13,073 research outputs found

    Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules

    Get PDF
    Superselection rules (SSRs) limit the mechanical and quantum processing resources represented by quantum states. However SSRs can be violated using reference systems to break the underlying symmetry. We show that there is a duality between the ability of a system to do mechanical work and to act as a reference system. Further, for a bipartite system in a globally symmetric pure state, we find a triality between the system's ability to do local mechanical work, its ability to do ``logical work'' due to its accessible entanglement, and its ability to act as a shared reference system.Comment: 5 pages, no figures. Extended resubmitted version. Slightly modified title. Transferred to PR

    Detecting Gaussian entanglement via extractable work

    Get PDF
    We show how the presence of entanglement in a bipartite Gaussian state can be detected by the amount of work extracted by a continuos variable Szilard-like device, where the bipartite state serves as the working medium of the engine. We provide an expression for the work extracted in such a process and specialize it to the case of Gaussian states. The extractable work provides a sufficient condition to witness entanglement in generic two-mode states, becoming also necessary for squeezed thermal states. We extend the protocol to tripartite Gaussian states, and show that the full structure of inseparability classes cannot be discriminated based on the extractable work. This suggests that bipartite entanglement is the fundamental resource underpinning work extraction.Comment: 12 pages, 8 figure

    The information of high-dimensional time-bin encoded photons

    Get PDF
    We determine the shared information that can be extracted from time-bin entangled photons using frame encoding. We consider photons generated by a general down-conversion source and also model losses, dark counts and the effects of multiple photons within each frame. Furthermore, we describe a procedure for including other imperfections such as after-pulsing, detector dead-times and jitter. The results are illustrated by deriving analytic expressions for the maximum information that can be extracted from high-dimensional time-bin entangled photons generated by a spontaneous parametric down conversion. A key finding is that under realistic conditions and using standard SPAD detectors one can still choose frame size so as to extract over 10 bits per photon. These results are thus useful for experiments on high-dimensional quantum-key distribution system.Comment: 18 pages, 6 figure

    GHZ extraction yield for multipartite stabilizer states

    Get PDF
    Let Ψ>|\Psi> be an arbitrary stabilizer state distributed between three remote parties, such that each party holds several qubits. Let SS be a stabilizer group of Ψ>|\Psi>. We show that Ψ>|\Psi> can be converted by local unitaries into a collection of singlets, GHZ states, and local one-qubit states. The numbers of singlets and GHZs are determined by dimensions of certain subgroups of SS. For an arbitrary number of parties mm we find a formula for the maximal number of mm-partite GHZ states that can be extracted from Ψ>|\Psi> by local unitaries. A connection with earlier introduced measures of multipartite correlations is made. An example of an undecomposable four-party stabilizer state with more than one qubit per party is given. These results are derived from a general theoretical framework that allows one to study interconversion of multipartite stabilizer states by local Clifford group operators. As a simple application, we study three-party entanglement in two-dimensional lattice models that can be exactly solved by the stabilizer formalism.Comment: 12 pages, 1 figur

    Beyond heat baths II: Framework for generalized thermodynamic resource theories

    Get PDF
    Thermodynamics, which describes vast systems, has been reconciled with small scales, relevant to single-molecule experiments, in resource theories. Resource theories have been used to model exchanges of energy and information. Recently, particle exchanges were modeled; and an umbrella family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family's structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilard's engine and Landauer's Principle are generalized, as resourcefulness is shown to be convertible not only between information and gravitational energy, but also among diverse degrees of freedom. Extensive variables are associated with quantum operators that might fail to commute, introducing extra nonclassicality into thermodynamic resource theories. An early version of this paper partially motivated the later development of noncommutative thermalization. This generalization expands the theories' potential for modeling realistic systems with which small-scale statistical mechanics might be tested experimentally.Comment: Minor updates (contributions clarified, material restored from v1, references updated). 18 pages (including 2 figures) + appendice

    Thermodynamical Detection of Entanglement by Maxwell's Demons

    Full text link
    Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract more work out of a heat bath via entangled systems than via classically correlated ones. We also analyze the work balance of the process as a heat engine, in connection with the Second Law of thermodynamics.Comment: 5 pages, 4 figures. v3: a figure added, a few refs added, & typos correcte

    Entanglement and Symmetry: A Case Study in Superselection Rules, Reference Frames, and Beyond

    Get PDF
    This paper concentrates on a particular example of a constraint imposed by superselection rules (SSRs): that which applies when the parties (Alice and Bob) cannot distinguish among certain quantum objects they have. This arises naturally in the context of ensemble quantum information processing such as in liquid NMR. We discuss how a SSR for the symmetric group can be applied, and show how the extractable entanglement can be calculated analytically in certain cases, with a maximum bipartite entanglement in an ensemble of N Bell-state pairs scaling as log(N) as N goes to infinity . We discuss the apparent disparity with the asymptotic (N >> 1) recovery of unconstrained entanglement for other sorts of superselection rules, and show that the disparity disappears when the correct notion of applying the symmetric group SSR to multiple copies is used. Next we discuss reference frames in the context of this SSR, showing the relation to the work of von Korff and Kempe [Phys. Rev. Lett. 93, 260502 (2004)]. The action of a reference frame can be regarded as the analog of activation in mixed-state entanglement. We also discuss the analog of distillation: there exist states such that one copy can act as an imperfect reference frame for another copy. Finally we present an example of a stronger operational constraint, that operations must be non-collective as well as symmetric. Even under this stronger constraint we nevertheless show that Bell-nonlocality (and hence entanglement) can be demonstrated for an ensemble of N Bell-state pairs no matter how large N is. This last work is a generalization of that of Mermin [Phys. Rev. D 22, 356 (1980)].Comment: 16 pages, 6 figures. v2 updated version published in Phys Rev

    The Physics of Maxwell's demon and information

    Full text link
    Maxwell's demon was born in 1867 and still thrives in modern physics. He plays important roles in clarifying the connections between two theories: thermodynamics and information. Here, we present the history of the demon and a variety of interesting consequences of the second law of thermodynamics, mainly in quantum mechanics, but also in the theory of gravity. We also highlight some of the recent work that explores the role of information, illuminated by Maxwell's demon, in the arena of quantum information theory.Comment: 24 pages, 13 figures. v2: some refs added, figs improve
    corecore