we repeat the
procedure in each branch generated by PB.

5.5 Soundness and Completeness

The resulting tableaux system is sound and complete for the logics presented in this
paper. As usual with tableaux systems a proof of A is a closed tableaux for —A, thus a
tableaux systems is sound and complete for a particular logic if it is able to generate
closed tableaux for all negation of valid formula, and open tableaux (models) for all
satisfiable formulae. In proving the results for the logics at hand we will make use of
the main result (Theorem 22) of Gabbay and Governatori [15]] that allows one to obtain
a sound and complete labelled tableaux system for a fibred logic based on sound and
complete labelled tableaux systems (of the same type of the tableaux system for the fi-
bred logic) for the logics to be combined. The key idea of the Theorem is to conceive the
join point of a unification where the labels are split in segments and counter-segments
as the counterpart of the fibring function in fibred models. The soundness and com-
pleteness of KEM for FL follows from its being sound and complete for the component
logics SLTL and TML.

Lemma 1 KEM(SLTL) is sound and complete for SLTL.

Proof. The logic SLTL can be seen as the fibring of two modal logics whose accessi-
bility relation is a total function for next and a constant function for first. Governatori
[16] proved that KEM with the ofirst_ynification is sound and complete for a modal
logic with a constant accessibility relation and later [17] showed the same result for
functional accessibility relation and o. Theorem 22 of Gabbay and Governatori [15]]
allows us to combine the unification for first and next as in the unification for cg;7; to
obtain a sound and complete tableau systems for SLTL. -

Lemma 2 KEM(TML) is sound and complete for TML.

Proof. [2]] shows that KEM with the ¢-unification is sound and complete for the modal
logic KD. The multi-modal case is a consequence of Theorem 22 of [[15] -

Armed of these results we can now prove the result for FL.
Theorem 2 KEM(FL) is sound and complete for FL.

Proof. From Lemma|I]and[2]and Theorem 22 of [13]. 8



6 Analysing Authentication Protocols

In this section, we first build a theory of trust to specify the TESLA protocol, then
discuss its correctness. With the purpose of making the logic FL appropriate for speci-
fying the protocol, we restrict the time model of FL to guarantee that the time interval
between any moment and its next moment in time has the same length, 1 unit time.
This restriction matches the special timing property that the TESLA scheme satisfies:
the sender sends packets at regular time intervals. The assumption simplifies our dis-
cussion without harming its correctness.

6.1 The Formalization of TESLA

We now establish a theory that describes the behaviour or functions of the protocol
with the scheme PCTS. The basic types of the theory include: Agents = {A,B,S,R,I},
Messages = {X,Y,D,D'} and Keys = {K,K;,K>} where S, R, I stand for the sender, the
receiver, and the intruder, respectively. In case there are multiple receivers, we may have
Ri,R>,... in the type Agents.

Through an analysis of the TESLA protocol, we set a theory to specify it consist-
ing of four modules, My, (send-receive mode specification), M, (message receiving
and knowledge gained), M,,,s (message sending), and M, (authentication rules). Each
module consists of several axiom schemata). Several predicates are used to express
these axioms. Given the intuitive reading of the predicates we omit their explanations.

Send-receive mode specification depends on what kind of mode is adopted. We first
consider a simple mode called the zero-delay mode, which is based on two assump-
tions: (1) zero time is spent between sending a message and receiving this message,
i.e., the sending time of a packet P, is equal to the receiving time of the packet on the
synchronized receiver’s clock, for any P;; and (2) the packet rate is assumed to be 1 (i.e.,
1 packet per unit time). With this mode, module M, consists of the following axiom
schemata:

Z1. sends(S,R,X) < receives(R,X).
72. sends(S,R,(D,MAC(f'(K),D))) <> next sends(S,R,X)NK € X.

The first rule says that, if the sender sends the receiver a message, then the receiver will
receive the message at the same time; and the second one says that the sender sends the
receiver a message packet with a signed commitment to a key if it will send the receiver
a packet containing that key at the next moment in time.

Zero-delay mode is an idealized mode. However, generally the time spent between
sending and receiving messages cannot be zero. Considering this point, we give the
definition of send-receive modes by introducing a generic form.

Definition 10 (time intervals) For a send-receive mode, all packets P; must arrive within
a certain time interval [u,v] relative to the current time defined as follows:

sends(S,R,P;) — next(") receives(R,P;),u <m <.

Let the current time be 7. (time of sending a packet). Definition [10| indicates that any
packet sent by the sender must arrive at a moment between 7., and #..



Definition 11 (time distance of sending) Ler d = 1/r, where r is the packet rate (i.e.,
number of packets sent per unit time). We call d the time distance of sending between
two packets.

Noting that a send-receive mode is in fact determined based on the time interval of
packet arrival and the time distance of sending, we have the formal definition of a mode
as follows:

Definition 12 (send-receive modes) We use the notation m([u,v],d) to represent a send-
receive mode of the PCTS scheme of TESLA or; simply, a mode if u,v,d € N, the set
of all natural numbers, and u < v, where [u,v] is the time interval of this mode, and d
the time distance of sending with it. We say that m([u,v],d) is a safe mode if v < d.

The following generic rules specify a given mode m([u, v], d)f]

Gl. sends(S,R,X) < next™ receives(R,X)V ...V next") receives(R,X).
G2. sends(S,R,(D,MAC(f'(K),D))) < next® sends(S,R,X) K € X.

Mode-specific rules are determined when u,v and d are given. For example, within the
mode m([2,3],4), we have

S1.  sends(S,R,X) < next®) receives(R,X) \V next® receives(R, X).
S2.  sends(S,R,(D,MAC(f'(K),D))) < next®) sends(S,R,X) \K € X.

Modules M,,x, M,,;5, and M, are fixed for any mode. Due to space limitations, they are
listed below without explanations.
M, (message receiving and knowledge gained)

G3. receives(A,(X,Y)) — receives(A,X) Areceives(A,Y).
G4. receives(A,X) — knows(A,X).

G5. knows(A,K) — knows(A, f(K)) ANknows(A, f'(K)).
G6. knows(A,{X }sk(p)) — knows(A,X).

G7. knows(A,K) Nknows(A,X) — knows(A,MAC(K,X)).
G8. knows(A,X) — next knows(A,X).

where SK(B) is the private key of agent B and its corresponding public key can be
known by anybody, so we have G8. Here knowledge only refers to knowing parts of
messages rather than propositions hence it is modeled using a predicate.

M,,s(Message sending)

G9. sends(A,B,(X,Y)) — sends(A,B,X) Asends(A,B,Y).
G10. sends(A,B,X) — has_sent(A,B,X).

G11. has_sent(A,B,X) — next has_sent(A,B,X).

M., (Authentication rules)
G12. is_auth({X,MAC(f'(k),D))) < verify_success(f(K)) Averify_success(MAC(f'(K),D)).
G13. is_auth(X) — has_been_auth(X).

6 In what follows we will use next(™ to indicate m consecutive occurrences of next.



G14. By has_been_auth(X) — next Bg has_been_auth(X).
G15. receives(R, (X ,MAC(f'(K),D))) A
Bg —has_sent(S,R,K) — Bg arrive_safe((X,MAC(f'(K),D))).
G16. arrive_safe(X) — has_arrive_safe(X).
G17. Bg has_arrive_safe(X) — next Bg has_arrive_safe(X).
G18. Bg verify_success(f(K)) <> Bg has_arrive_safe({X,MAC(f'(K),D))) A knows(R,K)A\
Bg has_been_auth({D', MAC(f'(K),D'))) A f(K) € D'.
G19. Bg verify_success(MAC(f'(K),D)) < Bg has_arrive_safe((X,MAC(f'(K),D)))A
knows(R,K) AMAC(f'(K),X) = MAC(f'(K), D).

Thus, we have obtained a theory T = M, UM,z UM,,,s UM, specifying the PCTS
scheme of TESLA given in Section [2] where each module contains the relevant ax-
ioms given above: My, = {G1,G2}, M, = {G3,...,G8}, M,; = {G9,G10,G11}, and
M, = {G12,...,G19}.

6.2 Correctness Analysis

The correctness condition for a given TESLA scheme should guarantee that if the re-
ceiver (receivers) can verify that a packet is authentic, then the packet was indeed sent
by the sender.

Definition 13 (correctness condition) The local correctness for a TESLA scheme to
the receiver R who receives messages from the sender S means that, if R has verified
that a packet is authentic, then the packet was indeed sent by S. That is,

VX (Bg has_been_auth(X) A has_sent(A,R,X) — A =2S).

Furthermore, the (global) correctness for the TESLA scheme means that the local cor-
rectness for the scheme to all receivers holds.

The theory discussed above is based on a time model where the clock is regarded
as the synchronized receiver’s clock (correspondingly to the global clock). It provides a
basis for the receiver to verify stream messages received through the PCTS scheme of
TESLA if the scheme with its send-receive mode satisfies the correctness condition.

Based on the theory developed above, we can show that the correctness condition
of the TESLA protocol holds within the scheme.

Proposition 1 The PCTS scheme with the mode m([u,v],d) mode is secure (i.e., it sat-
isfies the correctness condition)if m([u,v],d) is a safe mode.

Proof. We sketch the proof: Within the PCTS scheme, packet P; is authenticated with
the regular digital signature scheme and can therefore be checked using a standard
verification method. Therefore, the correctness for the PCTS scheme may be inductively
shown based on the assumption that the receiver has the authenticated packet Py, and it
was indeed sent by the sender. That is, we have that

Bg has_been_auth(Py) A has_sent(A,R,P|) — A =S.



Then, assuming forall i (1 <i<n—1),

By has_been_auth(P;) A has_sent(A,R,P;) - A=S
holds, we only need to show that

By has_been_auth(P,) A has_sent(A,R,P,) — A=S.

It can be shown that the assertion holds true based on axioms G8 and G11 if v < d, i.e.,
m([u,v],d) is a safe model. .

We can also use the theory to show that the PCTS scheme with an unsafe mode, e.g, the
mode m([1,4],2), provides chances for the intruder to attack the system. Consider the
case: assume that packets P; and P,;; are sent out by the sender at time ¢ (the current
moment in time) and at 7 4 2 (the next next moment), respectively. The intruder, I, first
intercepts P; at  + 2 and then, at r + 3, again intercepts P, | when it arrives. By creating
a packet P/, instead of P, using key K; in packet P, I masquerades as the sender send
packet P! to the receiver. The attack will be successful if P/ reaches the receiver at 7 +4.

The correctness of a TESLA scheme depends on the send-receive mode that the
scheme adopts. With an appropriate mode (a safe mode), the TESLA scheme can guar-
antee that the intruder does not have enough time to make a fake message and then
masquerade as the sender to send it to the receiver, even when the intruder is able to
intercept a message that is sent to the receiver. Focusing on the discussion of the correct-
ness condition for the TESLA scheme, we do not specifically consider how the intruder
may work within a given TESLA scheme, but there is no difficulty for the reader them-
self to construct some successful attack by the intruder within a scheme that adopts an
unsafe mode. The interested reader can refer to the literature [28] for the specification of
an intruder module in the proposed fibred logic. Similarly, other variants of the TESLA
protocol have been proposed, and it is not our aim to give a complete analysis of how
to encode them.

6.3 Mechanising Correctness Proofs

In order to automatically analyse the correctness of a scheme of the protocol, we need to
mechanize the theory describing the behaviour of the protocol in an appropriate proof
system. In our approach, such system-specific trust theories developed for specifying
communications protocols do not depend on a specific implementation. The user is
therefore allowed to freely choose the tools for mechanizing these theories. Below we
show how modal tableaux can be used to verify the properties of the TESLA protocol.
Modular structure offers convenience to the user for translating a theory to an executable
code (program) in a mechanised proof system, such as Isabelle [29].

With the labelled modal tableaux system KEM, to show a safe mode satisfies the
correctness condition, we only need to show that in this mode A = S is a KEM-consequence
of a set of formulae I' = {Bg has_been_auth(X), has_sent(A,R,X)}. Due to space limi-
tations, we only give a simple case to show how the labelled tableaux system works on
checking the properties of TESLA. With the send-receive mode m([2,3],4), we assume
that the message has arrived safely and it has been authenticated based on the time the
message was received and the contents of the message:



HI. first next® receives(R, (X,Y))

H2. first next”) receives(R,X1)ANK € X1
H3. MAC(f'(K),X)=Y

H4. first next® By is_auth((X,Y))

Then, we can prove the following property:

(A). first next® By (is_auth((X,Y)) — (first sends(S,R, (X,Y))V
first next sends(S,R, (X,Y))))

It basically says that if at time #g, agent R believes that if the message is authenticated,
then it must have been sent at either time # or time #; (agent R does not really know the
exact time when the message was sent, however, it knows about the time interval).

In the following we show the tableaux proof of the property. All the rules of the
PCTS scheme of TESLA are at our disposal as well as the assumptions made above;
each is labelled with a generic universal label that would unify with any given label.
Tableaux rules have been applied exhaustively until all the branches have been com-
pleted (details of proof steps are omitted). We also assume a that biconditional (such as
rule S1 used in the proof) is the conjunction of two implications.

. sends(S,R, (X,Y)) < next® receives(R, (X,Y))V next® receives(R, (X,Y)) : W1
. first next®) receives(R, (X,Y)) : W2
. first next® By is_auth((X,Y)) : W3

. —first next® By (is_auth((X,Y)) — (first sends(S,R, (X,Y))V
first next sends(S,R (X,Y)))) : w4

5. —next® By (is_auth((X,Y)) — (first sends(S,R, (X,Y)) V

first next sends(S,R, (X

)

X
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(X)) : (10, W)
6. —next?) By (is_auth((X,Y)) — (first sends(S,R, (X,
first next sends(S, R, (
7. ... (expansion rule for next is applied 7 times, ur)
8. —Bgr (is_auth({X,Y)) — (first sends(S,R,(X,Y))V
first nextsends(S,R,(X,Y)))) : (ts,(... (11, (to, W4))...)
9. —(iscauth((X,Y)) — (first sends(S,R,(X,Y))V
~ first next sends(S, R, (X.Y)))) : (W', (ts, (... (11, (t0,W4))....))
10. iscauth((X,Y)) : (W', (13, (... (11, (to, W4))...)) ‘
11. —(first sends(S,R,(X,Y)) V first next sends(S,R, (X,Y))) : (W', (t3, (... (11, (to, W4))...))
12. —first sends(S,R, (X,Y)) : (W', (ts, (... (11, (to, W4)) ...))
13. —first next sends(S,R, (X,Y))) : (W', (13, (... (t1, (0, W4))...))
14. —sends(S,R, (X,Y)) : (to, (W', (ts, (.. (1, (t0,W4))...)))
15. —next sends(S,R,(X,Y))) : (to, (W', (3, (... (t1,(t0,W4))...)))
16. —sends(S,R,(X,Y))) : (t1, (to, (W', (13, (. .. (11, (10, W4)) ...))))
17. sends(S,R,(X,Y)) — next® receives(R, (X,Y)) Vnext® receives(R, (X,Y)) : W1
18. next® receives(R, (X,Y)) Vnext® receives(R, (X,Y)) — sends(S,R, (X,Y)) : W1
19. —(next?) receives(R, (X,Y))V
next(? )receives( A(X,Y))

Y)N)) : (1, (00, W4))

) (tlv(t()v(( 7(t87(‘"(t17(t07W4))‘“))))
20. —next? receives(R, (X,Y)) :(t1, (to, (W', (13, (... (11, (10, W4)) ...))))
21. —mext <3>recewes( ,<x,y>)) (11, (o, (W, (13, (... (11, (10, W4)) ..))))
22. next®) receives(R, (X,Y)) : (1,W2)

23. next? receives(R, (X,Y)) : (11, (19, W2))

)



24, x[(t1, (to, (W', (13, (... (11, (10,W4)) ....)))) and (11, (to, W2)) unify]
(obtained from steps 20 and 23)

This proof has only one branch which is closed. This shows that agent R’s belief
has been justified based on the assumptions. Notice that, according to the proof search
procedure given in Section@ the labels W1, W2, W3 and W4 are auxiliary labels, and
as such they can be uniformly replaced by any suitable atomic label.

7 Concluding Remarks

With the logic FL, we use a simple case of the fibred semantics arising from Kripke
models with a single time model. However, it is not difficult to extend it with other
different time models. Such extensions would be needed when one wants to deal with
different local clocks for multi-agent systems. The logic resulting from fibring SLTL
and TML is far more expressive than the temporalized belief logic [25].

We have also discussed an application of the logic FL in analysing the TESLA pro-
tocol. In other approaches to the analysis of TESLA, Archer [1] uses the theorem prover
TAME, and Broadfoot et al [4] use model checking techniques, to analyse TESLA. The
advantage of these methods is that some properties of the protocol can easily be cap-
tured through proof systems, but a drawback is that the formal representations involved
in such proofs are often not easily validated by the user. Our approach separates the the-
ory from its implementation and helps a protocol designer to capture the meanings of
the theory as a whole. Our analysis has shown that the PCTS scheme of TESLA with a
safe send is secure given that the correctness condition is satisfied. We have shown else-
where that our approach is suitable for analysis of other modes of the TESLA protocol
such as unsafe modes [28]].

Lomuscio and Wozna [26] proposed a recent approach to the analysis of stream
authentication protocols based on a temporal epistemic logic called TDL and provided a
sound and complete axiomatisation of TDL based on CTL augmented with an epistemic
operator. They also performed a manual analysis of the security property of TESLA
and foreshadowed a BDD-based model checker for automated analysis based on the
interpreted system model. However, TDL is not a result of a systematic combination
of the constituent logics and there is no proposed proof method for it other than an
axiomatic one.

Dixon et al 8] also considered a temporal epistemic logic resulting from the fusion
of linear-time temporal logic and multi-modal S5 (for knowledge). They showed that
the logic can be used for verification of part of the Needham-Schroeder protocol using
clausal resolution.

Fibring is a very rich technique for combining logics and leads to a more systematic
approach for searching suitable logics for target domains such as the task of verification
of security protocols. Our approach based on the fibred logic is also quite flexible since
the structure of the theory is well-defined, and separating the theory from its implemen-
tation helps a protocol designer to capture the meanings of the theory as a whole. More-
over the modular structure makes it easy for the user to modify a theory. Fibring also
allows us to develop tablueaux-based proof procedures in a systematic way; tableaux



systems have advantages over axiomatic and/or clausal resolution-based systems and
they align well with Kripke semantics for modal logics.

Future work will involve consideration of richer models of time for SLTL as well as

the implementation of a mechanised proof procedure based on modal tableaux. We also
plan to apply our approach to other schemes of the TESLA protocol as well as other
stream authentication protocols.
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