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ON KNOWN CONSTRUCTIONS OF APN AND AB
FUNCTIONS AND THEIR RELATION TO EACH OTHER

Marco Calderini, Lilya Budaghyan and Claude Carlet

Abstract. This work is dedicated to APN and AB functions which
are optimal against differential and linear cryptanlysis when used as S-
boxes in block ciphers. They also have numerous applications in other
branches of mathematics and information theory such as coding theory,
sequence design, combinatorics, algebra and projective geometry. In this
paper we give an overview of known constructions of APN and AB func-
tions, in particular, those leading to infinite classes of these functions.
Among them, the bivariate construction method, the idea first introduced
in 2011 by the third author of the present paper, turned out to be one of
the most fruitful. It has been known since 2011 that one of the families de-
rived from the bivariate construction contains the infinite families derived
by Dillon’s hexanomial method. Whether the former family is larger than
the ones it contains has stayed an open problem which we solve in this
paper. Further we consider the general bivariate construction from 2013
by the third author and study its relation to the recently found infinite
families of bivariate APN functions.

1. Introduction

Vectorial Boolean functions are mappings between the vector spaces Fn2
and Fm2 for some positive integers n and m, where F2 is the finite field with
two elements. We shall call them (n,m)-functions when we will need to spec-
ify the numbers of input and output bits. These functions play an important
role in many different areas of mathematics, computer science and engineer-
ing. In particular, (n,m)-functions are of critical importance in the field of
cryptography: virtually, all modern block ciphers incorporate one or several
(n,m)-functions (usually referred to as “substitution boxes” - in brief, “S-
boxes” - in this context) as their only nonlinear components, and as such, the
security of the encryption directly depends on the properties of the (n,m)-
functions.
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Various properties measuring the resistance of an (n,m)-function to dif-
ferent kinds of cryptanalysis have been defined, including nonlinearity, differ-
ential uniformity, boomerang uniformity, algebraic degree, and so forth. One
of the most efficient attacks that can be employed against block ciphers, the
differential cryptanalysis [5], is based on the study of how differences in an
input can affect the resultant difference at the output. The resistance to dif-
ferential attacks for a function F from Fm2 to Fm2 , used as an S-box in the
cipher, is high when the value

δF = max
a,b∈Fm2 ,a 6=0

|{x ∈ Fm2 : F (x+ a) + F (x) = b}|

is small. When n = m, which is the main case of our interest, the differential
uniformity of any (n, n)-function is at least 2, and the (n, n)-functions meet-
ing this bound are called almost perfect nonlinear (APN). Another powerful
attack on block ciphers is linear cryptanalysis [48] which relies on the search
for linear approximations to the action of the cipher. The so-called almost
bent (AB) functions are optimal against this attack [33]. Every AB function
is also APN, while the converse is not true in general.

Discovering new examples and constructions of APN and AB functions is
thus a matter of significant practical importance since they enable the design
of new block ciphers. APN and AB functions are interesting from a theoretical
point of view as well, as they correspond to optimal objects within other areas
of mathematics and computer science, e.g. coding theory, combinatorics, and
projective geometry.

The APNness and ABness of functions are preserved by some equivalence
relations, mainly the so-called CCZ- and EA-equivalences, and it is important
when several functions are considered, to determine whether they correspond
to each others by such equivalences. CCZ-equivalence is the most general
known equivalence relation preserving APN and AB properties while all other
known equivalence relations for these functions are just particular cases of
CCZ-equivalence1. Classification of APN and AB functions, up to CCZ- and
EA-equivalences, is a hard open problem. Complete classification is known
only for n ≤ 5, see [9]. Finding new constructions of APN functions is difficult
too. APN functions have been known and studied since the early 90’s [49] but,
to date, only six infinite families of APN monomials (see the definition of this
term in Section 2) and more or less 15 (depending on how we count) infinite
families of quadratic APN polynomials are known. Together, these cover only
a tiny fraction of all APN functions: for instance, more than 20 000 CCZ-
inequivalent APN functions have been determined over F8

2 [2,53], yet none of
them has been classified into general constructions yet. Finding new examples

1EA-equivalence needs however to be considered as well, because CCZ-equivalence is
much more difficult to verify and/or to enforce than EA-equivalence. The first step when
checking if two functions are really different is then to see whether they are EA-inequivalent.
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of infinite families is an area of intense ongoing research. Tables 1 and 2 list
all currently known infinite families of APN functions. The first four cases in
Table 1, and, for n odd, all cases in Table 2 are also AB. All families in Tables
1 and 2 are pairwise CCZ-inequivalent for general n [17, 34,41].

In this paper we recall known constructions of APN and AB functions,
in particular, those which have led to infinite classes. Then we consider the
bivariate and Dillon’s hexanomial constructions and prove that families of
APN functions derived by these methods in [19,29] coincide with each other.
Further we study the relation between the general bivariate construction of
[30] with families F10 and F12. We show that, while containing families F10
and F12, the construction given in [30] can lead (at least in small dimensions)
to APN functions that are not included in F10 and F12, nor in any other
known APN family. This shows that this general construction by the third
author of the present paper may potentially lead to further infinite families.

In the last part, we consider a new bivariate construction over F22m based
on bivariate projective polynomials, that is, polynomials of the type axq+1 +
bxqy + cxyq + dyq+1 ∈ F2m [x, y], where q is a power of 2. Using, these
polynomials Göloğlu [41] and Kaleyski and Li [43] were able to provide new
families of APN functions F14, F15 and the one of Theorem 7.3. We will
discuss some equivalence properties of the APN functions coming from this
approach, and we will show that the family discovered by Kaleyski and Li is
included in F15.

2. Preliminaries

Let n be a positive integer. We denote by F2n the finite field with 2n
elements, and by F∗2n the set of its non-zero elements, i.e. its multiplicative
group. Form | n, we denote by Trmn : F2n → F2m the trace function Trmn (x) =∑n/m−1
i=0 x2mi from F2n into its subfield F2m (simply denoted by Tr when

m = 1).
It is convenient to identify the vector space Fn2 with the finite field F2n

and to consider an (n, n)-functions F as a mapping F : F2n → F2n . Any such
function can be expressed as a polynomial of the form

F (x) =
2n−1∑
i=0

aix
i,

for ai ∈ F2n . This is the univariate representation of F , and it is unique.
Function F is then called a power function or a monomial function if its uni-
variate representation consists in one single monomial. The algebraic degree
of F , denoted by deg(F ), is the largest binary weight of an exponent i with
ai 6= 0 in the univariate representation, where the binary weight of an integer
is the number of ones in its binary notation, i.e. the minimum number of dis-
tinct powers of two that sum up to it. Functions of algebraic degree 1, resp.
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2, resp. 3 are called affine, resp. quadratic, resp. cubic. An affine function F
satisfying F (0) = 0 is called linear.

Given an (n, n)-function F , we denote by ∆F (a, b) the number of solutions
x to the equation DaF (x) = b, where DaF (x) = F (x + a) + F (x) is the
derivative of F in direction a ∈ F2n . The largest value of ∆F (a, b) among all
a 6= 0 and all b is denoted by ∆F and is called the differential uniformity of
F . If ∆F = 2, we say that F is almost perfect nonlinear (APN).

The Walsh transform of F : F2n → F2n is the integer-valued function

WF (a, b) =
∑
x∈F2n

(−1)b·F (x)+a·x

for a, b ∈ F2n , where the inner product “·” can be defined as a · b = Tr(ab)
for a, b ∈ F2n without loss of generality. Function b · F for b 6= 0 is called
a component function of F . The values of WF (a, b) for a, b ∈ F2n are the
Walsh coefficients of F , and the multiset WF = {WF (a, b) : a, b ∈ F2n} is
called the Walsh spectrum of F . The multiset {|WF (a, b)| : a, b ∈ F2n} of the
absolute values of the Walsh transform is the extended Walsh spectrum. If
the Walsh spectrum of F consists of values 0,±2n+1

2 then the function F is
called AB. Such AB functions exist for n odd only and contribute optimally
to the resistance against linear cryptanalysis when they are used as S-boxes.
Besides, every AB function is APN [33], and in the n odd case, any quadratic
function is APN if and only if it is AB [32]. Comprehensive surveys on APN
and AB functions can be found in [12,31].

Since the number of distinct (n, n)-functions, viz. (2n)2n , grows rapidly
with the dimension, (n, n)-functions are classified only up to a suitable equiva-
lence relation which preserves the properties being studied. The most general
known equivalence relation which preserves the differential uniformity and
the extended Walsh spectrum (and, therefore, the APN and AB properties)
is the so-called Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence): we
say that two (n, n)-functions F and G are CCZ-equivalent if there is an affine
permutation L of F2

2n which maps the graph GF = {(x, F (x)) : x ∈ F2n} of
F to the graph GG of G. Deciding whether two given functions F and G are
CCZ-equivalent is a difficult problem in general, mathematically and compu-
tationally, and is typically resolved via code isomorphism. More precisely, a
linear code CF with the generating matrix

CF =

 1 1 . . . 1
0 α . . . α2n−1

F (0) F (α) . . . F (α2n−1)


can be associated with any given (n, n)-function F , where α is a primitive
element of F2n . Then F and G are CCZ-equivalent if and only if CF and CG
are isomorphic [10].
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Various CCZ-invariants, i.e. properties or parameters that remain invari-
ant under CCZ-equivalence, can be used to show that a pair of (n, n)-functions
is CCZ-inequivalent. These include the differential uniformity and the ex-
tended Walsh spectrum.

A special cases of CCZ-equivalence is the so-called extended affine equiv-
alence (EA-equivalence). Two (n, n)-functions F and G are said to be EA-
equivalent if G = A1 ◦F ◦A2 +A for affine A1, A2, A : F2n → F2n with A1, A2
bijective. EA-equivalence is more restrictive than CCZ-equivalence; for in-
stance, every permutation is CCZ-equivalent to its inverse and is in general
not EA-equivalent to it. Also, the algebraic degree of a function is preserved
by EA-equivalence (when it is larger than 1) but not by CCZ-equivalence. If
we consider two power functions for their CCZ-equivalence then it is enough
to restrict to cyclotomic equivalence: two power functions F (x) = xd and
G(x) = xe over F, where d, e, n are positive integers, are said to be cyclotomic
equivalent if d ≡ 2ke (mod (2n−1)) for some positive integer k, or if d−1 ≡ 2ke
(mod (2n− 1)) for some positive integer k in the case that gcd(d, 2n− 1) = 1,
with d−1 being the multiplicative inverse of d modulo 2n − 1. Cyclotomic
equivalence has the advantage of being significantly simpler to test than both
EA- and CCZ-equivalences.

Table 1. Known APN power functions xd over F2n

Functions Exponents d Conditions Degree In
Gold 2i + 1 gcd(i, n)=1 2 [40,49]

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1 [42,44]
Welch 2t + 3 n = 2t+ 1 3 [35]
Niho 2t + 2 t2 − 1, t even n = 2t+ 1 t+2

2 [36]
2t + 2 3t+1

2 − 1, t odd t+1
Inverse 22t − 1 n = 2t+ 1 n− 1 [4, 49]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [37]

3. Overview on known constructions of APN and AB functions

There are several known constructions of APN and AB functions which
have led to infinite families of these functions. Power functions were the first
to be considered, and several infinite classes practically followed from coding
theory and sequence design where APN and AB functions define optimal
codes and sequences well-studied there for several decades before the notions
of APN and AB functions were defined. These were Gold, Kasami, Welch and
Niho APN power functions which all have so called classical Walsh spectrum,
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Table 2. Known classes of quadratic APN polynomial over
F2n CCZ-inequivalent to power functions

N◦ Functions Conditions In
n = pk, gcd(k, p)= gcd(s, pk)=1,

F1-F2 x2s+1 + u2k−1x2ik+2mk+s
p ∈ {3, 4}, i = sk mod p, m = p− i, [20]

n ≥ 12, u primitive in F∗2n
q = 2m, n = 2m, gcd(i,m)=1,

F3 sxq+1 + x2i+1 + xq(2
i+1) c ∈ F2n , s ∈ F2n \ Fq, [19]

+cx2iq+1 + cqx2i+q X2i+1 + cX2i + cqX + 1
has no solution x such that xq+1 = 1

F4 x3 + a−1Tr(a3x9) a 6= 0 [21]
F5 x3 + a−1Tr3

n(a3x9 + a6x18) 3|n, a 6= 0 [22]
F6 x3 + a−1Tr3

n(a6x18 + a12x36) 3|n, a 6= 0 [22]
n = 3k, gcd(k, 3)= gcd(s, 3k)=1,

F7-F9 ux2s+1 + u2kx2−k+2k+s+ v, w ∈ F2k , vw 6= 1, [7, 8]
vx2−k+1 + wu2k+1x2s+2k+s 3|(k + s) u primitive in F∗2n

(x+ x2m)2i+1+ n = 2m, m ≥ 2 even,
F10 u′(ux+ u2mx2m)(2i+1)2j+ gcd(i,m) = 1 and j ≥ 2 even [54]

u(x+ x2m)(ux+ u2mx2m) u primitive in F∗2n , u′ ∈ F2m not a cube
n = km, m > 1, gcd(n, i) = 1

F11 L(x)2ix+ L(x)x2i L(x) =
∑k−1
j=0 ajx

2jm satisfies [13]
the conditions in Theorem 6.3 of [13]

u(uqx+ xqu)(xq + x) + (uqx+ xqu)22i+23i
q = 2m, n = 2m, gcd(i,m)=1, u primitive in F∗2n

F12 +a(uqx+ xqu)22i(xq + x)2i + b(xq + x)2i+1 X2i+1 + aX + b [51]
has no solution over F2m

n = 2m = 10, (a, b, c) = (β, 0, 0), i = 3, k = 2,F∗4 = 〈β〉
F13 x3 + ax2k(2i+1) + bx3·2m + cx2n+k(2i+1) n = 2m,m odd, 3 6 |m, (a, b, c) = (β, β2, 1), [25]

F∗4 = 〈β〉, i ∈ {m− 2,m, 2m− 1, (m− 2)−1 mod n}
u[(uqx+ xqu)2i+1 + (uqx+ xqu)(xq + x)2i + (xq + x)2i+1] q = 2m, n = 2m, gcd(3i,m)=1,

F14 +(uqx+ xqu)22i+1 + (uqx+ xqu)22i(xq + x) + (xq + x)22i+1 u primitive in F∗2n [41]
u[(uqx+ xqu)2i+1 + (uqx+ xqu)(xq + x)2i + (xq + x)2i+1] m odd, q = 2m, n = 2m, gcd(3i,m)=1,

F15 +(uqx+ xqu)23i(xq + x) + (uqx+ xqu)(xq + x)23i
u primitive in F∗2n [41]

that is, they are AB when n is odd and for n even the Walsh coefficients take
the values in the set {0,±2n2 ,±2n+2

2 }.
The inverse function is APN when n is odd and differentially 4-uniform

when n is even. The inverse APN function is not AB since it has the algebraic
degree n − 1 while the algebraic degree of any AB function is not greater
than (n + 1)/2 (see [32]). The Walsh spectrum of the inverse function was
determined by Lachaud and Wolfmann in [47]. If n is even, then it consists
of all integers s = 0 mod 4 in the range −2n2 +1, ..., 2n2 +1 and, therefore, the
inverse function has the best known nonlinearity for n even.

The last case of APN power functions was found in 1999 by Canteaut and
Dobbertin, and proven by Dobbertin in 2000. It is shown in [28] that this
function is not AB, because at least one of its Walsh transform values is not
divisible by 22n/5+1. A conjecture has been recently proposed in [16] on the
set of those Walsh values of the Dobbertin function, depending on the parity
of n. It was conjectured by Dobbertin in 2000 that the lists of APN and AB
power functions were complete and this conjecture stays open up to now.
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APN power functions are permutations for n odd and 3-to-1 for n even
(as proved by Dobbertin and reported in [31]). Power APN and AB functions
are considered up to cyclotomic equivalence since according to [34] two power
functions are CCZ-equivalent if and only if they are cyclotomic equivalent. It
is easy to observe that cyclotomic equivalence preserves the pair of algebraic
degrees of the power function and its inverse (when it exists). Hence, the 6
known families of APN power functions are pairwise CCZ-inequivalent since,
in general, they (and their inverses when they exist) have different algebraic
degrees.

One more reason why the first found APN functions were power functions
is that checking the APN and AB properties of power functions is easier
than in the case of arbitrary polynomials. If F is a power function, that is
F (x) = xd, then F is APN if and only if the derivative D1F is a two-to-one
mapping. Indeed, since for any a 6= 0

DaF (x) = (x+ a)d + xd = adD1F (x/a)

then DaF is a two-to-one mapping if and only if D1F is two-to-one. Besides,
the function F (x) = xd is AB if and only ifWF (a, b) ∈ {0,±2m+1

2 } for a ∈ F2,
b ∈ F∗2n , since WF (a, b) = WF (1, a−db) for a ∈ F∗2n .

The first successful attempt to construct non-power APN functions was by
enforcing the CCZ-equivalence [23]. Before that work, APN and AB functions
were considered up to EA-equivalence and taking inverses for permutations.
In [23] it was proven that CCZ-equivalence is more general than the two afore-
mentioned transformations when applied to the Gold power APN functions.
This led to the first classes of APN and AB functions EA-inequivalent to
power functions which was also the first evidence of existence of such func-
tions. In addition, it disproved a conjecture from [32] that all AB functions
are EA-equivalent to permutations [23]. Further it was also proven in [23]
that the number of different (up to EA-equivalence) classes of AB functions
is infinite. The recent works [18,21] show that CCZ-equivalence can be more
general than EA-equivalence together with inverse transformation not only
for Gold power functions but also for other quadratic APN polynomials and
for APN polynomials CCZ-inequivalent to both quadratic and power func-
tions. However, it is conjectured in [18] (based on computational data on
small dimensions) that for non-Gold power APN functions, CCZ-equivalence
coincides with EA-equivalence taken together with the inverse transforma-
tion. For the case of the inverse function, such a conjecture has been recently
confirmed in [46].

Using CCZ-equivalence for constructing APN functions turned out to be a
very fruitful idea: it did not only allow to increase the algebraic degree of APN
functions but also to construct APN permutations in even dimensions and by
that to solve one of the main and hardest problems related to APN functions.
Indeed, in 2006, Dillon and his team applied CCZ-equivalence to a quadratic
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APN mapping in dimension 6 and obtained the first and the only currently
known APN permutation in even dimension [11]. An interesting fact is that
quadratic APN functions, and more generally APN functions with quadratics
components, in even dimension are never permutations because they have
(partially-)bent component functions (see [27,50]) but CCZ-equivalence allows
to increase the algebraic degree and can mix the Walsh spectrum such that
none of the component functions of the resulted map are (partially-)bent.

By construction, the APN and AB polynomials of [23] were CCZ-
equivalent to power functions. The first idea leading to APN functions CCZ-
inequivalent to power functions, introduced in [38], was to consider a sum of
two power functions, and more exactly of two Gold APN maps, which led to
two sporadic examples in dimensions 10 and 12. This idea was successfully
implemented mathematically in [20] for constructing the first infinite families
of APN and AB functions: two families of APN binomials CCZ-inequivalent
to power functions for dimensions n divisible by 3 and 4. These classes of
binomials proved the existence of AB functions CCZ-inequivalent to power
functions. Besides, they were the first counterexamples for the conjecture of
[32] on nonexistence of quadratic AB functions inequivalent to the Gold maps
[20].

Moreover, these families of binomials have also contributed to the study
of so-called crooked functions. An (n, n)-function F is called crooked if F (x)+
F (y)+F (z)+F (x+y+z) 6= 0 for any three distinct elements x, y, z, F (0) = 0,
and F (x) + F (y) + F (z) + F (x+ a) + F (y + a) + F (z + a) 6= 0 for any a 6= 0
and x, y, z arbitrary [3]. Note, that crooked mappings are permutations, since
if F (x) = F (x + a) for some a 6= 0, then considering z = y = x, we would
have F (x) +F (y) +F (z) +F (x+a) +F (y+a) +F (z+a) = 0. On one hand,
every crooked function gives rise to a distance regular rectagraph of diameter
3, and on the other hand every quadratic AB permutation is crooked [3].
The converse is not known, that is, whether a crooked function is necessarily
a quadratic AB permutation. A rectagraph is a graph without triangles in
which every pair of vertices at distance 2 lies in a unique 4-cycle. There
are not too many constructions of rectagraphs known, especially rectagraphs
of small diameter. Hence, the construction of such functions would provide
not only interesting building blocks for symmetric cryptosystems but would
also provide new distance regular rectagraphs. Nowadays only two families of
crooked functions are known: one is the family of Gold functions with n odd
and the other one is the family of APN binomials with n odd and divisible by
3 from [20].

The idea of adding new quadratic terms to a known APN function, to
construct a new one, was further applied in [7,8,25]. In the first two papers the
authors generalize one of the two families of APN binomials (for n divisible by
3) to trinomials and quadrinomials. An infinite class of APN quadrinomials
constructed in the third paper, covered the APN binomial x3 + ax36 over
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F10
2 (where a has the order 3 or 93) of [38], which was an open case for a

generalization into a family since 2006.
In [21], a family of APN and AB functions x3 + Tr(x9) over Fn2 was con-

structed using an observation that for any APN function F and any Boolean
function f the sum F + f can have differential uniformity at most 4. The
functions of this family served as the first examples of APN and AB poly-
nomials CCZ-inequivalent to power functions whose all coefficients were in
F2. Moreover it is still the only family of APN and AB polynomials CCZ-
inequivalent to power functions which is defined for all n (recall that in case
of power APN and AB functions only the Gold function x3 possesses this
property). Although simple, the idea to consider the sum F + f have not yet
provided any further infinite families of APN functions. However, following
the aforementioned work, functions of a more general form

F (x) = L1(x3) + L2(x9)

where L1 and L2 are linear functions from F2n to itself, were considered in
[22]. In particular, it was proven there that, if n is even and the function
L1(x) + L2(x3) is a permutation of F2n , then F is APN. This approach gave
two more infinite families of APN and AB functions F5 and F6 in Table 2.

Note that if the output of F (x) = x3 +Tr(x9) is decomposed over an F2-
basis of F2n , in which the (say) last element equals the unit 1 of F2n , function
x3 + Tr(x9), now valued in Fn2 , differs from x3 by only its last coordinate
function. This led in [39] (on the basis of an idea due to Dillon) to the so-
called switching construction, in which a known APN function F is changed
into a function G by modifying one of its coordinate functions. If we view
the functions as valued in F2n , we have the following equivalent definition:
functions F and G belong to the same switching class if there exist an element
u ∈ F∗2n and a Boolean function f over F2n such that G(x) = F (x) + uf(x).
It is easily seen that if F is APN, then G has differential uniformity at most
4. In [39] an APN (6,6)-function CCZ inequivalent to power functions and
to quadratic functions was deduced by computer search. This is the only
known function with such properties, but note that this APN function had
been in fact previously found in [9] (the authors had however missed that it is
inequivalent to quadratic functions). It seems fair to call it the Brinkmann-
Leander-Edel-Pott function. It equals, given α primitive:

x3 + α17(x17 + x18 + x20 + x24) + α14 Tr2
1(x21) + α14 Tr3

1(α18x9)
+α14 Tr6

1 (α52x3 + α6x5 + α19x7 + α28x11 + α2x13).

As shown in [10], one of the ways to construct APN polynomials is to
consider quadratic hexanomials of the type

(3.1) F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q
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over F22m with q = 2m. These polynomials are good candidates for being dif-
ferentially 4-uniform, and potentially APN. This approach gave new examples
of quadratic APN functions over F26 and F28 which are CCZ-inequivalent to
power functions [10]. Later, several generalizations of this method were pro-
posed in [19], in particular, the following infinite family, corresponding to F3,
was deduced:

Theorem 3.1. Let n and i be any positive integers, n = 2m, gcd(i,m) =
1, and c, d ∈ F2n be such that d /∈ F2m . Then, the hexanomial

H(x) = dx2i(2m+1) + x(2m+1) + (x2i+1 + x2m(2i+1) + cx2m+i+1 + c2
m

x2i+2m)
is APN if and only if the equation

x2i+1 + cx2i + c2
m

x+ 1 = 0
has no solution x such that x2m+1 = 1.

While trying to find an equivalence notion that preserves the differen-
tial uniformity and is more general than CCZ-equivalence, the authors of [13]
obtained instead a new construction method which they called isotopic shift
and which led to the APN family F11. They considered the so-called isotopic
equivalence which is defined for quadratic planar functions only, where a func-
tion F from Fpn to itself is planar if F (x + a) − F (x) is a permutation for
every non-zero a ∈ Fpn (p must be odd then). Isotopic equivalence is known
to be more general than CCZ-equivalence and, for planar functions, CCZ-
equivalence coincides with EA-equivalence [24]. Isotopic equivalence cannot
be extended directly to APN functions in fields of even characteristic but
may be potentially used as an analogue with some modifications or restric-
tions. As a result of this study the isotopic shift construction is obtained:
for a function F and a linear function L, the isotopic shift of F by L is the
map FL(x) = F (x + L(x)) − F (x) − F (L(x)). Whether it can lead to an
equivalence relation, by finding more restrictions, is a matter of further inves-
tigations. However, it turned out that this construction may be also used for
construction of new (up to isotopic equivalence) planar functions [15]. Some
generalisations of the isotopic shift constructions are proposed in [14]. In
one of them an isotopic shift is applied to Gold-like functions which gives
FL(x) = x2iL(x) + xL(x)2i but two different linear maps L1 and L2 are used
instead of one L, that is, x2iL1(x) + xL2(x)2i . For the second generalisation,
functions FL with L not necessarily linear are considered.

The so-called binomial construction of APN functions which led to several
infinite families of APN functions (F10, F12, F14 and F15) was first intro-
duced in [29] and further developed in [30,41,51,54]. It is considered in details
in the following sections.

Note that in addition to the APN families in Table 2, there have been
several other families of quadratic APN functions constructed. However, due
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to the work [18] they were identified as equivalent to previously known ones.
There have been also several other interesting construction methods for APN
functions but currently they are known to work only in small dimensions
[2, 52,53].

4. Equivalence between the APN hexanomials and Carlet’s
bivariate APN construction

In [29], the third author of the present paper introduced a method for
constructing APN functions in bivariate form, that is, he considered func-
tions F defined over F22m given by F (x, y) = (B(x, y), G(x, y)), where F22m

is decomposed as F2m × F2m . Since all the known APN functions were in
univariate form, the idea was that considering bivariate form could provide
new functions up to equivalence. A second ingredient was to take for B a
bent function from F2m × F2m to F2m (while G could be any function from
F2m ×F2m to F2m). Indeed, such function F is APN if and only if the system{

B(x+ a, y + b) +B(x, y) = c

G(x+ a, y + b) +G(x, y) = d

has 2 or 0 solutions for any (a, b) 6= (0, 0) and c, d ∈ F2n , and taking B bent
made that the first equation in this system has the same number of solutions
for every nonzero (a, b) and every (c, d). Moreover, considering the simplest
Maiorana-McFarland function B(x, y) = xy, where the product is in the field
F2m , then from [29] we have the following conditions for F to be APN:

• the function x 7→ G(x, y) is APN for any fixed y;
• the function y 7→ G(x, y) is APN for any fixed x;
• the function G(x, bx+ c) is APN for any b and c.
If G is also quadratic, then we can assume c = 0. From this, the following

class of APN functions was deduced in [29].

Theorem 4.1. Let n = 2m; let i, j be such that gcd(i− j,m) = 1 and let
s, t 6= 0, u and v in F2m . Set G(x, y) = sx2i+2j +ux2iy2j + vx2jy2i + ty2i+2j .
Then F (x, y) = (xy,G(x, y)) is APN if and only if the polynomial G(X, 1) =
sX2i+2j + uX2i + vX2j + t has no zero in F2m .

This construction can be simplified as shown by Taniguchi.

Proposition 4.2 ([51]). Let n = 2m. The function F (x, y) =
(xy,G(x, y)), with G(x, y) = sx2i+2j + ux2iy2j + vx2jy2i + ty2i+2j , is equiva-
lent to F ′(x, y) = (xy,G′(x, y)) with G′(x, y) = x2k+1 + axy2k + by2k+1 with
k = i− j, a ∈ {0, 1} and b in F?2m .

In [29], the third author of the present paper showed that the hexanomials
introduced in [19] can be seen as a case of the APN functions in Theorem 4.1.
The same was proved for trinomials introduced in the same paper [19] and
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for multinomials introduced in [7], but in [17], it has been shown that these
two classes are contained in the class of the hexanomials. In fact, we will
show in the following that the construction of Theorem 4.1 coincides with the
hexanomials’ class.

From the results in [17] we have that the family of APN hexanomial
introduced in [19] (see Theorem 3.1) can be represented as a pentanomial:

Theorem 4.3. Let n and i be any positive integers, n = 2m, gcd(i,m) =
1, and c, d ∈ F2n be such that d /∈ F2m . Then, the pentanomial

P (x) = dx2m+1 + x2i+1 + x2m(2i+1) + cx2m+i+1 + c2
m

x2i+2m ,

is APN if and only if the equation

x2i+1 + cx2i + c2
m

x+ 1 = 0

has no solution x such that x2m+1 = 1. Moreover, the class of APN hex-
anomials of Theorem 3.1 and the class of these APN pentanomials coincide.

Hence, when proving the equivalence between the APN functions as in
Theorem 4.1 and the functions in the class of APN hexanomials, we will rather
consider the pentanomials given in Theorem 4.3.

Theorem 4.4. Let n = 2m. Let F (x, y) = (xy,G(x, y)) with G(x, y) =
x2i+1 + axy2i + by2i+1 with gcd(i,m) = 1, a ∈ {0, 1} and b in F?2m be APN.
Then F is EA-equivalent to an APN function in the hexanomial class as in
Theorem 3.1.

Proof. Let us consider first the case m odd. Since F is APN, the poly-
nomial X2i+1 + aX + b has no zero in F2m . In this case a = 1 otherwise we
have no possible choice for b.

Fixing an element β /∈ F2m , any element of F2n can be represented as
z = x+βy, where x, y ∈ F2m , and then we can write x = β2mz+z2mβ

β2m+β and y =
z+z2m

β2m+β . We then substitute z′ = z/(β2m+β) and we obtain x = β2mz′+z′2mβ
and y = z′ + z′2

m . So, substituting x and y (and abusing notation), the
function F is EA-equivalent to the function in univariate form

F ′(x) =β(β2mx+ x2mβ)(x+ x2m) + (β2mx+ x2mβ)2i+1+

(β2mx+ x2mβ)(x+ x2m)2i + b(x+ x2m)2i+1.

Now, F ′ is EA-equivalent to

F ′′(x) =(β2m+1 + β2)x2m+1 + (β2i+1 + β + b)2mx2i+1 + (β2i+1+

β + b)x2m(2i+1) + (β2m+i+1 + β + b)x2m+2i+

(β2m+i+1 + β + b)2mx2m+i+1.
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Now, if i is even, then gcd(i, n) = gcd(2i, n) = 2 and

gcd(2i + 1, 2n − 1) = gcd(22i − 1, 2n − 1)
gcd(2i − 1, 2n − 1) = 2gcd(2i,n) − 1

2gcd(i,n) − 1
= 1,

thus x2i+1 is a permutation over F2n , implying that there exists λ ∈ F2n such
that λ2i+1 = (β2i+1 + β + b)2m . Note that we can always choose β such
that β2i+1 + β + b 6= 0 and thus λ 6= 0 (see for instance [6]). So, evaluating
F ′′(1/λx) we obtain the function

F̃ (x) = dx2m+1 + x2i+1 + x2m(2i+1) + cx2m+2i + c2
m

x2m+i+1,

for some d and c such that d /∈ F2m . Now, since the function F̃ is APN, from
Theorem 4.3, we have that

x2i+1 + cx2i + c2
m

x+ 1 = 0
has no solution x such that x2m+1 = 1 and this function is EA-equivalent to
an APN hexanomial as in Theorem 3.1.

Similarly, if i is odd, we have that gcd(i + m,n) = gcd(2(i + m), n) = 2
and the mapping x2m+i+1 permutes F2n , implying that there exists λ ∈ F2n

such that λ2m+i+1 = (β2m+i+1 +β+b)2m . As above, we can assume β2i+m+1 +
β + b 6= 0. Evaluating F ′′(1/λx) and letting j = m + i we obtain the APN
function

F̃ (x) = dx2m+1 + x2j+1 + x2m(2j+1) + cx2m+2j + c2
m

x2m+j+1,

and, as above, we conclude that this is EA-equivalent to an APN function in
the hexanomial class.

Now, consider the case m even. As before, we obtain the univariate
polynomial equivalent to F

F ′′(x) =(β2m+1 + β2)x2m+1 + (β2i+1 + aβ + b)2mx2i+1+

(β2i+1 + aβ + b)x2m(2i+1) + (β2m+i+1 + aβ + b)x2m+2i+

(β2m+i+1 + aβ + b)2mx2m+i+1.

Since m is even we have that gcd(3, 2m + 1) = 1 and then we can divide
the set F?2n as

F∗2n = U ∪ ρU ∪ ρ2U

with
U := {x2i+1 : x ∈ F?2n} = {x3 : x ∈ F?2n}.

and ρ = β2m+1 ∈ F2m .
Now, as before we can assume β2i+1 + aβ + b 6= 0 and thus we can have

three cases
• (β2i+1 + aβ + b)2m ∈ U ,
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• (β2i+1 + aβ + b)2m ∈ ρU ,
• (β2i+1 + aβ + b)2m ∈ ρ2U .

If we have the first case, the proof is completed. Indeed, there exists an
element λ such that λ2i+1 = (β2i+1 + aβ + b)2m and substituting x 7→ λ−1x
we will obtain a pentanomial as in Theorem 4.3.

Otherwise, suppose that (β2i+1 +aβ+b)2m ∈ ρU (or (β2i+1 +aβ+b)2m ∈
ρ2U) and multiply F ′(x) by ρ2 ∈ F2m (or multiply by ρ ∈ F2m) obtaining

F ′′(x) = d′x2m+1 + a′x2i+1 + a′2
m

x2m(2i+1) + b′x2m+i+1 + b′2
m

x2i+2m ,

with d′ /∈ F2m and a′ ∈ U . Let us consider an element λ such that λ2i+1 = a′,
then substituting x 7→ λ−1x we will obtain an APN pentanomial of Theo-
rem 4.3 which is EA-equivalent to a function in the hexanomial family.

Another interesting fact that can be proved for this construction is that
when the coefficient a is zero (thusm is even), for a fixed i coprime withm, we
have that for any possible b we obtain the same function (up to equivalence).
This has been also recently proved in [45] for the more general case of the
Zhou-Pott family which includes this special case. Recall their result that
any function F (x, y) = (xy, x2i+1 +by2i+1) is APN if and only if b lies outside
the set {x2i+1 : x ∈ F?2n}, that is, is not a cube (see Theorem 5.1 in the next
section).

Proposition 4.5. Let n = 2m with m even, and i such that gcd(i,m) =
1. Let b and b′ not in the set U := {x2i+1 : x ∈ F?2n} = {x3 : x ∈ F?2n}.
Then F (x, y) = (xy, x2i+1 + by2i+1) and F ′(x, y) = (xy, x2i+1 + b′y2i+1) are
EA-equivalent.

Proof. We can partition the non cubic elements of F2n as bU ∪ b2U . So
first of all, note that if we substitute y by uy for any u 6= 0, then F (x, y) is
equivalent to the function F ′′(x, y) = (xy, x2i+1 + bu2i+1y2i+1) so if b′ ∈ bU ,
we have the equivalence.

Now, if we consider again F and we divide by b the part x2i+1 + by2i+1,
we obtain the equivalent function F ′′(x, y) = (xy, 1

bx
2i+1 + y2i+1). Now, we

can apply the linear transformation L(x, y) = (by, x), so

F ′′(L(x, y)) = (bxy, x2i+1 + b2
i

y2i+1) ∼EA (xy, x2i+1 + b2
i

y2i+1).

Since i is odd we have that b2i ∈ b2U . So, with similar argument as above if
b′ ∈ b2U we obtain that F is EA-equivalent to F ′.
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5. On bivariate constructions of APN quadratic functions

Following the construction of Theorem 4.1, other two families of functions
have been constructed by Zhou and Pott [54] and Taniguchi [51] and are
presented here in Theorems 5.1 and 5.3, respectively.

Theorem 5.1 ([54]). Let n = 2m, m even, and let i be such that
gcd(i,m) = 1. Set G(x, y) = x2i+1 +αy2j(2i+1). Then F (x, y) = (xy,G(x, y))
is APN if and only if α ∈ {u2i+1(t2i + t)1−2j : u, t ∈ F2m}. In particular if j
is even, then F is APN if and only if α is not a cube.

Remark 5.2. If j is not even, then S = {u2i+1(t2i + t)1−2j : u, t ∈
F2m} = F2m and the family of Zhou-Pott is not defined then. Indeed, since
m is even, we can partition F?2m as U ∪ dU ∪ d2U , where U is the set of all
cubes (different from zero) and d /∈ U . Since t2i + t are the elements with null
trace we have that t2i + t = 1 for some t, and thus U ⊂ S. We need to show
that there exist (t2i + t)1−2j ∈ dU and (t′2i + t′)1−2j ∈ d2U for completing
the proof. Suppose that does not exist (t2i + t)1−2j ∈ dU , that implies also
there does not exist (t′2i + t′)1−2j ∈ d2U . Indeed, if y ∈ d2U then y2 ∈ dU
and, supposing (t′2i + t′)1−2j ∈ d2U we would have (t′2i+1 + t′2)1−2j ∈ dU ,
and Tr(t′2i+1 + t′2) = Tr(t′2i + t′) = 0. Thus, if for any x of null trace we
have that x1−2j /∈ dU , then we obtain x1−2j ∈ U for all x of null trace. Since
j is odd we have 3 - 2j −1 and so x ∈ U . This implies that U ∪{0} contains a
vector space of dimension m− 1 which is not possible (|U | = (2m− 1)/3). So,
the family of Zhou-Pott can be defined only for j even (this was also noted in
[1]).

The family introduced by Taniguchi in [51] is given by the following.

Theorem 5.3 ([51]). Let n = 2m, and let i be such that gcd(i,m) = 1.
Set G(x, y) = x22i+23i + ax22i

y2i + by2i+1 with a ∈ {0, 1}. Then F (x, y) =
(xy,G(x, y)) is APN if and only if X2i+1 + aX + b has not zero in F2m .

Both Zhou-Pott and Taniguchi families are particular cases of a more
general construction defined by the third author of the present paper in [30].

Theorem 5.4. Let n = 2m, and let i be such that gcd(i,m) = 1. Set
G(x, y) = P (x2i+1)+Q(x2iy)+R(xy2i)+S(y2i+1), with P,Q,R and S linear
functions. Then, F (x, y) = (xy,G(x, y)) is APN if and only if for all (c, d) 6=
(0, 0), Tc,d(Y ) = P (c2i+1Y ) +Q(c2idY ) +R(cd2iY ) + S(d2i+1Y ) satisfies:

• if m is odd, then Tc,d is bijective;
• if m is even, then ker(Tc,d) ∩ {u2i+1(t2i + t) : u, t ∈ F2m} = {0}.

Remark 5.5. The condition on the function Tc,d is deduced from the fact
that G(cx, dx + e) equals Tc,d(x2i+1) and from Lemma 4.1 in [30]. However,
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also form even we need Tc,d to be a permutation. Indeed, for any F : Fn2 → Fn2
APN and L linear, L◦F is APN if and only if L is a permutation. If L is not a
permutation then without loss of generality L is a linear functions from Fn2 →
Fm2 with m < n. Thus, if G = L ◦ F is APN then G′(x) = (G(x), 0, ..., 0) :
Fn2 → Fn2 is also APN. Now, G′(x + a) + G′(x) = (G(x + a) + G(x), 0, ..., 0)
and since G is APN then also G′ is APN. But this cannot be possible since an
APN map has nonlinearity always different from 0 (see [31]). The same fact
can be deduced by Remark 5.2 since we proved that {u2i+1(t2i + t) : u, t ∈
F2m} = F2m .

We can observe immediately that P and S are permutations (case c or
d equal to 0). Moreover, we can restrict the exponent i < m/2. Indeed, if
i > m/2, then substituting (x, y) 7→ (x2m−i , y2m−i) and composing with the
linear function L(x, y) = (x2i , y), we will obtain an equivalent function, that
is

L ◦ F (x2m−i , y2m−i) = (xy, P (x2j+1) +Q(xy2j ) +R(x2jy) + S(y2j+1)),

where j = m− i < m/2.

In the following we will consider the particular case where P,Q,R and S
are monomial linear functions, i.e.

G(x, y) = a(x2i+1)2k + b(x2iy)2h + c(xy2i)2r + d(y2i+1)2s .

Note that we can suppose k = 0 since, otherwise, we can raise G to the power
of 2m−k. Moreover a, d 6= 0 since we need P and S permutations. That is, we
can consider the function

G(x, y) = x2i+1 + a(x2iy)2h + b(xy2i)2k + c(y2i+1)2r .

We can also restrict a ∈ {0, 1} since we can apply the substitution y 7→
(1/a)2−hy. In the case a = 0, we can restrict in the same way b ∈ {0, 1}.
Thus we have the following result.

Theorem 5.6. Let

F (x, y) = (xy, a(x2i+1)2k + b(x2iy)2h + c(xy2i)2r + d(y2i+1)2s)

be an APN function over F22m . Then, F is EA-equivalent to one of the
following functions

F1(x, y) = (xy, x2i+1 + x2i+hy2h + b′x2ky2i+k + c′y2i+r+2r ),

F2(x, y) = (xy, x2i+1 + x2ky2i+k + c′y2i+r+2r ),

F3(x, y) = (xy, x2i+1 + c′y2i+r+2r ),

with c′ 6= 0.
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Corollary 5.7. The class of functions F3 in Theorem 5.6 is the Zhou-
Pott class (and the Taniguchi class for the case a = 0). The class of functions
F2 in Theorem 5.6 contains the Taniguchi APN functions for the case a = 1.

Proof. From the result of Zhou and Pott it follows that F3(x, y) =
(xy, x2i+1 + c′y2i+r+2r ) is APN over F22m if and only if m is even, c′ is not a
cube and r is even. So, F3 is exactly the Zhou-Pott case, which contains the
Taniguchi APN functions (i.e. F (x, y) = (xy, x22i+23i + ax22i

y2i + by2i+1))
for a = 0.

Now, consider the function F (x, y) = (xy, x22i+23i + x22i
y2i + by2i+1),

which is the Taniguchi function with a = 1. Let L(x, y) = (y, x). Then,

F ◦ L(x, y) = (xy, bx2i+1 + x2iy22i
+ y22i+23i

)

∼EA (xy, x2i+1 + b−1x2iy22i
+ b−1y22i+23i

).

Applying the substitution y 7→ b2
−2i
y, and then dividing the left part by b2−2i ,

the last function is equivalent to (xy, x2i+1 + x2iy22i + b2
i

y22i+23i), which is
of type F2.

Proposition 5.8. Let n = 2m, and i be such that gcd(i,m) = 1. If

F1(x, y) = (xy, x2i+1 + x2i+hy2h + bx2ky2i+k + cy2i+r+2r )

with b = 0 and h = m−i, r = m−2i is APN over F2n , then it is EA-equivalent
to the Taniguchi case.

Proof. We have

F1(x, y) = (xy, x2i+1 + (x2iy)2−i + c(y2i+1)2−2i
).

Thus, using the linear permutations L1 : (x, y) 7→ (x2−i , y2−i) and L2 :
(x, y) 7→ (x2i , y) we obtain

L2 ◦ F1 ◦ L1(x, y) = (xy, x2−i+1 + (xy2−i)2−i + c(y2−i+1)2−2i
).

As noted above this is a Taniguchi APN function.

6. Other instances of APN functions from Carlet’s
construction

We give a necessary condition for a function F1 with h = m/2, k, r = 0
to be APN.

Lemma 6.1. Let n = 2m with m > 2 even. Let i coprime with m. If

F (x, y) = (xy, x2i+1 + x2i+m/2
y2m/2

+ bxy2i + cy2i+1)

is APN, then cX2i+1 + bX2i +X2m/2 + 1 has no zero in F2m .
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Proof. F (x, y) = (xy,G(x, y)) with G(x, y) = x2i+1 + x2i+m/2
y2m/2 +

bxy2i + cy2i+1. Since F1 is APN we have that G satisfies the following condi-
tions

• the function x 7→ G(x, y) is APN for any fixed y;
• the function y 7→ G(x, y) is APN for any fixed x;
• the function G(x, βx+ γ) is APN for any β and γ.

From the third condition we have (we can consider γ = 0 since G is quadratic)

G(x, βx) = (cβ2i+1 + bβ2i + 1)x2i+1 + β2m/2
x2m/2(2i+1).

If we consider x ∈ F2m/2 , we obtain the function F ′(x) = (cβ2i+1 + bβ2i + 1 +
β2m/2)x2i+1. From this we have immediately that if there exists β such that
cβ2i+1 + bβ2i + 1 + β2m/2 = 0, then for any a ∈ F?2m/2 and for any x ∈ F2m/2

F ′(x) + F ′(x+ a) = 0

which would imply that G(x, βx) is not APN.

The previous result can be used for filtering the search of the coefficients
b and c.

For the new functions we have the following necessary and sufficient con-
dition for the APNness.

Theorem 6.2. Let n = 2m with m even, and let i < m/2 be such that
gcd(i,m) = 1. Then,

F (x, y) = (xy, x2i+1 + x2i+m/2
y2m/2

+ bxy2i + cy2i+1)

is APN if and only if (cX2i+1 + bX2i + 1)2m/2+1 + X2m/2+1 has no zero in
F2m .

Proof. As in the previous proof we have that F is APN if and only if
the function G(x, βx) = (cβ2i+1 + bβ2i + 1)x2i+1β2m/2

x2m/2(2i+1) is APN for
any β.

Note that G(x, βx) = Lβ(x2i+1) where

Lβ(x) = (cβ2i+1 + bβ2i + 1)x+ β2m/2
x2m/2

.

As noted in Remark 5.5, we have that Lβ(x2i+1) is APN if and only if Lβ is
a permutation of F2m . Denoting by A = cβ2i+1 + bβ2i + 1 and B = β2m/2 ,
this is equivalent to have [

A B2m/2

B A2m/2

]
with determinant different from 0. Thus, Lβ is a bijection for any β if and
only if (cX2i+1 + bX2i + 1)2m/2+1 +X2m/2+1 has no zero in F2m .
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From the computational results we have that for n = 8 the functions as
in Theorem 6.2 can produce a new APN function which is CCZ-inequivalent
to the function given in the tables in [53] and in [52], and in particular which
is not included in any of the known families.

Remark 6.3. It is easy to note that if we apply the linear transformation
L(x, y) = (y, x) to a function as in Theorem 6.2 we obtain

F (x, y) = (xy, cx2i+1 + bx2iy + x2m/2
y2i+m/2

+ y2i+1).

In the case b 6= 0, this is equivalent to a function of the first type

F ′1(x, y) = (xy, x2i+1 + x2iy + b′x2m/2
y2i+m/2

+ c′y2i+1).

If b = 0 we have that F is equivalent to a function of type

F ′2(x, y) = (xy, x2i+1 + x2m/2
y2i+m/2

+ c′y2i+1).

6.1. Computational results. We checked the APN functions in small dimen-
sions, obtained from the cases given in Theorem 5.6, that is,

F1(x, y) = (xy, x2i+1 + x2i+hy2h + bx2ky2i+k + cy2i+r+2r ),

F2(x, y) = (xy, x2i+1 + x2ky2i+k + cy2i+r+2r ),

F3(x, y) = (xy, x2i+1 + cy2i+r+2r ).

In the computational results we do not consider the case of F3 which is rep-
resented only by the Zhou-Pott family. As noted in the previous section we
can consider i < m/2 coprime with m. Moreover, when h, k, r = 0 then the
APN function is equivalent to an APN function of the hexanomial class.

6.1.1. n = 2 · 4. For this dimension we can consider only i = 1.
CASE F1:

b 6= 0
For h = 0, k = 2, r = 0 and h = 2, k = 0, r = 0, we have that these two
cases are equivalent to each other (we can use the linear permutation
(x, y) 7→ (y, x)) and the last case (h = 2, k = 0, r = 0) produces a new
APN function of the form as in Theorem 6.2.

b = 0
For h = 3, r = 2 we have the Taniguchi APN functions (see Proposi-
tion 5.8).

CASE F2:
c 6= 0

When k = 1, r = 2, we have the Taniguchi APN functions.
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6.1.2. n = 2 · 5. For this dimension we can consider only i = 1, 2.
CASE F1:

b 6= 0
In this case we obtain only the hexanomial APN functions.

b = 0
With i = 1 and h = 4, r = 3, we have the Taniguchi APN functions.
With i = 2 and h = 3, r = 1, we have the Taniguchi APNfunctions.

CASE F2:
c 6= 0

With i = 1 and k = 1, r = 2 we have the Taniguchi APN functions.
With i = 2 and k = 2, r = 4 we obtain the Taniguchi APN functions.

6.1.3. n = 2 · 6. For this dimension we can consider only i = 1.
CASE F1:

b 6= 0
In this case we obtain only the hexanomial APN functions.

b = 0
For h = 2, r = 4 we have APN functions which could be inequivalent
to the known cases.
For h = 3, r = 0 we obtain functions as in Theorem 6.2.
For h = 5, r = 4 we have Taniguchi APN functions.

CASE F2:
c 6= 0

k = 1, r = 2 is Taniguchi
k = 3, r = 0 is equivalent to a function as in Theorem 6.2.k = 4, r = 2
is equivalent to the second case for b = 0.

6.1.4. n = 2 · 8. For this dimension we can consider only i = 1, 3.
CASE F1:

b 6= 0
In this case we obtain only the hexanomial APN functions.

b = 0
i = 1: h = 7, r = 6 we have Taniguchi APN functions.

CASE F2:
c 6= 0

i = 1: k = 1, r = 2 we have Taniguchi APN functions.
i = 3: k = 3, r = 6 we have Taniguchi APN functions.
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7. On the bivariate construction using projective polynomials

In [29], the third author of the present paper investigates over F26 the
bivariate construction considering bent functions of the form B(x, y) = sx3 +
ty3 +ux2y+ vxy2. In particular, the APN function F (x) = (B(x, y), G(x, y))
was found (in collaboration with Gregor Leander) where

B(x, y) = x3 + y3 + x2y + α9xy2,

G(x, y) = α54x5 + α54xy4 + α45y5,

where α is a primitive element of F23 .
Switching the function F by the function

f(x, y) =α9x7 + α18x6y4 + α18x6y2 + α45x6y + α27x5y4+
α18x5y2 + α27x5y + α54x4y6 + α45x4y5 + α27x4y3+
α27x3y4 + α45x3y2 + α45x3y + α27x2y6 + α18x2y5+
x2y3 + α45xy6 + α36xy5 + α18xy3 + α27x6 + α45x4y2+
α54x4y + x3 + α9x2y4 + α54xy + α54y6 + α36y3,

that is, considering F ′(x, y) = (B(x, y), G(x, y) + f(x, y)), they obtained a
non-quadratic APN function, which is CCZ-equivalent to the function found
by Edel and Pott [39]. Note that f(x, y) = α9f ′(x, y), with f ′ a Boolean
function.

A classification of the cubic APN functions in dimension 6 with respect
to EA-equivalence is given in [26]. In particular, for the case of the non-
quadratic APN function its CCZ-equivalence class can be divided into 25
EA-equivalence classes, 10 containing functions of algebraic degree 3, and 15
containing functions of algebraic degree 4. Moreover, for this function CCZ-
equivalnece is more general than EA-equivalence together with the inverse
transformation [18].

Note that the functions B and G are both of the form

g(x, y) = axq+1 + bxqy + cxyq + dyq+1,

with q a power of 2. Polynomials of type Xq+1 + aXq + bX + c are called
also projective polynomials. We will call a polynomial of type axq+1 + bxqy+
cxyq + dyq+1 a bivariate projective (or bi-projective) polynomial.

So, a possible construction for APN functions is given by using a bivariate
construction with two bi-projective polynomials, that is

F (x, y) = (Ax2i+1+Bx2iy+Cxy2i+Dy2i+1, ax2j+1+bx2jy+cxy2j +dy2j+1).

Without loss of generality, we can suppose that A, a 6= 0. Indeed, we can
always consider a linear permutation L(x, y) = (α1x + α2y, β1x + β2y), and
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so we will get that the coefficients of x2i+1 and of x2j+1 in F ◦ L would be

Aα2i+1
1 +Bα2i

1 β1 +Cα1β
2i
1 +Dβ2i+1

1 , aα2j+1
1 + bα2j

1 β1 + cα1β
2j
1 + dβ2j+1

1 .

We can always choose α1 and β1 so that both the coefficients are not zero,
otherwise we would have that B(x, y) or G(x, y) are constantly equal to zero
(this would implies that F is not APN). Then, we can always choose α2 and
β2 so that L is a permutation.

So we can restrict to

B(x, y) = x2i+1 +Ax2iy +Bxy2i + Cy2i+1

and
G(x, y) = x2j+1 + ax2jy + bxy2j + cy2j+1.

Moreover, using similar steps as for the bivariate construction with
B(x, y) = xy, considered in the previous section, we can obtain the following
result.

Theorem 7.1. Let n = 2m and let

F (x, y) = (Ax2i+1 +Bx2iy+Cxy2i +Dy2i+1, ax2j+1 +bx2jy+cxy2j +dy2j+1)

be APN over F2n . Then F is EA-equivalent to one of the following functions

(7.1) f1(x, y) = (x2i+1+x2iy+Axy2i+By2i+1, x2j+1+ax2jy+bxy2j+cy2j+1)

(7.2) f2(x, y) = (x2i+1 + xy2i +Ay2i+1, x2j+1 + ax2jy + bxy2j + cy2j+1)

(7.3) f3(x, y) = (x2i+1 +Ay2i+1, x2j+1 + x2jy + axy2j + by2j+1)

(7.4) f4(x, y) = (x2i+1 +Ay2i+1, x2j+1 + axy2j + by2j+1)

where in (7.4) a = 0, 1. Moreover, we can suppose i, j ≤ m/2.

Recently, Göloğlu considered the construction of APN functions using
bi-projective polynomials [41], obtaining the following families.

Theorem 7.2 ([41]). The following functions are APN on F22m :
• If gcd(3i,m) = 1,

F1(x, y) = (x2i+1 + xy2i + y2i+1, x22i+1 + x22i
y + y22i+1);

• If gcd(3i,m) = 1, m odd

F2(x, y) = (x2i+1 + xy2i + y2i+1, x23i
y + xy23i

).
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Remark 7.3. We can see that F1 is of type (7.2), while F2 is EA-
equivalent to a function as in (7.1). Indeed, using the substitution L(x, y) =
(αx, x+ y) with α 6= 0, 1 such that α2i+1 + α+ 1 6= 0 we obtain

F2 ◦ L(x, y) =

((α2i+1+α+1)x2i+1+x2iy+(α+1)xy2i+y2i+1,(α23i
+α)x23i+1+α23i

x23i
y+αxy23i

).
Dividing the left term by α2i+1 + α + 1 and the right term by α23i + α, we
obtain a function as in (7.1).

Another function constructed using bi-projective polynomials has been
constructed also by Nikolay Kaleyski and Kangquan Li [43]. In particular,
they obtained the following result.

Theorem 7.4. Let (m, i) = (5 + 6l, 3 + 4l) or (7 + 6l, 5 + 4l) with some
integer l and

F (x, y) = (x2i+1 + x2iy + y2i+1, x2y + xy2).
Then F is an APN function over F22m .

However, these functions are included in the construction F2 of Göloğlu
as we prove below.

Proposition 7.5. The function defined in Theorem 7.4 is equivalent to
the function F2 in Theorem 7.2.

Proof. We will show the case (m, i) = (5 + 6l, 3 + 4l), the case (m, i) =
(7 + 6l, 5 + 4l) follows in a similar way.

First of all, note that m − i = 2 + 2l. So, applying L(x, y) = (x2m−i , y)
to the function F , we obtain

L ◦ F (x, y) = (x2m−i+1 + xy2m−i + y2m−i+1, x2y + xy2).
Now, it is easy to note that

23(m−i) = 26+6l ≡ 2 (mod 2m − 1).
Then,

L ◦ F (x, y) = (x2m−i+1 + xy2m−i + y2m−i+1, x23(m−i)
y + xy23(m−i)

),
and this last function is exactly the function F2 in Theorem 7.2.
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O poznatim konstrukcijama APN i AB funkcija i njihovom
medusobnom odnosu

Marco Calderini, Lilya Budaghyan i Claude Carlet

Sažetak. Ovaj članak posvećen je APN i AB funkcijama
koje su optimalne protiv diferencijalne i linearne kriptalize kada
se koriste kao S-kutije u blokovnim šiframa. One takoder imaju
brojne primjene u drugim granama matematike i teorije informa-
cija poput teorije kodiranja, dizajnu nizova, kombinatorici, algebri
i projektivnoj geometriji. U ovom članku dajemo pregled poz-
natih konstrukcija APN i AB funkcija, posebno onih koje vode
do beskonačnih klasa ovih funkcija. Medu njima, metoda bivaq-
rijantne konstrukcije, koja je prvi put predstavljena 2011. godine,
pokazala se kao jedna od najplodnijih. Od 2011. godine poz-
nato je da jedna od familija poteklih iz bivarijantne konstruk-
cije sadrži beskonačne familije izvedene Dillonovom heksanom-
skom metodom. Je li ta familija veća od one koju sadrži, os-
tao je otvoren problem koji se rješava u ovom članku. Nadalje
razmatramo opću bivarijantnu konstrukciju iz 2013. godine te
proučavamo njezin odnos prema nedavno pronadenoj beskonačnoj
familiji bivarijantnih APN funkcija.
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