545 research outputs found

    On Equivalence of Known Families of APN Functions in Small Dimensions

    Full text link
    In this extended abstract, we computationally check and list the CCZ-inequivalent APN functions from infinite families on F2n\mathbb{F}_2^n for n from 6 to 11. These functions are selected with simplest coefficients from CCZ-inequivalent classes. This work can simplify checking CCZ-equivalence between any APN function and infinite APN families.Comment: This paper is already in "PROCEEDING OF THE 20TH CONFERENCE OF FRUCT ASSOCIATION

    On Some Properties of Quadratic APN Functions of a Special Form

    Full text link
    In a recent paper, it is shown that functions of the form L1(x3)+L2(x9)L_1(x^3)+L_2(x^9), where L1L_1 and L2L_2 are linear, are a good source for construction of new infinite families of APN functions. In the present work we study necessary and sufficient conditions for such functions to be APN

    On known constructions of APN and AB functions and their relation to each other

    Get PDF
    This work is dedicated to APN and AB functions which are optimal against differential and linear cryptanlysis when used as Sboxes in block ciphers. They also have numerous applications in other branches of mathematics and information theory such as coding theory, sequence design, combinatorics, algebra and projective geometry. In this paper we give an overview of known constructions of APN and AB functions, in particular, those leading to infinite classes of these functions. Among them, the bivariate construction method, the idea first introduced in 2011 by the third author of the present paper, turned out to be one of the most fruitful. It has been known since 2011 that one of the families derived from the bivariate construction contains the infinite families derived by Dillon’s hexanomial method. Whether the former family is larger than the ones it contains has stayed an open problem which we solve in this paper. Further we consider the general bivariate construction from 2013 by the third author and study its relation to the recently found infinite families of bivariate APN functions

    Invariants for EA- and CCZ-equivalence of APN and AB functions

    Get PDF
    An (n,m)-function is a mapping from F2n{\mathbb {F}_{2}^{n}} to F2m{\mathbb {F}_{2}^{m}}. Such functions have numerous applications across mathematics and computer science, and in particular are used as building blocks of block ciphers in symmetric cryptography. The classes of APN and AB functions have been identified as cryptographically optimal with respect to the resistance against two of the most powerful known cryptanalytic attacks, namely differential and linear cryptanalysis. The classes of APN and AB functions are directly related to optimal objects in many other branches of mathematics, and have been a subject of intense study since at least the early 90’s. Finding new constructions of these functions is hard; one of the most significant practical issues is that any tentatively new function must be proven inequivalent to all the known ones. Testing equivalence can be significantly simplified by computing invariants, i.e. properties that are preserved by the respective equivalence relation. In this paper, we survey the known invariants for CCZ- and EA-equivalence, with a particular focus on their utility in distinguishing between inequivalent instances of APN and AB functions. We evaluate each invariant with respect to how easy it is to implement in practice, how efficiently it can be calculated on a computer, and how well it can distinguish between distinct EA- and CCZ-equivalence classes.publishedVersio

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    Computational investigation of 0-APN monomials

    Get PDF
    This thesis is dedicated to exploring methods for deciding whether a power function F(x)=xdF(x) = x^d is 0-APN. Any APN function is 0-APN, and so 0-APN-ness is a necessary condition for APN-ness. APN functions are cryptographically optimal, and are thus an object of significant interest. Deciding whether a given power function is 0-APN, or APN, is a very difficult computational problem in dimensions greater than e.g. 30. Methods which allow this to be resolved more efficiently are thus instrumental to resolving open problems such as Dobbertin's conjecture. Dobbertin's conjecture states that any APN power function must be equivalent to a representative from one of the six known infinite families. This has been verified for all dimensions up to 34, and up to 42 for even dimensions. There have, however, been no further developments, and so Dobbertin's conjecture remains one of the oldest and most well-known open problems in the area. In this work, we investigate some methods for efficiently testing 0-APN-ness. A 0-APN function can be characterized as one that does not vanish on any 2-dimensional linear subspace. We determine the minimum number of linear subspaces that have to be considered in order to check whether a power function is 0-APN. We characterize the elements of this minimal set of linear subspaces, and formulate and implement efficient procedures for generating it. We computationally test the efficiency of this method for dimension 35, and conclude that it can be used to decide 0-APN-ness much faster than by conventional methods, although a dedicated effort would be needed to exploit this further due to the huge number of exponents that need to be checked in high dimensions such as 35. Based on our computational results, we observe that most of the cubic power functions are 0-APN. We generalize this observation into a ``doubly infinite'' family of 0-APN functions, i.e. a construction giving infinitely many exponents, each of which is 0-APN over infinitely many dimensions. We also present some computational results on the differential uniformity of these exponents, and observe that the Gold and Inverse power functions can be expressed using the doubly infinite family.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin

    An infinite family of 0-APN monomials with two parameters

    Get PDF
    We consider an infinite family of exponents e(l, k) with two parameters, l and k, and derive sufficient conditions for e(l, k) to be 0-APN over F2n . These conditions allow us to generate, for each choice of l and k, an infinite list of dimensions n where xe(l,k) is 0-APN much more efficiently than in general. We observe that the Gold and Inverse exponents, as well as the inverses of the Gold exponents can be expressed in the form e(l, k) for suitable l and k. We characterize all cases in which e(l, k) can be cyclotomic equivalent to a representative from the Gold, Kasami, Welch, Niho, and Inverse families of exponents. We characterize when e(l, k) can lie in the same cyclotomic coset as the Dobbertin exponent (without considering inverses) and provide computational data showing that the Dobbertin inverse is never equivalent to e(l, k). We computationally test the APN-ness of e(l, k) for small values of l and k over F2n for n≤100 , and sketch the limits to which such tests can be performed using currently available technology. We conclude that there are no APN monomials among the tested functions, outside of the known classes.publishedVersio

    Triplicate functions

    Get PDF
    We define the class of triplicate functions as a generalization of 3-to-1 functions over F2n\mathbb {F}_{2^{n}} for even values of n. We investigate the properties and behavior of triplicate functions, and of 3-to-1 among triplicate functions, with particular attention to the conditions under which such functions can be APN. We compute the exact number of distinct differential sets of power APN functions and quadratic 3-to-1 functions; we show that, in this sense, quadratic 3-to-1 functions are a generalization of quadratic power APN functions for even dimensions, in the same way that quadratic APN permutations are generalizations of quadratic power APN functions for odd dimensions. We show that quadratic 3-to-1 APN functions cannot be CCZ-equivalent to permutations in the case of doubly-even dimensions. We compute a lower bound on the Hamming distance between any two quadratic 3-to-1 APN functions, and give an upper bound on the number of such functions over F2n\mathbb {F}_{2^{n}} for any even n. We survey all known infinite families of APN functions with respect to the presence of 3-to-1 functions among them, and conclude that for even n almost all of the known infinite families contain functions that are quadratic 3-to-1 or are EA-equivalent to quadratic 3-to-1 functions. We also give a simpler univariate representation in the case of singly-even dimensions of the family recently introduced by Göloglu than the ones currently available in the literature. We conduct a computational search for quadratic 3-to-1 functions in even dimensions n ≤ 12. We find six new APN instances for n = 10, and the first sporadic APN instance for n = 12 since 2006. We provide a list of all known 3-to-1 APN functions for n ≤ 12.publishedVersio
    corecore