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Abstract. High-dimensional entanglement is an important physical resource for quantum communication.
A basic issue for any communication scheme is how many shared bits two parties can extract subject to
experimental noise. We determine the shared information that can be extracted from time-bin entangled
photons using frame encoding. We consider photons generated by a general down-conversion source and also
model losses, dark counts and the effects of multiple photons within each frame. Furthermore, we describe
a procedure for including other imperfections such as after-pulsing, detector dead-times and jitter. The
results are illustrated by deriving analytic expressions for the maximum information that can be extracted
from high-dimensional time-bin entangled photons generated by down conversion. A key finding is that
under realistic conditions and using standard SPAD detectors one can still choose the frame size so as
to extract over 10 bits per photon. These results are thus useful for experiments on high-dimensional
quantum-key distribution systems, but are not limited to such systems. For example, the results are also
useful for determining the limits of fibre arrays or within time-multiplexing schemes.

1 Introduction

It is well-know that entangled photons can be used to ex-
tract shared random bits. The number of extractable bits
per photon pair depends on the dimensions of the entan-
gled degree of freedom. For example, polarization entan-
glement allows at most one shared bit per photon pair. An
alternative is to use the arrival time of a photon. Encod-
ing within the arrival time of a pair of photons offers an
experimentally viable way of generating high-dimensional
entangled states [1–4]. High-dimensional entangled states
have many interesting properties [5–7] and can allow for
multiple shared bits extracted from each photon pair. This
can be beneficial for quantum key distribution (QKD),
where each detected photon pair could encode over 10 bits
of information [8].

There are several benefits to encoding within the time
of arrival as opposed to other degrees of freedom, such as
the spatial modes. One key advantage is to minimize the
effects of detector dead-time, which not only limits the
rate at which information can be communicated, but also
impacts on security within QKD [9,10]. Another benefit
is that temporal modes can be easily coupled into fibres,
which is not the case for beams with non-zero orbital an-
gular momentum [11–13].
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It is clear that imperfections such as loss have a strong
effect on how much information we can extract from high-
dimensional entangled photons. It is thus vital to model
the effects of realistic experimental errors. Any model
must take account of the photons source, channel losses
and imperfect detectors. Nevertheless, it has been shown
that it may still be possible to extract over 10 bits per pho-
ton pair under reasonable experimental conditions [14].

In practice, the amount of extractable information de-
pends on the error correcting scheme. In turn, this can de-
pend on the physical implementation. The case of time-bin
encoding raises specific problems. For example, in stan-
dard polarization based QKD schemes, one uses the timing
information to help correct losses. It is thus possible to re-
move all the cases where Alice and Bob do not share coin-
cident photons. This approach is clearly not suitable when
information is encoded in the arrival time. Instead, we re-
quire a method for correcting errors that does not reveal
the timing information. A common way of circumventing
this is to split the arrival time into time-bins, which are
then grouped together to form a frame [15]. Alice and Bob
then publicly announce the number of photons detected
in each frame. The use of frame encoding, while greatly
facilitating error correction, does add an additional con-
straint to the extractable information. A realistic model
must take this into account.

The aim of this work is to determine the extractable
information from high-dimensional, temporal-entangled
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photons. In particular, we determine the maximum num-
ber of shared bits that, on average, one obtains using frame
encoding schemes. It is important to stress that while the
main motivation for this work comes from QKD, we are
not proposing a new QKD protocol. As such we do not
concern ourselves with the task of securing the bits. In-
stead, we establish the maximum shared information that
can be obtained via reconciliation. The task of securing
the bits will generally depend on the exact nature of the
setup.

The results we present are not only useful for QKD.
For instance, it is has been argued that the mutual infor-
mation can be used to quantify the entanglement within
an SPDC source [16]. Furthermore, the results can also
be used to quantify the capacity of fibre array [14],
which can be used, for instance, in time-multiplexing of
detectors [17–19].

The general formalism we present can model exper-
iments such as illuminating a nonlinear crystal with a
mode-locked laser (see Fig. 1 and the description in the
next section). The approach is, however, not tied to this
setup and applies to general sources of entangled pho-
tons. For instance, the formalism can be applied to cases
where the Poissonian approximation is not appropriate.
One could thus use our approach to model many differ-
ent time-bin based experiments. In addition, the formal-
ism also takes account of asymmetric channel losses, dark
counts, jitter and other such effects. The breadth and gen-
erality of the considered errors is beyond that which is
considered in previous works [15,20].

To understand how these results can be useful, con-
sider a QKD experiment with detector jitter. A common
approach to reducing jitter is to increase the width of the
time-bins. This is, however, not always possible or practi-
cal. Furthermore, even when we can increase the time-bin
width, this affects the amount of information one can ex-
tract. In this context, an important question is whether
it is better to increase the width of the time-bins or to
correct the jitter errors using a reconciliation protocol. To
answer this question one must calculate the mutual infor-
mation in the presence of jitter. The can be achieved using
the results of this paper.

Another way in which our approach goes beyond ex-
isting results, such as [15,20], is to calculate explicitly the
effect of frames that contain two or more photon pairs.
Our findings are thus complementary to those of refer-
ence [21], which presents a layered protocol for extract-
ing information from general multi-array frames. The aim
of the current work is to find the maximum possible ex-
tractable information using any frame-encoding protocol.
This should prove important for optimization and design
of new error-correction codes for high-dimensional QKD.

2 Frame encoding

Pairs of photons have been prepared experimentally where
their arrival time is entangled [1]. A common way of
generating such photons pairs is to use spontaneous para-
metric down-conversion (SPDC) [8,22,23]. Figure 1 shows
a typical setup, where a nonlinear crystal is pumped by

Fig. 1. A schematic for a experimental setup that gener-
ates and distributes high-dimensional, time-of-arrival entan-
gled photons. A mode-locked laser generates a coherent train
of pulses. The pulses pumps a nonlinear crystal that produces
entangled photon pairs in some of the time-slots; many of the
slots contain no photons.

a mode-locked laser [24,25]. The incoming pulses are clas-
sically coherent. As down-conversion is a unitary process,
the coherence between the pulses is transferred to a co-
herence between the amplitudes to generate photon pairs
in each time-bin. In the ideal case, two parties, called
Alice and Bob, use this setup to generate a random se-
quence photon pairs that are perfectly correlated in time.
Alice and Bob then use single-photon counter modules
and synchronized time-tagging devices to obtain the tim-
ing information. Setups such as this have been realized
experimentally [24–26].

To make use of such time-entangled states, the arrival
time is divided into a discrete set of time-bins. For the
case of a mode-locked train of pulses, the time-bin width
is set by the pulse spacing. In alternate setups where pho-
tons are generated by a single pulse or a continuous-wave
laser, the time is discretized by dividing the time into dis-
crete time-bins. If the widths of these time-bins are cho-
sen appropriately, then Alice and Bob should detect their
photons within the same time-bin. The uncertainty in the
arrival time can then be used to extract shared random
bits. An eavesdropper could then be detected by measur-
ing within another basis [27–34].

In real experiments, there will always be errors. Alice
and Bob will thus carry out error-correction to obtain a
shared random string. A simple approach is to group to-
gether several contiguous time-bins to form a frame [15].
For each frame, Alice and Bob announce the number of
time-bins in which they detect photons. Let KA and KB

denote the number of time-bins in which photons were de-
tected by Alice and Bob respectively1. One can use KA

and KB to classify the frames; we thus write (KA, KB)-
frames, to denote the class of frames where Alice see KA

clicks while Bob sees KB. Error-correcting codes can then
be developed to deal with each class of frame. In many
setups, the chance that Alice and Bob will detect mul-
tiple photons within a frame is low. In such situations,

1 Note that KA and KB do not correspond to the number of
photons in Alice and Bob’s frames. For example, KA = 1 means
that Alice detected a click within one time-bin. In principle, it
is possible that this click corresponded to multiple photons or
even a dark count.
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it is sufficient to consider only cases such as (1, 1)
and (2, 2)-frames.

We envisage more complicated frame-encoding
schemes, where Alice and Bob don’t publicly an-
nounce KA and KB. In all that follows, we consider only
simple schemes where KA and KB are announced. The
reason is that an understanding of this situation is vital
also for the more complicated protocols. In particular,
we will show that the shared information for the case
where KA and KB are announced differ from the more
complicated protocols by a single term. Thus, the results
we present can also be used to calculate the shared
information for more advanced protocols.

Let N represent the number of time-bins that comprise
each frame. If Alice observes clicks in KA time-bins, then
the number of possible distinct measurement records she
could have is given by the Binomial coefficient

(
N
KA

)
=

N !
KA!(N − KA)!

. (1)

A particular record of measurement results, or measure-
ment patterns, can be denoted by an N -bit binary string
that indicate the location of the time-bins where photons
are detected. For example, if N = 4, KA = 2, and Alice
sees clicks in the first and third time-bins, then the cor-
responding binary string is 1010. It will prove useful to
introduce a further piece of notation. We denote Alice’s
measurement patterns symbolically as AKA

r , where r is
the binary string that uniquely describes the pattern. We
describe Bob’s measurement pattern using the same no-
tation, where each A is changed to B.

If there are no errors, then Alice and Bob each see
the same measurement pattern. When losses are present,
then Alice and Bob’s measurement patterns can be dif-
ferent. Nevertheless, there will still be some correlation in
their results. We expect that it should still be common to
observe clicks within the same time-bins. For a particular
frame, let L be the number time-bins in which they both
share clicks. For example, if Alice has the pattern 0101,
while Bob sees the pattern 1100, then L = 1. Clearly,
Min{KA, KB} ≥ L. Furthermore, the allowed values for
L satisfy the inequality N ≥ KA + KB −L. For fixed val-
ues of KA, KB and L, the total number of different joint
patterns for Alice and Bob is

ΩL(KA, KB) =
N !

L!(KA−L)!(KB−L)!(N−KA−KB+L)!

which is a multinomial coefficient. These observations will
prove useful later on.

We want to determine the information contained
within an average frame. The mutual information per
frame is denoted as Hframe (A:B). To find the number
of shared bits per photon, we divide Hframe (A:B) by the
average number of photon pairs found within a frame. We
then calculate Hframe (A:B) using the method outlined in
reference [14]. For a frame encoding scheme, we will not
reach the bits per photon limit set by Hframe (A:B). The
reason for this is that, in a frame encoding scheme, Alice

and Bob publicly announce the number of clicks they see
in each frame. They then apply error correction codes in-
dividually to each class of frame. This necessarily results
in a loss of randomness, and hence, of random bits.

The shared information that we can extract is re-
lated to the mutual information. However, it is not
Hframe (A:B), but instead the mutual information post-
selected on when KA and KB have specific values. This
implies that we must use conditional probabilities in place
of the standard probabilities to determine the conditional
mutual information [35].

Suppose Alice observes x clicks while Bob sees y, the
maximum shared information per frame is given by the
conditional mutual information

H(A:B|KA = x, KB = y)

= −
∑
r,s

P (Ax
r , By

s |KA = x, KB = y)

× log2

[
P (Ax

r , By
s |KA = x, KB = y)

P (Ax
r |KA = x)P (By

s |KB = y)

]
, (2)

where P (Ax
r , By

s |KA = x, KB = y) is the joint condi-
tional probability for Alice and Bob to obtain the patterns
Ax

r and By
s , while P (Ax

r |KA = x) and P (By
s |KB = y)

are the marginal conditional probabilities for Alice and
Bob, respectively. The conditional mutual information
H(A:B|KA = x, KB = y) gives the maximum number of
bits per frame that can be extracted from (x, y)-frames.

One average, Alice and Bob can extract

H(A:B|KA, KB) =
∑
x,y

P (KA = x, KB = y)

× H(A:B|KA = x, KB = y)

bits per frame, where P (KA = x, KB = y) is the prob-
ability for Alice and Bob to observe x and y clicks, re-
spectively. Notice that H(A:B|KA, KB) �= Hframe(A:B),
hence we have lost some information. We find that

Hframe (A:B) = H(A:B|KA, KB) + H(KA, KB),

where

H (KA, KB) = −
∑
x,y

P (KA = x, KB = y)

× log2 P (KA = x, KB = y),

i.e., it is the entropy in the uncertainty in the number
of clicks per frame. The loss of information thus follows
simply from the fact that Alice and Bob announce the
values of KA and KB.

In a practical application, one may not be able
to develop effective error correcting codes for all of
the classes of frame. In this instance, H(A:B|KA, KB)
will over-estimate the extractable information. The ac-
tual extractable information can be found by averaging
H(A:B|KA = x, KB = y) over the frames for which we do
have error correcting codes. For example, if we only have
codes for (1,1)-frames, then the extractable information is
P (KA = 1, KB = 1)H(A:B|KA = 1, KB = 1).
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3 Calculating the conditional probabilities
and conditional mutual information

In this section, we present a general procedure for calcu-
lating the conditional probabilities and hence the condi-
tional mutual information. The approach allows us to cal-
culate the probabilities for a general source and includes
the effects of errors such as channel losses and detector
imperfections. The first step is to work out the detection
probabilities for a single time-bin. We then use these to
construct the probabilities to observe specific measure-
ment patterns, from which the conditional probabilities
are calculated.

One thing to notice is that the coherence between the
time-bins does not appear in our calculations. The reason
for this is that our present results are for the case when we
measure within the time-of-arrival basis. Such measure-
ments cannot detect coherence between time-bins. Fur-
thermore, they will actually destroy any coherence. The
situation we thus consider is one where a measurement
has been made of the photons time-of-arrival, which in-
evitably disturbs the temporal coherence. The temporal
coherence would, however, be revealed if one measured in
a basis that was a superposition of time-bins. For instance,
consider a mode-locked laser generating a train of coher-
ence pulses acting as a pump for a non-linear crystal. The
coherence between the time-bins of the down-converted
photons is not evident if we measure the time-of-arrival.
However, it has been demonstrated experimentally using
a Franson interferometer [36].

3.1 Single time-bin probabilities

To calculate the single time-bin detection probabilities,
we must first model the source, channel and detectors.
The approach we use is based on that presented in refer-
ence [14]. We thus only give a brief recap of the important
points. First, we assume that the source produces pairs
of entangled photons, where the probability to produce
m pairs within any given time-bin is Ps(m). For simplic-
ity, we initially assume that Ps(m) is the same for each
time-bin. Let λ be the average number of photon pairs
produced per time-bin, hence λ =

∑
m mPs(m).

The information is encoded in the temporal location
of the photon pairs, not their number. For this reason,
we assume that the detectors do not resolve photon num-
ber. For ideal detectors, with no losses, the probability
to observe a click in a time-bin is

∑∞
m=1 Ps(m). All real

detectors, however, suffer losses. Let Alice and Bob’s de-
tectors loss be ξA and ξB respectively. The probability to
detect a single photon that is incident on Alice’s detector,
is thus ξA. In addition to the losses due to inefficiencies
in the detector, there are also losses from transmission of
the photons from the source to the detectors. Let ηa and
ηb be the losses in Alice and Bob’s channels, respectively.
Combining the two sources of loss into a single total ef-
ficiency, Alice’s total efficiency is ηA = ξAηa, and Bob’s
total efficiency is ηB = ξAηb.

We are now in a position to calculate the probabil-
ity for Alice and Bob to observe photons within a single

time-bin. The key mathematical method is to use moment
generating function to include the effects of loss. See refer-
ence [37] for a full discussion on moment generating func-
tions and their properties.

For a source described by the probability distribution
Ps(m) and total losses for Alice and Bob of ηA and ηB,
respectively, we define the moment generating function

M(ν, ξ) =
∞∑

m=0

Ps(m)(1 − ηAν)m(1 − ηBξ)m, (3)

where we have neglected dark counts for now. Consider
a single time-bin. The probability for Alice and Bob to
observe a click within a given time-bin is denoted by πAB

i,j ,
where i, j ∈ {0, c} and c represents a click while 0 signifies
no click. It can be shown that the probabilities are [14]:

πAB
00 = M(1, 1),

πAB
c0 =

∞∑
l=1

1
l!

(
− d

dξ

)l

M(1, ξ)

∣∣∣∣∣
ξ=1

,

πAB
0c =

∞∑
l=1

1
l!

(
− d

dν

)l

M(ν, 1)

∣∣∣∣∣
ν=1

,

πAB
cc =

∞∑
n=1

Ps(n) [1 − (1 − ηA)n] [1 − (1 − ηB)n] . (4)

The effect of dark counts is taken account of using the fol-
lowing procedure. Let Pij represent Alice and Bob’s prob-
ability to detect photons within a single time-bin when
dark counts are present. We find that

P00 = (1 − q)2πAB
00 ,

P0c = (1 − q)πAB
0c + (1 − q)qπAB

00 ,

Pc0 = (1 − q)πAB
c0 + (1 − q)qπAB

00 ,

Pcc = πAB
cc + qπAB

0c + qπAB
c0 + q2πAB

00 , (5)

where q is the probability to observe a dark count in a
single time-bin. We see that the above probabilities sum
to one. The marginal probabilities PA

i and PB
j are found

from the joint probability Pij . A key feature of these gen-
eral expression for Pij is that they are valid for any choice
for the source probability Ps(m). Thus, our results are not
be limited to any particular physical implementation.

3.2 Probabilities for each frame

The probability for Alice (or Bob) to observe a particu-
lar measurement pattern is calculated using the relevant
single time-bin probabilities PA

i or PB
j . The proba-

bility for Alice to see a pattern AKA
r is P (AKA

r ) =
[PA

c ]KA [PA
0 ]N−KA . The total probability for Alice to ob-

serve a measurement pattern with photons detected in x
time-bins is:

P (KA = x) =
(

N
x

)
[P A

c ]x[PA
0 ]N−x. (6)

The probabilities for Bob have the same form, but instead
use the probabilities PB

j .
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The joint detection probabilities P (AKA
r , BKB

s ) is cal-
culated using the single time-bin joint detection probabil-
ities. We find that

P (AKA
r , BKB

s ) = [Pcc]L[Pc0]KA−L

× [P0c]KB−L[P00]N−KA−KB+L. (7)

The total probability for Alice and Bob to detect photons
within x and y time-bins, respectively, is thus

P (KA = x, KB = y) =
∑
L

ΩL(KA, KB)

× [Pcc]L[Pc0]x−L[P0c]y−L[P00]N−x−y+L, (8)

where ΩL(KA, KB) denotes the multinomial coefficient
N !/[L!(KA − L)!(KB − L)!(N − KA − KB + L)!]. Equa-
tion (8) leads to the same marginal probabilities as in
equation (6).

The conditional probabilities are calculated from equa-
tions (6), (7) and (8), by recalling the definition of a con-
ditional probability: P (X |Y ) = P (X, Y )/P (Y ). We find
that

P (Ax
r |KA = x) =

(
N
x

)−1

,

P (By
s |KB = y) =

(
N
y

)−1

,

P (Ax
r , By

s |KA =x, KB =y) =
PL

ccP
x−L
c0 P y−L

0c PN−x−y+L
00

P (KA = x, KB = y)
,

(9)

where P (KA = x, KB = y) is given in equation (8). The
expressions for P (Ax

r |KA = x) and P (By
s |KB = y) are not

true when ηA = ηB = 1. The reason for this is that, in this
limit, Alice and Bob must observe the same patterns and
KA = KB. This implies that P (KA = x) and P (KB = y)
will be zero if x �= y. In the case of ηA = ηB = 1, then
KA = KB = K and the conditional mutual information
has the simple form

H(A:B|K = x) = log2

(
N
x

)
. (10)

In the remainder of this section, we focus on the case where
both ηA and ηB �= 1.

3.3 Information per photon pair

We calculate the various entropic quantities, by using
equations (6) through to (9). For instance, we find that
Hframe(A:B) = NH(A:B), where H(A:B) is the mu-
tual information per time-bin. Suppose we only have er-
ror correcting codes for (1,1)-frames, i.e., frames where
Alice and Bob both announce that they each observe
a single click. The maximum extractable information is
H1,1(A:B) = P (KA, KB)H(A:B|KA = 1, KB = 1).

A typical application of this theory is in high-
dimensional QKD, which aims to encode multiple bits on

each photon pair. It is thus worth considering the bits per
photon pair. The average number of photon pairs gener-
ated within each frame is Nλ. Due to losses, the aver-
age number of photon pairs that one detects per frame is
N(ηAηBλ+q2). The average number of bits per generated
photon pair is H1,1(A:B)/(Nλ), while the average number
of bits per detected photon pair is H1,1(A:B)/(N [ηAηBλ+
q2]). These quantities can be calculated using the con-
ditional probabilities given in equation (9), within equa-
tion (2). We find that, by using only (1, 1)-frames, the
average number of shared bits per detected photon is

Hd(A:B|KA = 1, KB = 1) =
PN−2

00

ηAηBλ + q2

×
(

Γ log
N

Γ
+ PccP00 log(PccP00)

+ (N − 1)Pc0P0c log(Pc0P0c)
)

, (11)

where Γ = (N − 1)Pc0P0c + PccP00 and Pij are given
in equation (5). The expression for the average number
of bits per generated photon has the same form as (11),
but with ηAηBλ + q2 replaced in the denominator by λ.
We stress that equation (11) includes the effects of losses,
dark counts and a general source. Furthermore, it can also
be applied to situations where the dark count rates are
different on each side. This is accomplished by modifying
only the probabilities Pij , not the form of equation (11).

Suppose we have error-correcting codes that work for
(2,2)-frames. The extractable information when using only
these frames is found using equations (9) together with
equations (2) and (8), giving the maximum number of
bits per detected photon pair as:

Hd(A:B|KA = 2, KB = 2) =
(N − 1)PN−2

00

ηAηBλ + q2

×
{

Ω log
[
N(N − 1)

4Ω

]
+ (PccP00)2 log[PccP00]

+ 2(Pc0P0c)2 log[Pc0P0c]

+ (N − 2)PccPc0P0cP00 log[PccPc0P0cP00]
}

, (12)

where

Ω =
1
2
(P00Pcc)2 + (N − 2)PccPc0P0cP00

+
1
4
(N − 2)(N − 3)(Pc0P0c)2.

As with equation (11), we obtain the information per gen-
erated photon pair by replacing ηAηBλ+q2 in the denom-
inator with λ.

If we have error correcting codes for both (1,1) and
(2,2)-frames, then the total amount of extractable infor-
mation is the sum of the information for the two cases, i.e.,
Hd(A:B|KA = 1, KB = 1)+Hd(A:B|KA = 2, KB = 2). In
general, the information we can extract using only (x, y)-
frames is calculated using the conditional probabilities (8)
and (9). As x and y become large, the resulting expressions
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become more complex. Nevertheless, we can still obtain
analytic expressions by following the same straightforward
procedure.

As Alice and Bob publicly announce KA and KB, they
are losing all the information contained within the cor-
relation of these quantities. It is possible to develop ap-
proaches that retain some of this information. As showed
in Section 2, the correlations in KA and KB give a to-
tal contribution of H(KA, KB) bits per frame to the
total shared information per frame. In terms of bits
per detected photon pair, we can gain an additional
H(KA, KB)/(ηAηBλ + q2) bits per photon. In practice,
protocols generally will access a certain fraction f of these
bits, where 0 ≤ f ≤ 1.

4 Additional errors: after-pulsing and detector
dead-time

Losses and dark counts are not the only errors that affect
the extractable information. There are also effects such as
detector jitter, after-pulsing and detector dead-times. The
discussion of jitter is postponed until the next section. In
this section, we explain how the formalism is modified to
describe after-pulsing and dead-time.

After-pulsing occurs when the detection of a photon
sets up a feedback process that can lead to the detec-
tor registering a click at a later time [38]. After-pulsing
will thus temporarily increases our chance to see a dark
count after we register a click. One approximate model
of after-pulsing is to increase the dark count probability
q for some fixed number of time-bins β after a detection.
One important feature of after-pulsing is that it occurs re-
gardless of what triggered the detector. This means that
after-pulsing occurs also for dark counts. The single time-
bin detection probabilities (Eq. (5)), include contributions
from dark counts. This means that our approach will take
account of after-pulsing that is generated both by photons
and from dark counts.

The value for β can be large [38]. This means that a
click near the beginning of a frame can result from after-
pulsing from the previous frame. Similarly, the average
position of detected photons is random, which means the
location of the β time-bins will also be random. Recall,
however, that we are calculating the shared information
for an average frame. To take account of these difficulties,
the fairest approach is to modify q for all time-slots. In
this case, the information per photon will retain the form
given in equations (11) and (12), but where the value of q
has been suitably increased.

After a photon is detected, it is common for a detec-
tor to loose sensitivity to subsequent photons for a period
of time. This interval of time is know as the detector’s
dead-time [39]. If the duration of the dead-time is equal
to the width of Md time-bins, then we will not observe
photons for at least the next Md time-slots after a detec-
tion. Dead-time is not a serious problem for (1,1)-frames,
provided that the frame is longer than the period of dead-
time. In this limit, equation (11) is still valid. However, the
effects of detector dead-time will be important for classes

of frames such as (2,2)-frames. For these cases, we must
adopt the following modified procedure.

First, we calculate the moment generating function
and the single time-bin probabilities. We then calculate
the probabilities to observe each pattern, however, now
we must set P (AKA

r ), P (BKB
s ) and P (AKA

r , BKB
s ) equal

to zero if r or s contain 1’s in time-slots that are closer to-
gether than Md. We then calculate the new probabilities
P̃ (KA, KB), P̃ (KA) and P̃ (KB), together with the new
conditional probabilities. Finally, the conditional proba-
bilities are used in equation (2) to calculate the conditional
mutual information. The approach is best illustrated by
an example.

Suppose we have a detector with dead-time of the order
of one time-bin width, i.e., Md = 1. This means that it is
impossible for Alice to observe two photon measurement
patterns such as 1100 or 0110. The probability to observe
such patterns must be set to zero, hence P (A2

1100) = 0.
This reduces the number of two photon patterns that Alice
can observe from N(N − 1)/2 to (N − 1)(N − 2)/2. In
general, dead-time reduces the total number of allowed
two-photon patterns to (N − Md)(N − Md − 1)/2.

It is convenient to introduce a function ΔMd
(XK

r ) that
is 0 if the pattern XK

r contains 1’s that are closer together
than Md. Otherwise, the function returns the value of 1.
For example Δ1(1010) = 1, while Δ1(1100) = 0. The new
probabilities to observe measurement patterns can be ex-
pressed in terms of P (AKA

r , BKB
s ), P (AKA

r ) and P (BKB
s ),

the probabilities for the case when there is no dead-time
effect. As an example, consider the new probabilities, de-
noted by a tilde, for the case when Md = 1. We find that

P̃ (AKA
r , BKB

s ) =
P (AKA

r , BKB
s )Δ1(AKA

r )Δ1(BKB
s )

P 2
00

,

P̃ (AKA
r ) =

P (AKA
r )Δ1(AKA

r )
(PA

0 )2
,

P̃ (BKB
s ) =

P (BKB
s )Δ1(BKB

s )
(PB

0 )2
. (13)

The reason for dividing by either (P00)2 or [PA(B)
0 ]2 is to

take into account the fact that, after our two clicks, we
cannot detect anything. This is distinct from not observ-
ing a click, which happens with joint probability P00 and
marginal probabilities PA

0 and PB
0 . We note that equa-

tion (13) neglects the effect of obtaining a click within the
last time-bin, e.g., observing a pattern such as 01001. In
cases like this, we should only divide P (AKA

r ) by P
A(B)
0 .

This is because we don’t see the dead-time for the last
detection. When the frame size is large, the relative prob-
ability to observe a click within the last time-bin becomes
small. In this regime, our approximation is very good.

The modification of the above results to the case where
Md > 1 is straightforward. If we neglect the effects of the
frame edge, then

P̃ (AKA
r , BKB

s ) = P (AKA
r , BKB

s )ΔMd
(AKA

r )

× ΔMd
(BKB

s )/[P00]2Md .
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The marginal probabilities are P̃ (XK
r ) = P (XK

r )Δ(XK
r )/

[P X
0 ]2Md , where X is either A or B. When Md becomes

larger, relative to the frame size, the approximation may
seem dubious. One can explicitly take account of the edges
by changing the probabilities such as P̃ (A2

1001). However,
as Md becomes large, this also increases the probability
that a detector cannot register photons in the beginning
of a frame due to dead-time from a click in the previ-
ous frame. The effect of these two edge effects is to act
in opposite ways. One increases the pattern probabilities,
while the other acts to decrease them. The net effect is
that, to some extent, both effects compensate for each
other. It is thus still a good approximation to neglect both
edges.

5 Detector jitter

One thing we have omitted so far is the temporal response
of the detectors. In any real detector, there can be a ran-
domly fluctuating delay between a photon being incident
on the detector and it firing. This is very important in
time-binned experiments, as it can cause a photon to be
registered in the wrong time-bin. This effect is known as
detector jitter [40]. In this section we show how jitter can
be included within our model. For the sake of clarity, we
illustrate the approach only for (1, 1)-frames. The gen-
eral method, however, can also be applied to other frame
classes.

A simple way of modeling jitter is to calculate a
discrete set of “jump” probabilities from the temporal
response. Mathematically, the temporal response is the
probability distribution to register a photon at a time t
after it was incident on the detector2. By integrating over
the width of each time-bin, we convert the continuous
probability distribution into a discrete set of detection
probabilities. Suppose a photon is generated within the
rth time-bin. Let Jn be the probability that we observe
a click within the (r + n)th time slot. The probability to
observe the photon within the correct time-bin is thus J0.
Clearly,

∑
n Jn = 1. Often, Jn is non-zero only for n = 1

or 2.
One difficulty in modeling jitter is the presence of dark

counts. The single time-bin detection probabilities include
dark counts, which are not subject to jitter. However, the
probability q is the same for each time-bin3. The dark
count probability is thus invariant to shifts in time. This
suggests that contribution from dark counts within Pij

should also be approximately invariant to temporal shifts.
Hence, to an excellent approximation, it is not effected

2 Often the detector’s response is well described by a
Gaussian. The approach we will outline, however, makes no
assumption about the form of the continuous probability
distribution.

3 This will not be true in the presence of after-pulsing. Never-
theless, this does not affect our results as we adopted an overly
cautions approach where after-pulsing is modeled by increasing
q for every time-bin. This means that q is the same for every
time-bin in our mathematical formalism.

by jitter4. This observation means we can use the jump
probabilities directly with the probabilities Pij , without
having to separate out the contribution from dark counts.

We begin by looking at the marginal probability for
Alice to observe a particular measurement pattern. It is
convenient to modify our notation. As we are interested
in the case where KA = KB = 1, we represent Alice’s pat-
tern as Ai, where i is the location of the time-bin where
the photons are detected. For example, A1 represents
the pattern where Alice observes a click within the first
time-bin.

As a further simplification, we limit our analysis to the
case when the detector’s response is short enough so that
only J0 and J1 are greater than zero and J0 + J1 = 1
while J2 = 0. Appendix A explains how to generalize the
results to the case when J2 �= 0. Consider two time bins
that are away from the edges of the frame. In these time-
bins we observe a single click in the second of them, i.e.,
our measurement pattern is 01. If there were no jitter,
then this pattern occurs with probability PA

0 PA
c . When

the detector jitter is not negligible, then the pattern could
have arisen from two possible situations. First, there was
no delay and we observe the photons in the correct time-
slot, which occurs with probability J0. Alternatively, jitter
could have caused a photon that was in the first time-bin
to be registered within the second. We find that the total
probability to observe the pattern 01 is

P1 = J0P
A
c PA

0 + J1P
A
c . (14)

If a photon is incident on the last time-bin within a frame,
then jitter can cause it to be lost to the frame. Similarly,
a click within the first time-slot of each frame could have
come from the previous frame. Let Pe be the probability
to not see a click within the last time-bin of a frame. We
find that

Pe = PA
0 + J1P

A
c . (15)

We thus see that the probabilities for Alice to observe a
given pattern is

P (A1) = P1Pe(PA
0 )N−2,

P (Ai) = P1Pe(PA
0 )N−3,

P (AN ) = P1(PA
0 )N−2, (16)

where 1 < i < N . The results for Bob will have the same
form, but with each A changed to a B.

The joint probabilities, P (Ai, Bj), are more involved.
To simplify our exposition, we assume symmetric channel
losses, i.e., ηA = ηB . The case where ηA �= ηB is described
in Appendix B. Each pattern can be broken up into a small
set of events, from which each pattern can be constructed.
For example, one event is described by the probability for
both Alice and Bob to observe clicks within the same time-
bin. The probabilities of these events can be expressed

4 This approximation is very good for q small. To be more
quantitative, if the temporal width of each time-bin is 1 ns,
then the approximation is excellent provided the dark count
rate is less than about 108 counts per second.
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in terms of J0, J1 and the single time-bin probabilities Pij .
The probabilities P (Ai, Bj) are expressed in terms of the
event probabilities.

Let P11 be the probability for Alice and Bob to both
observe clicks within the same time-bin. The fact that the
detectors suffer from jitter means that we must consider
two time-bins to calculate P11. It is found that

P11 = J2
0P00Pcc + 2J0J1(P0c)2 + J2

1Pcc, (17)

where we use the fact that PAB
c0 = PAB

0c when ηA = ηB.
The probability that both Alice and Bob do not see a click
in the last time-bin of their frame is

Pe
00 = P00 + J2

1Pcc + 2J1P0c, (18)

where we have again use the fact that PAB
0c = PAB

c0 .
It is possible that Alice and Bob can see clicks in

adjacent time-bins. For example, Alice’s detector could
fire within the nth time-bin, while Bob’s fires within the
(n+1)th. Let P1∗ be the probability for Alice’s detector to
fire in a time-bin directly before Bob’s. Similarly, let P∗1
be the probability for Bob to observe a detection in the
nth time-bin while Alice sees one in the (n + 1)th time-
slot. To calculate P∗1 and P1∗, we need to consider three
time-bins. We find that

P∗1 = P1∗ = J2
0P00(Pc0)2 + J2

1PcP0Pc0

+ J0J1P0

[
P00Pcc + (P0c)2

]
, (19)

where P0 = PA
0 = PB

0 and Pc = PA
c = PB

c . The final
situation that we consider is when Alice and Bob obtain
clicks in different time-bins, which are not adjacent. The
fact that J2 = 0 implies that we can be certain that any
photons detected by Alice and Bob were not from the
same photon pair. Let P10 be the probability for Alice to
observe a click in a time bin when Bob does not see a
click in the same or adjacent time bins. Similarly, P01 is
the probability for Bob to observe a click while Alice does
not see one in nearby time slots. We find that

P10 = P01 = J0P00Pc0 + J1Pc0P0

+ J0J1P00Pcc + J2
1Pc0Pc. (20)

These event probabilities can be used to construct
P (Ai, Bj).

One complication with calculating P (Ai, Bj) is that
we must careful of detection events near the edges of the
frame. For instance, the probability P (A1, B1) is different
from P (A3, B3). This difference is due to the fact that
a detection in the first time-bin could have come from
the previous frame. When the size of the frame becomes
large, the relative effects of the edges becomes small. One
could thus neglect the effects of the edges5. In this case,

5 We are not neglecting all of the effects of the edges. We still
including the probability that one could loss a photon from the
edges of a frame.

the probability for Alice and Bob to observe particular
measurement patterns is given by:

P (Ai, Bi) = P11Pe
00

[
PAB

00

]N−3
,

P (Ai, Bi+1) = P (Ai+1, Bi) = P10Pe
00

[
PAB

00

]N−4
,

P (Ai, Bj) = [P1∗]2Pe
00

[
PAB

00

]N−5
, |i − j| > 1. (21)

In Appendix C, we give the full form of P (Ai, Bj), where
edge effects are not neglected. Using the probabilities (21),
we find that

P (KA = 1, KB = 1) = Pe
00(P

AB
00 )N−5

×
[
NP11(PAB

00 )2 + 2(N − 1)P10P
AB
00

+ (N − 1)(N − 2)P2
1∗

]
. (22)

The post-selected information per detected photon pair is
thus

Hd(A:B|KA = 1, KB = 1) =
1

N(η2λ + q2)

×
[
P (KA = 1, KB = 1)

× {2 log2 N − log2 P (KA = 1, KB = 1)}
+ NP (Ai, Bi) log2 P (Ai, Bi)

+ 2(N − 1)P (Ai, Bi+1) log2 P (Ai, Bi+1)

+ (N − 1)(N − 2)P (Ai, Bj) log2 P (Ai, Bj)
]
. (23)

The assumption that we neglect edge effects means that
equations (21), (22) and (23) are all valid only for N ≥ 6.
In Appendix C, we compare the approximate results given
above with the more complicated exact results. It is shown
that even for N = 8, the difference between the ex-
act and approximate expressions can be very small (less
than 0.1%). Thus we can safely use the approximate ex-
pression given in equation (23).

6 Results for a mode-locked laser pumping
a SPDC source

The previous results will now be illustrated by looking at a
specific experimental setup. The situation we consider is a
mode-locked laser that produces a train of coherent pulses
that pump a nonlinear crystal. The pulses are generated
such that each pulse is coherent to one another [24–26].
We fix the parameters of the crystal and laser such that
we observe SPDC that produces a pair of photons that
are correlated in time. The down-converted photon pair is
split with one half kept by Alice, while the other is sent to
Bob. The experimental configuration is shown in Figure 1.

The spacing of the pulses define natural time-bins for
Alice and Bob. Alice and Bob thus choose the widths of
their time-bins so that they contain a single pulse. To a
good approximation, the probability that Alice and Bob
observe m photon pairs in each time-bin is given by a
Poissonian distribution

Ps(m) = e−λ λm

m!
, (24)
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where λ is the average number of photon pairs generated
in each time-bin. For this source, the moment generating
function, defined in equation (3), is just

M(ν, ξ) = exp
λ

−ηAν − ηBξ + ηAηBνξ
.

Using this within equations (4) and (5) yields joint detec-
tion probabilities for each time-bin

P00 = (1 − q)2e(−λ[ηA+ηB−ηAηB ]),

P0c = (1 − q)e−ληA − (1 − q)2e−λ[ηA+ηB−ηAηB ],

Pc0 = (1 − q)e−ληB − (1 − q)2e−λ[ηA+ηB−ηAηB ],

Pcc = 1 − (1 − q)
[
e−ληA + e−ληB

]
+ (1 − q)2e−λ[ηA+ηB−ηAηB ]. (25)

The marginal probabilities for Alice (Bob) are P
A(B)
0 =

(1 − q)e−ληA(B) and P
A(B)
c = 1 − P

A(B)
0 .

Suppose that the main sources of errors are losses
and dark counts. One can use equation (25) directly
within (11) to determine how many shared bits per de-
tected photon we can extract using only (1, 1)-frames. The
extra information contained in (2, 2)-frames can be calcu-
lated using equation (12). These results can be used to op-
timize the frame size N . Furthermore, one can also inves-
tigate how the experimental parameters affect the number
of bits per photon. This could be important, for instance,
in evaluating the advantages of improving the detector’s
efficiency.

To illustrate our results we look at typical parame-
ters for two detectors: a single-photon avalanche detec-
tor (SPAD) and a superconducting nanonwire detector.
We assume that we have time-bins of width 130 ps. The
SPAD has efficiency η = 0.7, dark count rate of 500/s and
an after-pulsing rate of 0.5%. The effective dark count
probability, which includes the effects of after-pulsing, is
q = 6.53 × 10−8. For the superconducting nanowire de-
tectors η = 0.9, the dark count rate is 1/s and the after-
pulsing rate effectively zero. We calculate the dark count
probability as q = 1.3 × 10−10. Figures 2 and 3 shows
the information within (1, 1) and (2, 2)-frames as a func-
tion of the frame size N , for a SPAD and superconducting
nanowire detector, for two different values of λ.

We see in Figure 2 that, for N = 1000, (2, 2)-frames
can contain a significant fraction of the total shared bits.
This is not always true, however, as shown in Figure 3.
Another important point to note from Figure 3 is that,
for N = 3000, we can extract over 11 bits per photon pair
using either of the two detectors. For both the detectors
we considered, the efficiency is high. If the detectors have
low efficiencies, then we would obtain less information; it
would thus become crucial to optimize the frame size. For
example, consider a detector with q = 6.53 × 10−8 and
η = 0.3. We find that, for a source with λ = 5.33 × 10−5,
we obtain 10.3 bits from the (1, 1)-frames by choosing
N = 3579.

The design of error correcting codes for (2, 2)-frames
can be difficult. If we find that, for given values of loss

Fig. 2. Shared bits per detected photon pair as a function of
the frame size N . All plots are for λ = 5.33×10−5 . In both (a)
and (b), the dashed red line is for (1, 1)-frames, the dotted blue
line is for (2, 2)-frames and the solid black lines if for both the
(1, 1) and (2, 2)-frames. (a) Single photon avalanche detector
with η = 0.7 and q = 6.53 × 10−8. (b) Nanowire detector with
η = 0.9 and q = 1.3 × 10−10.

and the dark count rate, Hd(A:B|KA = 2, KB = 2) is
negligible, then we know that it would not be worth using
these frames6. This result also provides a good guide to
determine the regime that one must work in so that (2, 2)-
frames contribute significantly. Similarly, one can use the
results of Section 3 to calculate the information within
(2, 1)-frames. One could thus investigate the gains from
developing error correcting codes for these and other sit-
uations.

The previous results did not include the effects of de-
tector dead-times. However, if we are to fully evaluate
the information contained within (2,2)-frames, then we
must take this effect into account. Results for this can
be found using the approach detailed in Section 4. For the
SPAD, the dead-time is 30 ns, which corresponds to ap-
proximately 230 time-bins, while for the superconducting
nanowire, the dead-time is 20 ns, which corresponds to 154
time-bins. Figure 4 compares the the shared information
in (2,2)-frames for the case of dead-time and no dead-time,
where part (a) is for the SPAD and (b) is for the super-
conducting nanowire. Both curves are for λ = 5.33×10−5.
While dead-time can reduce the information, we still see

6 This conclusion still holds if jitter is significant. This is be-
cause additional errors cannot increase the shared information.
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Fig. 3. Shared bits per detected photon pair as a function of
the frame size N . All plots are for λ = 1.0× 10−5. In both (a)
and (b) the dashed red line is for (1, 1)-frames, the dotted blue
line is for (2, 2)-frames and the solid black lines if for both the
(1, 1) and (2, 2)-frames. (a) Single photon avalanche detector
with η = 0.7 and q = 6.53 × 10−8. (b) Nanowire detector with
η = 0.9 and q = 1.3 × 10−10.

that useful information can still be extracted from (2,2)-
frames.

In many realistic situations, detector jitter is non-
negligible. We can include the effects of jitter by us-
ing the formalism described in Section 5. There is, how-
ever, a subtlety when one applies the theoretical results
to an experiment. It is common to calculate the heralded
efficiency directly from experimental data. Detector jitter
decreases the probability to observe photons within a par-
ticular period of time. If one is not careful, then we could
over estimate losses and hence under estimate η. To illus-
trate this, consider the example where we have a source
that can produce a single photon within a specific time-
bin. One can use this source to estimate η by looking at
the probability w to detect the photon. If our detectors
suffer from jitter, then w �= η. Instead, we have w = ηJ0

when we neglect dark counts.
In some situations, under estimating the efficiency can

be a good thing. For example, a reduction in η will de-
crease our estimate of the number of bits we can extract.
We could use this as a crude way of taking account of jit-

Fig. 4. Shared bits per detected photon pair as a func-
tion of the frame size N . Both plots are for (2, 2)-frames
with λ = 5.33 × 10−5. The black curve is for a superconduct-
ing nanowire detector with η = 0.9 and q = 1.3 × 10−10,
while the dashed blue curve is for a SPAD with η = 0.7
and q = 6.53 × 10−8. The dead-time for the superconducting
nanowire corresponded to 154 time-bins, while the dead-time
for the SPAD corresponded to 230 time-bins.

Fig. 5. Plot of shared bits per detected photon pair as a func-
tion of the frame size N . All plots are for (1, 1)-frames with
λ = 2.0 × 10−5. The solid black line corresponds to the SPAD
with η = 0.7, q = 6.53 × 10−8 and J0 = 0.9. The dashed
blue line is for the superconducting nanowire with η = 0.9,
q = 1.3× 10−10 and J0 = 0.97. Finally, the dotted and dashed
red line corresponds to the threshold for 10 bits per photon
pair.

ter. Such an approach would, however, be too pessimistic
if we have already included jitter explicitly within our
model. In the rest of this section, we will assume that
the total efficiency η has been estimated such that it is
completely associated with losses.

Jitter causes a decrease in the correlation within Alice
and Bob’s timing information. This inevitably leads to
a decrease in the number of shared bits. To evaluate
the effects we calculate Hd(A:B|KA = 1, KB = 1) for
the SPAD and superconducting nanowire detector, with
a λ = 2.0 × 10−5. We take J0 = 0.9 for the SPAD
and J0 = 0.97 for the nanowire detector. Figure 5 shows
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Hd(A:B|KA = 1, KB = 1) plotted as a function of N .
The solid black curve corresponds to the SPAD, while
the dashed blue line is for the superconducting nanowire.
We see that for an appropriate choice of N , we can still
obtain greater than 10 bits per photon using either de-
tector. One can get a better feel for how jitter affects
use by looking at how H(A:B|KA = 1, KB = 1) changes
with J0. Consider a setup with λ = 2.0 × 10−5, η = 0.7
and q = 6.53 × 10−8, i.e. the parameters for the SPAD.
We could extract 11.1 bits per photon for N = 4000, if we
had no jitter (J0 = 1). If instead, J0 = 0.9, then we could
extract 10.2 bits per photon for frames of size N = 4000.

7 Conclusions

The time-of-arrival degree of freedom provides an experi-
mentally viable means of implementing high-dimensional
quantum information protocols, and is particular well
suited for quantum communication. One important exam-
ple of this is high-dimensional QKD. Such schemes can,
however, be hampered by the difficult in performing er-
ror correction. A pertinent example of this is in time-bin
based QKD, where unlike in polarization based QKD, one
cannot use each photon’s arrival time to help correct er-
rors. Instead, it is common to split the arrival time into
discrete time-bins, which are grouped together to form
frames. A key question is how this affects the amount of
shared information that Alice and Bob can extract. We
answer this question and obtain general results for the
maximum number of extractable shared bits for photons
entangled within their time-of-arrival, when using frame
encoding.

Our results go beyond existing work in a number of
areas. First, we present results for frames that contain
photon pairs within multiple time-bins. We can thus in-
vestigate how many bits are lost by neglecting such events
and when such events should be kept. The results can thus
be used to improve the efficiency of extraction of shared
bits from noisy experimental setups.

Another way in which the current work improves on
existing works is in the range of errors considered. We
study systems that suffer from asymmetric losses, dark
counts, after-pulsing, dead time and jitter. The formalism
also works for a general choice of source. The results for
the case of jitter are of particular interest. We have found
analytic expressions for the extractable information when
we have jitter in addition to losses and dark counts. This
could be important for optimization of high-dimensional
QKD. For example, in some experiments, we have freedom
in the choice of the time bin width. Often, one chooses the
width such that it minimizes jitter. By using our results,
we can more efficiently choose the time-bin width so as to
optimize the shared information.

The results are illustrated by considering entangled
photons generated by a nonlinear crystal that is pumped
by a mode-locked laser. This source produces a train of
pulses that are temporally coherent to one another. Two
different types of detector were considered, a SPAD and a
superconducting nanowire detector. The results show that

under appropriate conditions, we can chose a frame size
so as to extract over 10 shared bits per photon pair.

One issue we have not considered is how one might
actually extract the shared information, i.e., reconcilia-
tion. There has been some work in this area [15,20,21].
Some of the present authors have developed a reconcilia-
tion protocol that is tailored to the case of a mode-locked
laser pumping a down-conversion source [41]. This proto-
col can treat multi-photon events and can recover some
of the frame-to-frame information contained within the
photon number uncertainty.
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Appendix A: Modeling jitter for a long-tailed
detector response

The calculations in Section 5 assumed that Jn = 0 for
n ≥ 2. This is consistent with the detector’s temporal re-
sponse (i.e., its probability distribution) being effectively
zero over more than two time-bins. While this assumption
is often true, there are detectors for which it would not
hold. In this appendix, we briefly outline how to generalize
the previous results. The aim is not to present extensive
results, but instead to show how to adapt the previous
results. The general approach is illustrated by investigat-
ing at the case when J2 �= 0, but J3, J4, . . . = 0, hence
J0 + J1 + J2 = 1.

Recall, J0 is the conditional probability to register a
photon in the correct time-bin, i.e., the time-bin in which
the photon actually was incident on the detector. The con-
ditional probability to register a click n time-bins after
it was incident on the detector, is given by Jn. We first
consider Alice’s (or equivalently Bob’s) marginal proba-
bilities. In the absence of jitter, the probability for Alice
to see a click in a given time bin is PA

c . When we do
have jitter, then a detected photon could have originated
in previous time slots. The probability to observe a click
thus changes. To calculate the new probability P1, we con-
sider three time-bins, as the term J2 can cause a photon
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to jump over two time-bins. We find that the probability
for Alice to see a click in a given time bin is

P1 = PA
c

[
J2 + J1P

A
0 + J0(PA

0 )2
]
. (A.1)

where PA
0 = 1−PA

c . Equation (A.1) is composed of three
separate terms. The first term in equation (A.1) corre-
sponds to a photon that has ‘jumped’ two time-bins due
to jitter. The second term is for a photon that is detected
within a time-bin directly after the correct one. Finally,
the third terms corresponds to the detector firing within
the time slot in which it was incident on the detector.

To calculate the probability Pe, that we don’t see a
click at the last time-bin of a frame we must consider two
time-bins. We find that the probability is

Pe = J2[PA
c ] + J1[PA

0 PA
c ] + [PA

0 ]2. (A.2)

Again, we have three terms corresponding to three possi-
ble ways in which the event could be realized. The prob-
ability to observe a given measurement pattern is again
constructed from P1, Pe and PA

0 . One thing we must take
care of are photons detected in time slots near the edge
of each frame. It is possible that these correspond to pho-
tons from previous frames, which are registered in a later
frame due to jitter. These edge effects mean that P (A1)
or P (A2) will not equal P (Ai), where i is a time bin in
the middle of the frame. Similarly, P (AN ) �= P (Ai), where
again i corresponds to a time bin near the middle of the
frame. We find that

P (A1) = P1Pe(PA
0 )N−3,

P (A2) = P1Pe(PA
0 )N−4,

P (Ai) = P1Pe(PA
0 )N−5,

P (AN−1) = P1Pe(PA
0 )N−4,

P (AN ) = P1(PA
0 )N−3, (A.3)

where i < 2 < N − 1. The probability for Alice to post-
select on a KA = 1 frame is P (KA = 1) =

∑
j P (Aj). The

results for Bob will have the same form.
The joint probabilities P (Am, Bn) can be calculated

in the same fashion by first recalculating P11, Pe
00, P10

and P1∗. However, now we require an extra term P1∗∗,
which corresponds to Alice seeing a photon two time-bins
before Bob does. Each of these probabilities will again be
calculated by looking at several time-bins. For instance, to
calculate P11, we must consider three time-bins for Alice
and Bob. As an example, the new form for P11 is

P11 = J2
0 P 2

00Pcc + J2
1P00Pcc + J2

2Pcc

+ 2J0J1P00Pc0Pcc + 2J0J2Pc0P0P1

+ 2J1J2Pc0P1, (A.4)

where we have used the fact that Pc0 = P0c when ηA = ηB.
Notice that (A.4) contains more terms than equation (17),
which was derived for J2 = 0. These extra terms result
from the fact that now the detector’s response is longer
and thus jitter can cause a photon to be register two time
slots after it was incident on the detector.

Appendix B: Jitter with asymmetric losses

The results for jitter given in Section 5 assumed that
ηA = ηB, to simplify the expressions. In this appendix, we
briefly show how the results are modified for asymmetric
loss. The marginal probabilities for Alice and Bob contain
terms that depend only on ηA or on ηB. Thus, there is
no need to modify these results. The joint probabilities
P (Ai, Bj) will, however, need to be modified.

The first step is to calculate the probabilities for the
individual events, e.g. P11, Pe

00, etc. The key issue is that
now Pc0 �= P0c, which was implicitly assumed within the
derivations. As a first step, consider the probability that
Alice and Bob both see a click within the same time-bin.
We find that

P11 = J2
0P00Pcc + 2J0J1(P0cPc0) + J2

1Pcc. (B.1)

The new probability that both Alice and Bob don’t detect
photons in the last time-bin of their frame is

Pe
00 = P00 + J2

1Pcc + J1[P0c + Pc0]. (B.2)

The probability for Alice and Bob to obtain clicks in ad-
jacent time-bins is given by P1∗ and P∗1. Previously, we
found that P1∗ = P∗1, which is not true in general. We
find that

P1∗ = J2
0 P00Pc0P0c + J2

1PB
c PA

0 Pc0

+ J0J1

[
PA

0 P00Pcc + PB
0 P0cPc0

]
,

P∗1 = J2
0 P00Pc0P0c + J2

1PA
c PB

0 P0c

+ J0J1

[
PB

0 P00Pcc + PA
0 P0cPc0

]
. (B.3)

The final event probability is for the case when Alice and
Bob obtain clicks in different and non-adjacent time-bins.
Again we will find that P10 �= P01, given explicitly by

P10 = J0P00Pc0 + J1Pc0P
B
0

+ J0J1P00Pcc + J2
1Pc0P

B
c .

P01 = J0P00P0c + J1P0cP
A
0

+ J0J1P00Pcc + J2
1P0cP

A
c . (B.4)

The event probabilities will, again, be used to construct
the joint frame probabilities P (Ai, Bj).

As before, we simplify our results by assuming that we
can neglect edge effects. Using this assumption, we find
that

P (Ai, Bi) = P11Pe
00

(
PAB

00

)N−3
,

P (Ai, Bi+1) = P1∗Pe
00

(
PAB

00

)N−4
,

P (Ai+1, Bi) = P∗1Pe
00

(
PAB

00

)N−4
,

P (Ai, Bj) = P10P01Pe
00

(
PAB

00

)N−5
, (B.5)

where |i − j| > 1. The conditional probabilities and all
the relevant entropic quantities can now be calculated as
before.
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Appendix C: Comparison of the exact
and the approximate results for jitter

In this appendix, we compare the approximate results for
jitter to the longer, but more accurate results. In all of
what follows, we assume that only J0 and J1 are not equal
to zero and that ηA = ηB.

In general, the frame edges influence the probabili-
ties for each pattern, e.g. P (A1, Bj) �= P (A3, Bj). This
is because we analysis each frame separately. We thus
loose information about what happens in the time-bins
directly before the beginning of each frame. The proba-
bilities shown in equation (21) are derived by neglecting
the edges. When we include the edges, we find that the
probabilities become

P (A1, B1) = P11Pe
00

(
PAB

00

)N−2
,

P (Ai, Bi) = P11Pe
00

(
PAB

00

)N−3
, i = 2, . . . , N − 1,

P (AN , BN ) = P11

(
PAB

00

)N−2
,

P (A1, B2) = P (A2, B1) = P10Pe
00

(
PAB

00

)N−3
,

P (A1, Bj) = P (Aj , B1) = (P1∗)2Pe
00

(
PAB

00

)N−4
,

1 < j < N,

P (A1, BN ) = P (AN , B1) = (P1∗)2
(
PAB

00

)N−3
,

P (Ai, Bi+1) = P (Ai+1, Bi) = P10Pe
00

(
PAB

00

)N−4
,

1 < i < N − 1

P (Ai, BN ) = P (AN , Bi) = (P1∗)2
(
PAB

00

)N−4
,

1 < i < N,

P (AN−1, BN ) = P (AN , BN−1) = P10

(
PAB

00

)N−3
,

P (Ai, Bj) = (P1∗)2Pe
00

(
PAB

00

)N−5
, 1 < i, j < N.

(C.1)

There will be N − 2, P (Ai, Bi) terms for 1 < i < N . Sim-
ilarly, there are N − 3, P (A1, Bi), P (Ai, B1), P (Aj , BN )
and P (AN , Bj) terms, where 2 < i < N and 1 < j <
N −1. One can also verify that there are N −1 terms such
as P (Aj , Bj+1) and P (Aj+1, Bj), where j = 1, . . . , N − 1.
Finally, the number of remaining terms can be found by
recalling that the joint probability contains a total of N2

different outcomes.
Equation (C.1) is significantly more complicated

than (21). Using these probabilities, we calculate
Hd(A:B|KA = 1, KB = 1) and compare this with the
approximate result given in (23). Figure C.1a shows a di-
rect comparison for ηA = ηB = 0.3, λ = 5.33 × 10−4,
q = 3.9× 10−8 and J1 = 0.4 as a function of N . The solid
black curve is exact expression, while the dashed red curve
is the approximate expression. The percentage difference
between the exact and approximate results is shown in
Figure C.1b. We see that the agreement between the two
results is excellent for large N . Somewhat surprisingly,
the approximation is accurate to less that 1% for frames
as small as N = 8. The match between the exact results
and the approximate ones holds also for different values

Fig. C.1. Comparison of the exact expression for Hd(A:B|
KA = 1, KB = 1) with the approximate expression (23).
The first figure shows plots of the post-selected information
Hd(A:B|KA = 1, KB = 1), as a function of the frame size N .
The black curve is the exact result, while the dashed red curve
is the approximate result. The second figure shows a percent-
age difference between the exact and approximate results, as a
function of the frame size. All curves are for ηA = ηB = 0.3,
λ = 5.33 × 10−4, q = 3.9 × 10−8 and J1 = 0.4.

for ηA, ηB, λ and q. For example, for ηA = ηB = 0.7,
λ = 5.33 × 10−5, q = 6.53 × 10−8 and J1 = 0.1, then
we find a percentage difference of less than 0.001% for
N = 10.

References

1. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Phys. Rev.
Lett. 84, 4737 (2000)

2. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H.
Zbinden, N. Gisin, Phys. Rev. A 66, 062308 (2002)

3. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H.
Zbinden, N. Gisin, Phys. Rev. A 69, 050304 (2004)

4. D. Stucki, H. Zbinden, H. Gisin, J. Mod. Opt. 52, 2637
(2005)

5. G.M. Nikolopoulos, K.S. Ranade, G. Alber, Phys. Rev. A
73, 032325 (2006)

6. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002)

7. J. Leach, E. Bolduc, D.J. Gauthier, R.W. Boyd, Phys. Rev.
A 85, 060304 (2012)

http://www.epj.org


Page 14 of 14 Eur. Phys. J. D (2016) 70: 214

8. I. Ali-Khan, C.J. Broadbent, J.C. Howell, Phys. Rev. Lett.
98, 060503 (2007)

9. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, H.
Weinfurter, New J. Phys. 13, 073024 (2011)

10. V. Burenkov, B. Qi, B. Fortescue, H.-K. Lo, Quantum Inf.
Comput. 14, 217 (2014)

11. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412,
3123 (2001)

12. J.B. Götte, S. Franke-Arnold, S.M. Barnett, J. Mod. Opt.
53, 627 (2007)

13. J. Leach, B. Jack, J. Romero, A.K. Jha, A.M. Yao, S.
Franke-Arnold, D.G. Arnold, D.G. Ireland, R.W. Boyd,
S.M. Barnett, M.J. Padgett, Science 329, 662 (2010)

14. T. Brougham, S.M. Barnett, Phys. Rev. A 85, 032322
(2012)

15. Y. Kochman, G.W. Wornell, in ITA 2012: Information
Theory and Applications Workshop, 2012, pp. 172-179

16. P.B. Dixon, G.A. Howland, J. Schneeloch, J.C. Howell,
Phys. Rev. Lett. 108, 143603 (2012)

17. R.E. Warburton, F. Izdebski, C. Reimer, J. Leach, D.G.
Ireland, M. Padgett, G.S. Buller, Opt. Express 19, 2670
(2011)

18. J. Leach, R.E. Warburton, D.G. Ireland, F. Izdebski, S.M.
Barnett, A.M. Yao, G.S. Buller, M.J. Padgett, Phys. Rev.
A 85, 013827 (2012)

19. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I.A.
Walmsley, M.J. Fitch, B.C. Jacobs, T.B. Pittman, J.D.
Franson, J. Mod. Opt. 51, 1499 (2004)

20. H. Zhou, G. Wornell, in IEEE International Symposium
on Information Theory, 2013, pp. 359-363

21. H. Zhou, L. Wang, G. Wornell, in Proc. Inform. Theory
(ITA-2013), Sam Diego, 2013

22. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V.
Sergienko, Y. Shih, Phys. Rev. Lett. 75, 4337 (1995)

23. J. Liang, S.M. Hendrickson, T.B. Pittman, Phys. Rev. A
83, 033812 (2011)

24. D.J. Gauthier, H. Guilbert, Y. Zhu, M. Shi, K.
McCusker, B. Christensen, P. Kwiat, T. Brougham, S.M.
Barnett, V. Chandar, “Quantum Key Distribution Using
Hyperentanglement”, in Research in Optical Sciences,
OSA Technical Digest (Optical Society of America, 2012),
paper QT4A.2

25. D.J. Gauthier, C.F. Wildfeuer, H. Guilbert, M. Stipcevic,
B. Christensen, D. Kumor, P. Kwiat, K. McCusker, T.
Brougham, S.M. Barnett, in Proceedings of the Tenth
Rochester Conference on Coherence on Quantum Optics
(CQO10), edited by N.P. Bigelow, J.H. Eberly, C.R.
Stroud (Optical Society of America, 2014), pp. 234-239

26. N.T. Islam, C. Cahall, A. Aragoneses, C.C. Lim, M.S.
Allman, V. Verma, S.W. Nam, J. Kim, D.J. Gauthier,
in Conference on Lasers, Electro-Optics, OSA Technical
Digest (online) (Optical Society of America, 2016), paper
FTh3C.3

27. T. Brougham, S.M. Barnett, J. Phys. B. 47, 155501 (2014)
28. T. Brougham, S.M. Barnett, Eur. Phys. Lett. 104, 30003

(2013)
29. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J.H. Shapiro,

D. Englund Phys. Rev. A 87, 062322 (2013)
30. J. Nunn, L.J. Wright, C. Söller, L. Zhang, I.A. Walmsley,
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