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Abstract

This thesis is dedicated to exploring methods for deciding whether a power function

F (x) = xd is 0-APN. Any APN function is 0-APN, and so 0-APN-ness is a necessary

condition for APN-ness. APN functions are cryptographically optimal, and are thus an

object of significant interest. Deciding whether a given power function is 0-APN, or APN,

is a very difficult computational problem in dimensions greater than e.g. 30. Methods

which allow this to be resolved more efficiently are thus instrumental to resolving open

problems such as Dobbertin’s conjecture. Dobbertin’s conjecture states that any APN

power function must be equivalent to a representative from one of the six known infinite

families. This has been verified for all dimensions up to 34, and up to 42 for even

dimensions. There have, however, been no further developments, and so Dobbertin’s

conjecture remains one of the oldest and most well-known open problems in the area. In

this work, we investigate some methods for efficiently testing 0-APN-ness.

A 0-APN function can be characterized as one that does not vanish on any 2-

dimensional linear subspace. We determine the minimum number of linear subspaces

that have to be considered in order to check whether a power function is 0-APN. We

characterize the elements of this minimal set of linear subspaces, and formulate and im-

plement efficient procedures for generating it. We computationally test the efficiency of

this method for dimension 35, and conclude that it can be used to decide 0-APN-ness

much faster than by conventional methods, although a dedicated effort would be needed

to exploit this further due to the huge number of exponents that need to be checked in

high dimensions such as 35. Based on our computational results, we observe that most

of the cubic power functions are 0-APN. We generalize this observation into a “doubly

infinite” family of 0-APN functions, i.e. a construction giving infinitely many exponents,

each of which is 0-APN over infinitely many dimensions. We also present some compu-

tational results on the differential uniformity of these exponents, and observe that the

Gold and Inverse power functions can be expressed using the doubly infinite family.
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Introduction

In a world which has become increasingly more reliant on the Internet, the need to

provide secure communications is a natural goal to have in mind. Many protocols used

to provide encrypted communications over a computer network play a crucial role in our

everyday lives, such as TLS and SSL, in which symmetric block ciphers play a vital part.

Many block ciphers such as the Data Encryption Standard (DES) and the Advanced

Encryption Standard (AES) have been developed since the 70s. Practically all such

ciphers are built around mathematical objects called vectorial Boolean functions, and

the properties of these functions determine the security of the cipher against attacks

such as differential cryptanalysis and linear cryptanalysis. The study of Almost Perfect

Nonlinear (APN) functions has in large part been motivated by their use in the design of

symmetric block ciphers, as they provide optimal resistance to differential cryptanalysis.

Since they are cryptographically strong, APN functions behave unpredictably and

are hard to construct and analyze. For this reason, weaker notions such as 0-APN-ness

have been defined. Any APN function is 0-APN, but not necessarily vice-versa, and so

0-APN-ness constitutes a necessary condition that can sometimes be used to simplify

the search for and study of APN functions.

In this thesis we will study the properties of one of the simplest classes of 0-APN

functions, namely the 0-APN monomials, or power functions. A major factor motivat-

ing this study is one of the oldest open problems in the field of APN functions, namely

Dobbertin’s conjecture. Several infinite families of power APN functions have been found

at the time of writing of this thesis (see Table 1.1). The conjecture states that these are

the only APN monomials that exist up to equivalence. This conjecture has been ver-

ified computationally up to dimension n = 34, and up to n = 42 when n is even [5].

Proving or disproving Dobbertin’s conjecture has shown itself to be a very hard math-

ematical problem, and the computational time when trying to find a counter-example

grows exponentially with the dimension. Simply checking whether a given power func-
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tion is APN for dimensions above 34 is a very resource-heavy problem, and a natural

idea of making it more tractable would be to first check whether this power function is

0-APN. However, even this necessary condition for APN-ness turns out to be difficult to

decide computationally. In this thesis we develop some new ideas that can be used to

reduce the time needed for deciding 0-APN-ness of monomials.

In Chapter 1 we will introduce the relevant theory needed when studying APN func-

tions, with such properties as the differential uniformity and nonlinearity. We will also

look at the various ways to represent vectorial Boolean functions, such as the algebraic

normal form and univariate representation, and the various equivalence relations such as

CCZ-equivalence and cyclotomic equivalence that are used to classify such functions.

In Chapter 2 we investigate methods for efficiently determining whether a monomial

is 0-APN. We recall that a 0-APN monomial F can be characterized as one that does not

vanish on any two-dimensional linear subspace, and so determining whether F is 0-APN

amounts to checking all 2n−1 − 1 linear subspaces of F2n . We observe that only a small

proportion of linear subspaces need to be considered in practice when checking whether

a monomial is 0-APN, and we develop theoretical results for classifying and generating

this minimal set of linear subspaces.

In Chapter 3 we present a proof of concept implementation to see how well our method

works in practice for dimension n = 35. Using the work developed in the previous chapter

we implement an efficient algorithm for checking whether a function is 0-APN. While

this method is much faster than checking the definition, classifying all 0-APN power

functions in dimension 35 would require a dedicated effort because of the sheer amount

of exponents. For this reason we restrict ourselves to power functions of algebraic degree

3, 4, 5, and n − 3 and n − 4. We determine precisely which of them are 0-APN. From

these results, we observe that all of the cubics are 0-APN in dimension 35. Based on this

observation, in Chapter 4 we construct an infinite family of exponents each of which is

0-APN for infinitely many dimensions n, and we compute the differential uniformity for

some of these exponents in dimensions up to 13.
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Chapter 1

Background

In this chapter, we give the relevant background in the study of cryptographic Boolean

functions. We will introduce the concept of vectorial Boolean functions and some of their

cryptographic properties, namely the differential uniformity and nonlinearity. We will

then present the thesis’s primary object of study: the almost perfect nonlinear (APN)

functions, the partial 0-APN functions and the infinite families of power APN functions.

We will then look at a long standing conjecture by Hans Dobbertin on APN power

functions, which is the main motivation for this work.

1.1 Vectorial Boolean functions

An (n,m)-function, or equivalently a vectorial Boolean function, is a transformation

which takes an n-dimensional binary vector as input and outputs an m-dimensional

binary vector. Stated mathematically we say that a VBF (vectorial Boolean function)

F is a mapping between the vector spaces Fn
2 and Fm

2 where F2 is the finite field of

two elements. An (n, 1)-function is simply called a Boolean function, and an (n,m)-

function F can be thought of as a vector of m Boolean functions, each of which gives

one coordinate of the output. This can be done by expressing F as

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),

where the Boolean functions f1, . . . , fm are called the coordinate functions of F . We

call the non-zero linear combinations of a VBF’s coordinate functions the component

functions of F . We denote the component functions of an (n,m)-function F as Fb

for b ∈ Fm
2 and b ̸= 0. As an example, the component functions of an (n, 2)-function
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F = (f1, f2), would be F(1,0) = f1, F(0,1) = f2 and F(1,1) = f1 + f2.

One of the simplest ways to represent a VBF is simply to identify every possible

input vector with its corresponding output vector in a so-called truth table.

Example 1. In the following truth table we specify a (2, 3)-function F (x1, x2).

(x1, x2) F (x1, x2)

(0, 0) (0, 0, 0)

(0, 1) (0, 0, 0)

(1, 0) (0, 0, 1)

(1, 1) (1, 1, 0)

Granted that n is relatively small, the simplicity of the truth table representation

makes it popular when working with VBF’s in low-level programming languages. To

appreciate why the truth table representation does not scale well to higher dimensions,

consider a (43, 1)-function. Its truth table would consist of 243 entries of at least one bit,

and at best, it would require over a terabyte of memory just to store. For this reason,

other representations are used, such as for instance the algebraic normal form.

The algebraic normal form (ANF) of an (n,m)-function F is the multivariate

polynomial

F (x1, . . . , xn) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi,

where aI are vectors in Fm
2 . The degree of the ANF as a multivariate polynomial is called

the algebraic degree of F and we denote it by deg(F ).

Example 2. The (2, 3)-function from Example 1 can be expressed in algebraic normal

form as

F (x1, x2) = (1, 1, 1)x1x2 + (0, 0, 1)x1,

and we see that deg(F ) = 2, because the highest degree term in its ANF is x1x2.

If a function F has an algebraic degree of one or less, we say that F is affine. If

deg(F ) = 2, we say the function is quadratic, etc. It can be shown that an affine

(n,m)-function F satisfies

F (x+ y + z) = F (x) + F (y) + F (z),
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for any x, y, z ∈ Fn
2 . If we also have that F (0) = 0, so that F (x+y) = F (x)+F (y), then

we say that F is linear. This aligns with our intuition of linearity from other fields of

mathematics.

Lastly, the representation we will be using in the remainder of this text is the uni-

variate representation of an (n, n)-function F . If we identify the vector space Fn
2 with

the finite field F2n , then we can uniquely represent the function F by the univariate

polynomial

f(x) =
2n−1∑
i=0

aix
i

with ai in F2n . The algebraic degree of a function written using the univariate repre-

sentation is the maximum binary weight of an exponent of any term with a non-zero

coefficient. For example, if f(x) = x7+x5+x, then deg(f) = 3, because 7 = 22+21+20.

The advantage of the univariate representation is that it lends itself well to mathematical

analysis, and many important vectorial Boolean functions have rather simple representa-

tions written in univariate form, while their representation in other forms is much more

complicated.

Example 3. One such example with a simple univariate form is the Gold function x3,

which we will see possesses many desirable cryptographic properties over any finite field

F2n . Despite being optimal in many senses, its univariate representation consists only of

a single term.

An important class of vectorial Boolean functions are the so-called power functions

(monomials). If for some 0 ≤ d ≤ 2n− 1 we can represent the (n, n)-function F by the

univariate monomial F (x) = xd, then we say that F is a power function. Monomials are

particularly nice to work with, and besides the quadratic polynomials, most of the known

APN functions found in the literature are monomials. Perhaps not surprisingly, due to

their simple univariate representation, the earliest known examples of APN functions

were actually monomials. As we will see in Section 1.4, several infinite families of such

APN power functions have already been discovered.

1.2 Cryptographic properties

One of the reasons the study of vectorial Boolean functions is of interest to mathe-

maticians and computer scientists alike, is because of their importance to cryptography.
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Vectorial Boolean functions (or S-boxes) form one of the fundamental building blocks

of most modern block ciphers, and if we are to ensure that the cipher is resistant to

such cryptanalytic attacks as the differential and linear attack, it is important that the

functions used in their design have desirable cryptographic properties. In the following

section we introduce some of these important cryptographic parameters.

1.2.1 Differential Uniformity

In [1] Biham and Shamir proposed the differential attack on DES-like cryptosystems

employing S-boxes in their design. In this section we will introduce the notion of the

differential uniformity proposed by Nyberg [20], which can be seen as a measure of

a function’s resistance to the differential attack. For an (n, n)−function F , we define its

derivative DaF in direction a ∈ F2n as the function

DaF (x) = F (x) + F (a+ x).

If we let ∆F (a, b) denote the set of solutions to the equation DaF (x) = b, i.e.

∆F (a, b) = {x ∈ F2n : F (x) + F (x+ a) = b},

then we say that the differential uniformity ∆F of F is

∆F = max{|∆F (a, b)| : a, b ∈ F2n , a ̸= 0}.

If a function F has a differential unifomity of δ, we say that F is differentially δ-

uniform. Since we are working over a field of characteristic 2, then clearly ∆F ≥ 2 for

any F . A function which attains this lower bound with equality is called an almost

perfect nonlinear (APN) function.

Remark. When we are working with monomials F (x) = xd, then we can compute the

differential uniformity ∆F by only considering a = 1. Indeed, if we look at the equation

DaF (x) = b we see that

xd + (a+ x)d = b, and



1.2 Cryptographic properties 5

dividing this by ad, we get (x
a

)d

+
(
1 +

x

a

)d

=
b

ad
.

This is the same as saying

D1F (z) = c,

where z = x/ad and c = b/ad. Thus, if the equation DaF (x) = b has more than two

solutions for some a and b, then so does the equation D1F (z) = c for some c. So, in

this sense, computing the differential uniformity of a monomial is a lot easier than in the

general case.

Finding and classifying APN functions is of great interest because they provide opti-

mal resistance to differential cryptanalysis, and correspond to optimal objects in coding

theory, combinatorics, sequence design, etc. As we have seen, a function F is APN if

and only if the equation DaF (x) = b has at most two solutions for any a, b ∈ F2n with

a ̸= 0. An equivalent definition can be stated as follows.

(Rodier’s Condition). A vectorial Boolean function F is APN if and only if all the

values x, y, z ∈ F2n satisfying

F (x) + F (y) + F (z) + F (x+ y + z) = 0,

belong to the curve (x+ y)(x+ z)(y + z) = 0.

Similarly to how the computation of the differential uniformity can be simplified for

monomials, we can fix x = 1 by dividing both sides of the Rodier condition

xd + yd + zd + (x+ y + z)d = 0

by xd.

As we will see later, this alternate definition can sometimes be more useful when we

are trying to study the deeper structure of APN functions. Finding APN functions is

both a mathematically and computationally hard problem, which has led some authors

to propose slightly more general notions that relax some of these conditions. In one such

example the authors of [3] propose the notion of a (partial) x0-APN function.
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Definition 1.2.1. For some fixed x0 ∈ F2n , we say that an (n, n)-function F is (partial)

x0-APN if the points x, y ∈ F2n satisfying

F (x0) + F (x) + F (y) + F (x0 + x+ y) = 0,

belong to the curve (x0 + x)(x0 + y)(x+ y) = 0.

We will make extensive use of this definition when we study the (partial) 0-APN

monomials in the remainder of this thesis.

1.2.2 Nonlinearity

Another powerful attack is the linear attack proposed by Matsui [18], in which one tries

to approximate a vectorial Boolean function by a linear function. This is useful because

linear functions are well understood, and can be easily analyzed using the wealth of

knowledge found in linear algebra. If we are to ensure a function F is resistant to linear

cryptanalysis, we would like the function F to be as different from any linear (or affine)

function as possible. One natural way to define the difference between two functions,

is using their Hamming distance. We define the Hamming distance between two

(n, n)-functions F and G as

dH(F,G) = |{x ∈ F2n | F (x) ̸= G(x)}|.

In [19] Nyberg proposed the idea of a function’s nonlinearity to measure its resistance

to linear cryptanalysis. The nonlinearity of an (n, 1)-function f is defined as

NL(f) = min{dH(f, l) : l ∈ An},

where An denotes the set of all affine (n, 1)-functions. Recall that the component func-

tions of an (n, n)-function F consist of all the non-zero linear combinations of its coor-

dinate functions. An attacker could succeed in finding a suitable linear approximation

of a function F , if even one of its component functions is sufficiently close to an affine

(n, 1)-function. It then becomes natural to define the nonlinearity of an (n, n)-function
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as the minimum nonlinearity of all of its component functions, i.e.

NL(F ) = min{NL(Fb) | b ∈ Fn
2 , b ̸= 0}.

It can be shown [7] that the nonlinearity of any (n, n)-function F satisfies the inequality

NL(F ) ≤ 2n−1 − 2(n−1)/2.

Any function that attains this upper bound with equality is called an almost bent (AB)

function, and it provides optimal resistance to the linear attack. It should be clear from

the definition that AB functions can only exist when the dimension n is odd. The optimal

upper bound on the nonlinearity of functions when n is even remains an open problem.

Finally, it can be shown that every AB function is also APN [7], so AB functions provide

optimal resistance to both linear and differential cryptanalysis. However it is worth

noting that APN functions are not always AB, even when the dimension is odd.

1.3 Equivalence of vectorial Boolean functions

Even for small values of n, conducting an exhaustive search for new APN or AB functions

becomes unfeasible. To put this into perspective, the number of distinct (n, n)-functions

is (2n)2n and we can immediately appreciate how badly this scales as n grows. Reducing

the number of functions that need to be considered is typically done by only considering

them up to a suitable notion of equivalence. In this section we will introduce three equiv-

alence relations on vectorial Boolean functions that preserve some of the cryptographic

properties discussed in the previous section. First, we will discuss what is currently

known to be the most general equivalence relation that preserves differential uniformity

and non-linearity, namely Carlet-Charpin-Zinoviev (CCZ)-equivalence. We will also dis-

cuss extended affine (EA)-equivalence, and finally, the specialized cyclotomic equivalence

of power functions, which is the relation we will mostly concern ourselves with for the

remainder of this thesis.
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1.3.1 CCZ-equivalence

As stated in the previous section, Carlet-Charpin-Zinoviev equivalence is currently the

most general equivalence relation on vectorial Boolean functions that preserves differen-

tial uniformity and nonlinearity. CCZ-equivalence was introduced in [6], and is defined

in terms of the graphs of two functions. The graph of an (n, n)-function F is defined as

the set

ΓF = {(x, F (x)) : x ∈ F2n}.

The elements belonging to the graph of F are pairs of elements from F2n so it becomes

natural to identify the graph with a set of elements belonging to the finite field F22n . We

say that two (n, n)-functions F and G are CCZ-equivalent if there exists some affine

(2n, 2n)-permutation A that maps the graph of F to that of G, i.e. A(ΓF ) = ΓG.

Unlike some of the less general equivalence relations such as EA-equivalence, CCZ-

equivalence does not preserve the algebraic degree of a function. This is generally desir-

able, since most of the APN functions documented in the literature are either monomial

or quadratic, and APN functions of low algebraic degree have been shown to be vulnera-

ble to so-called higher-order differential attacks [9]. Through CCZ-equivalence, one can

usually generate equivalent APN functions of higher algebraic degree when necessary.

Since functions are only considered up to equivalence, a natural question to ask is

how one would test two functions for CCZ-equivalence. In practice this is done com-

putationally by checking the isomorphism of linear codes. Let F be an (n, n)-function.

We identify the vector space Fn
2 with the finite field F2n with primitive element α. We

generate the 2n+ 1 × 2n parity check matrix

PF =


1 1 1 . . . 1

0 1 α . . . α2n−2

F (0) F (1) F (α) . . . F (α2n−2)


and its corresponding code CF . We can then show that two (n, n)-functions F and G

are CCZ-equivalent if and only if their corresponding codes CF and CG are permuta-

tion equivalent [13], that is, if there exists a permutation ρ of {1, 2, . . . , 2n}, such that

(x1, x2, . . . , x2n) ∈ CF if and only if (xρ(1), xρ(2), . . . , xρ(2n)) ∈ CG. This is beneficial

because coding theory is a much older scientific field, and algorithms for checking per-
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mutation equivalence have already been developed and implemented in various software.

1.3.2 EA-equivalence

Extended affine equivalence, or EA-equivalence for short, is a special case of CCZ-

equivalence [2], and it is arguably one of the most common equivalence relations used

in the study of APN and AB functions. We say that two (n, n)-functions are EA-

equivalent if there exist three affine (n, n)-functions A,A1, A2 where A1 and A2 are

permutations, such that

A1 ◦ F ◦ A2 + A = G. (1.1)

It can be shown that EA-equivalence coincides with CCZ-equivalence when dealing with

quadratic APN functions [21], that is, two quadratic APN functions are CCZ-equivalent

if and only if they are EA-equivalent. As noted previously, almost all of the APN

functions found in the literature are either monomial, quadratic or CCZ-equivalent to a

quadratic function. In practice this means that we can quickly determine whether a large

portion of the functions of interest are CCZ-equivalent to each other by deciding their

EA-equivalence. This can be done for instance using algorithms such as [4, 14]. Some

specialized cases of EA-equivalence exist. For instance, if the functions F and G satisfy

(1.1) with A = 0, then we say that the functions are affine equivalent. Furthermore if

A1 and A2 are linear, then we say that the functions are linearly equivalent. We only

mention these for completeness and historical reasons since in the study of power APN

functions it is enough to consider the following notion of equivalence.

1.3.3 Cyclotomic equivalence

Recall that a power function is one that can be expressed as xd for some 0 ≤ d ≤

2n − 1. As it turns out, for this special class of vectorial Boolean functions, CCZ-

equivalence reduces to a specialized notion of equivalence that is relatively simple to

check computationally. Let F (x) = xe and G(x) = xd be two (n, n)-power functions. We
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say that F and G are cyclotomic equivalent if either

2ke ≡ d (mod 2n − 1), or

2ke ≡ d−1 (mod 2n − 1)

is satisfied for some 0 ≤ k ≤ n − 1. That is, if either e is in the cyclotomic coset of d

modulo 2n−1, or e is in the cyclotomic coset of d−1 mod 2n−1, if it exists. It can be shown

that CCZ-equivalence of power functions implies cyclotomic equivalence [22]. Checking

whether two monomials are cyclotomic equivalent is a rather simple exercise. In effect,

this makes it possible to check if two monomials are CCZ-equivalent in dimensions where

this would otherwise be too resource-heavy using the linear code test.

1.4 Infinite families of APN power functions

One of the goals of the Boolean functions community since the 90s has been to construct

infinite families of functions that are always APN over F2n subject to certain conditions.

This is not an easy task, and it should come as no surprise that the families that have

been constructed have special properties such as being quadratic or monomial. In Figure

1.1 we summarize all of the known APN monomials over F2n .

Family Exponent Conditions Algebraic Degree Reference

Gold 2i + 1 gcd(i, n) = 1 2 [20]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [15]

Welch 2t + 3 n = 2t+ 1 3 [10]

Niho
2t + 2t/2 − 1, t even

2t + 2(3t+1)/2 − 1, t odd
n = 2t+ 1

(t+ 2)/2

t+ 1
[11]

Inverse 22t − 1 n = 2t+ 1 n− 1 [20]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [12]

Table 1.1: Known infinite families of APN power functions over F2n

The most recent addition to this table was made by Hans Dobbertin in the year

2000, and it has been conjectured that these six families make up all the APN power

functions that exists up to CCZ-equivalence. We will refer to to this as the Dobbertin
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conjecture. In other words, the conjecture states that any APN monomial must be

CCZ-equivalent (and hence cyclotomic equivalent) to a representative from one of the

six infinite families above. Several searches have been conducted in attempts to find

APN monomials that are inequivalent to the known families with no success.

We note that there are several approaches that can make the search easier. It has

been shown by Dobbertin that any APN monomial xd must satisfy gcd(d, 2n − 1) = 1

for n odd, and gcd(d, 2n − 1) = 3 for n even. We can also discard every exponent d for

which xd is not APN in a subfield F2r for some r dividing n. As we have seen, checking

whether two monomials are CCZ-equivalent is the same as checking whether they are

cyclotomic equivalent, so we can limit our search to representatives from each cyclotomic

coset modulo 2n − 1. As it stands today, all APN exponents have been classified up to

n ≤ 34, and up to n ≤ 42, when n is even [5]. Results like these have contributed to the

Dobbertin conjecture being wildly considered as a hard open problem by academics in

the field, and we are not aware of any further searches having been conducted. The main

goal of this thesis is to evaluate the efficiency of certain methods for computationally

testing the Dobbertin conjecture over finite fields of high extension degree.
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Chapter 2

Contributions

Recall that Dobbertin’s conjecture states that any APN power function in any dimension

is equivalent to one of the six infinite families found in Table 1.1. We also recall that

no counterexamples have been found for dimensions n ≤ 34 when n is odd, and no

counterexamples have been found when n ≤ 42 and n is even. One of the general

objectives when we started working on this thesis was to explore alternative ways in

which one could make progress on the Dobbertin conjecture. Let us first consider what

makes this a computationally hard problem. Verifying whether a function F (x) is APN

is done by going through all a, b ∈ F2n , a ̸= 0, and checking whether the equation

F (x) + F (x+ a) + b = 0, (2.1)

has more than two solutions. If we are unable to find such a pair then we have verified

that F (x) is APN. Just one of these tests can take upwards of several hours when the

dimension is greater than 30. Secondly, in dimension 35 there are 464,637,581 exponents

up to cyclotomic equivalence that are not equivalent to any of the known families. It

should then be clear that conducting a search in this way is not feasible without having

access to several computer cores running in parallel over a long period of time, and

approaches that can potentially cut down the complexity of such a search need to be

considered.

2.1 Vanishing Flats

Since doing a full exhaustive search is out of the question we start to look at alternative

ways to tackle the problem. In [16] the authors provided a fresh perspective on how to
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study the APN property of functions F : F2n → F2n . For n ≥ 2 the authors consider the

set of 2-dimensional flats in dimension n as

Bn = {{x, y, z, x+ y + z} | x, y, z ∈ F2n},

where x, y, z and x + y + z are all distinct. Now by Rodier’s Condition, it is clear that

F is APN if and only if

F (x) + F (y) + F (z) + F (x+ y + z) ̸= 0,

for all {x, y, z, x + y + z} ∈ Bn. The authors go on to define the set of vanishing flats

with respect to F as

VBn,F = {{x, y, z, x+ y + z} ∈ Bn | F (x) + F (y) + F (z) + F (x+ y + z) = 0},

and in particular Proposition III.1 [16] gives a lower bound on the number of vanishing

flats for non-APN monomials as

|VBn,F | ≥


2n+1
3

if n is odd;

2n−1
3

if n is even.

In our work, we take a similar approach, but only consider the linear flats on which a

function F vanishes. While this only provides a necessary condition for a function to

be APN (in fact, not vanishing on any linear flat means that the function is 0-APN, as

we discuss in more detail below), this allows us to obtain a lower bound which is stricly

better than that found in Proposition III.1. Recalling Definition 1.2.1, we say that a

function F is x0-APN if all the values x, y ∈ F2n satisfying

F (x) + F (y) + F (x0) + F (x+ y + x0) = 0,

belong to the curve (x+ x0)(y+ x0)(x+ y) = 0. Theorem 4.4 [3] shows that any 1-APN

power function is necessarily 0-APN, and furthermore by Proposition 4.1 of [3], such a

function has to be APN. As a consequence of this, we can only have monomials that are

not 0-APN; ones that are 0-APN but not APN; and ones that are APN. With this in
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mind, we begin by considering how monomials behave on the set of linear flats. We need

the following basic definition.

Definition 2.1.1. The set of linear flats in F2n is

LBn = {{0, x, y, x+ y} | x, y ∈ F∗
2n where x ̸= y}.

It is clear that we can characterize 0-APN functions as ones that do not vanish on

any linear flat in LBn. When working with monomial functions F (x) = xd over F2n it is

natural to only consider a special kind of flat, {1, c, 1+c}, which we will denote by ⟨c⟩. We

will refer to flats of this form as special linear flats or SLFs for short.A special linear

flat should techically contain zero, but for characterizing whether monomials vanish on

it, this does not matter.

The reason that we can restrict ourselves to SLFs is the following. Let F (x) = xd

vanish on the linear flat {0, a, b, a+ b}, i.e.

F (0) + F (a) + F (b) + F (a+ b) = 0,

that is,

ad + bd + (a+ b)d = 0.

We divide the above equation by ad and we see that

1 +

(
b

a

)d

+

(
1 +

b

a

)d

= 0

and so,

1 + cd + (1 + c)d = 0,

where c = b/a. So if F vanishes on the linear flat {0, a, b, a+ b} then it also vanishes on

⟨c⟩. More generally, a monomial vanishes on some linear flat only if it vanishes on some

SLF.

We now observe that if a monomial vanishes on some SLF ⟨c⟩, then it also vanishes

on the SLF defined by the inverse of c. This cuts down the number of SLFs that have

to be considered approximately by half.

Lemma 1. Let d be a natural number, and let c ∈ F2n . If the monomial F (x) = xd
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vanishes on the special linear flat ⟨c⟩ then it also vanishes on the special linear flat ⟨c−1⟩.

Proof. The exponent d can be written as d =
∑

2ai for some natural numbers

a1, a2, . . . , ak. If we denote Ai = 2ai , then we can express the exponent d of the func-

tion F (x) as d = A1 +A2 + . . .+Ak. We also denote the set {0, A1, . . . , Ak} as X. The

expression 1 + xd + (x+ 1)d is of the form

1 + xd + (x+ 1)d = 1 + xd +
∑
I⊆X

∏
j∈I

xj (2.2)

or simply

xd +
(
xA1 + · · ·+ xAk

)
+
(
xA1+A2 + · · ·+ xAk−1+Ak

)
+ · · ·+ xA1+···+Ak ,

where xd and xA1+···+Ak cancel. This is easy to see, by considering that

(x+ 1)d = (x+ 1)A1(x+ 1)A2 · · · (x+ 1)Ak = (xA1 + 1)(xA2 + 1) · · · (xAk + 1).

If we let AI =
∑

i∈I Ai and BI =
∑

i/∈I Ai, where I ⊆ X, and substituting x = 1/c in

(2.2), we get

1 +

(
1

c

)d

+

(
1 +

1

c

)d

= 1 +
1

cd
+

∑
I⊆X

1

cAI
, (2.3)

Expressing this sum under the common denominator xd, we obtain

(
1 +

1

c

)d

=
∑
I⊆X

1

cAI
=

∑
I⊆X

cBI

cBIcAI
=

∑
I⊆X

cBI

cd
,

and so (2.3) becomes

1 +

(
1

c

)d

+

(
1 +

1

c

)d

=

∑
I⊂X cBI

cd
,

where the sum on the right-hand side goes through all non-trivial subsets of X, i.e. it

includes neither the empty set, nor the full set X. We note that

{BI | I ⊂ X} = {AI | I ⊂ X},
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and so ∑
I⊂X

cBI =
∑
I⊂X

cAI ,

and the right-hand side of the above vanishes by assumption, so

1 +

(
1

c

)d

+

(
1 +

1

c

)d

= 0.

Corollary 1. If a monomial F (x) vanishes on the special linear flat ⟨c⟩ = ⟨1 + c⟩, then

it also vanishes on ⟨c−1⟩ and ⟨(1 + c)−1⟩.

Lemma 2. If a monomial xd vanishes on the SLF ⟨c⟩, then it also vanishes on ⟨c2⟩.

Proof. By squaring the equation

1 + cd + (1 + c)d = 0,

we successively obtain

(
1 + cd + (1 + c)d

)2
= 0,

1 + c2d + (1 + c)2d = 0,

1 + (c2)d + (1 + c2)d = 0.

It is thus natural to extend the notion of a cyclotomic coset to SLFs.

Definition 2.1.2. The cyclotomic coset containing the special linear flat ⟨c⟩ mod 2n−1

is defined as the set

{⟨c2k⟩ = {1, c2k , 1 + c2
k} | k = 0, . . . , n− 1}.

We saw in Corollary 1 that if a monomial F vanishes on the SLF ⟨c⟩, then it also

vanishes on ⟨c−1⟩, ⟨(1+ c)−1⟩ and by the previous remark it also vanishes on their entire

cyclotomic cosets. This motivates the following definition.
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Definition 2.1.3. Let c ∈ F2n . A wall is the minimal set containing ⟨c⟩ that is closed

under the operations ⟨c⟩ 7→ ⟨c−1⟩, ⟨c⟩ 7→ ⟨(1 + c)−1⟩ and ⟨c⟩ 7→ ⟨c2⟩.

The following figure provides a visual representation of what a wall looks like. The

wall consists of three “blocks” which are the cyclotomic cosets containing ⟨c⟩, ⟨c−1⟩ and

⟨(1 + c)−1⟩. From the figure it becomes clear why we call this structure a wall.

⟨c⟩ ⟨c2⟩ . . . ⟨c2n−1⟩

⟨c−1⟩ ⟨c−2⟩ . . . ⟨c−2n−1⟩

⟨(1 + c)−1⟩ ⟨(1 + c)−2⟩ . . . ⟨(1 + c)−2n−1⟩

Figure 2.1: The wall containing ⟨c⟩

We would like to use the concept of a wall to give a lower bound on the number of

SLFs on which a non-0-APN monomial vanishes. Since we know that if xd vanishes on

an SLF, then it vanishes on the entire wall containing that SLF, it would suffice for our

purposes to compute the size of a wall.

Clearly, a wall can have at most 3n elements. However, it is possible that two of the

cyclotomic cosets forming the wall will coincide with each other, or that one of the three

cosets will contain less that n elements. In this case, we say that the wall “collapses”;

the exact conditions under which this happens are investigated in the following section.

We can thus formulate the following.

Observation 1. Let F (x) = xd be a non-0-APN monomial over F2n . Then F (x) has to

vanish on at least one SLF ⟨c⟩. Then either F (x) vanishes on at least 3n SLFs, or the

wall containing ⟨c⟩ contains one or more cosets that coincide with each other, or contain

fewer than n elements.

Conversely, we might wonder whether vanishing on one wall may imply vanishing on

other walls. If we can prove e.g. that any non-0-APN monomial vanishes on at least 5

walls, then we can prove a much better lower bound. Unfortunately, our computational

results show that the bound given by the walls is tight, i.e. there do exist monomials

that vanish on one entire wall and on no other SLFs:
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Observation 2. Let F (x) = x1337 over F217 with primitive element α. The set of special

linear flats on which F vanishes is of size 51. This corresponds to a single wall containing

⟨α95⟩, and it is of maximum possible size 3n.

The notion of walls can be used to facilitate computationally checking the 0-APN

property of a monomial as follows. We can partition the entire finite field into walls and

we only have to test one representative from each wall. In the following table we give

all the wall representatives in F2n where 8 ≤ n ≤ 11. Here #WR denotes the number of

wall representatives and #SLF denotes the number of special linear flats in dimension

n.

n Wall Representatives #WR #SLF

8 α, α5, α7, α9, α13, α17, α19, α85 8 127

9 α, α3, α7, α11, α17, α19, α21, α23, α27, α35, α73 11 255

10
α, α3, α5, α9, α11, α13, α15, α21, α25, α27,

α29, α33, α41, α47, α49, α51, α57, α73, α75, α341
20 511

11

α, α3, α5, α7, α13, α15, α17, α19, α21, α23,

α25, α27, α29, α33, α35, α37, α39, α43, α45, α49,

α51, α53, α55, α67, α71, α81, α83, α99, α115, α181, α199

31 1023

Table 2.1: The wall representatives in dimensions 8 through 11.

As we can see, by pre-computing these wall representatives in F2n we greatly reduce

the amount of elements that need to be considered when checking whether a monomial

is 0-APN. For instance, in dimension 11 we will only have to check 31 elements in

comparison to 1023.

2.2 The Collapsing Set

It can happen that a wall does not attain its maximum possible size of 3n elements; for

instance, a trivial example is when the elements of ⟨c⟩ belong to a subfield. If we denote

by A,B and C the cyclotomic coset of ⟨c⟩, ⟨c−1⟩ and ⟨(1 + c)−1⟩ respectively, we give

conditions for when the wall containing ⟨c⟩ might not attain its maximum possible size.

These are presented in Table 2.2.
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AB0 {c ∈ F2n | (∃k)c = (c−1)2
k
, 0 ≤ k ≤ n− 1}

AB1 {c ∈ F2n | (∃k)c = 1 + (c−1)2
k
, 0 ≤ k ≤ n− 1}

AC0 {c ∈ F2n | (∃k)c = ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

AC1 {c ∈ F2n | (∃k)c = 1 + ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

BC0 {c ∈ F2n | (∃k)c−1 = ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

BC1 {c ∈ F2n | (∃k)c−1 = 1 + ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

AA1 {c ∈ F2n | (∃k)c = 1 + c2
k
, 0 ≤ k ≤ n− 1}

BB1 {c ∈ F2n | (∃k)c−1 = 1 + (c−1)2
k
, 0 ≤ k ≤ n− 1}

CC1 {c ∈ F2n | (∃k)(1 + c)−1 = 1 + ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

AA0 {c ∈ F2n | (∃k)c = c2
k
, 0 ≤ k ≤ n− 1}

BB0 {c ∈ F2n | (∃k)c−1 = (c−1)2
k
, 0 ≤ k ≤ n− 1}

CC0 {c ∈ F2n | (∃k)(1 + c)−1 = ((1 + c)−1)2
k
, 0 ≤ k ≤ n− 1}

Table 2.2: The elements of the collapsing set

We will briefly discuss the naming convention of these sets. Recall that A denotes

the cyclotomic coset containing ⟨c⟩, B denotes the cyclotomic coset containing ⟨c−1⟩ and

C denotes the cyclotomic coset containing ⟨(1 + c)−1⟩. Take for instance the set AB1.

It consists of elements c ∈ F2n such that A and B intersect with c = 1 + (c−1)2
k for

some natural number k. Similarly, AB0 consists of elements c ∈ F2n such that A and B

intersect with c = (c−1)2
k for some natural number k.

Lemma 3. Some of these conditions are equivalent, namely

1. AB0 = CC1,

2. AB1 = AC0 = BC1,

3. AC1 = BB1,

4. BC0 = AA1,

5. AA0 = BB0 = CC0.

Proof. We start by seeing why AB0 = CC1.

1. Condition AB0 implies

c+ (c−1)2
k

= 0,
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for some 0 ≤ k ≤ n− 1. Multiplying the above equation by c2
k , we get

c2
k+1 + 1 = 0.

Condition CC1 implies

(1 + c)−1 + ((1 + c)−1)2
k

+ 1 = 0,

and multiplying the above by (1 + c)2
k+1, we see

(1 + c)2
k

+ (1 + c) + (1 + c)2
k+1 = 0,

(1 + c)2
k

+ (1 + c)(1 + 1 + c)2
k

= 0,

c2
k+1 + 1 = 0,

and it follows that AB0 = CC1.

2. Condition AB1 implies

c+ (c−1)2
k

+ 1 = 0,

for some 0 ≤ k ≤ n− 1. Multiplying the above equation by c2
k we get

c2
k+1 + c2

k

+ 1 = 0.

Condition AC0 implies,

c+ ((1 + c)−1)2
k

= 0,

once again multiplying by (1 + c)2
k we see

c2
k+1 + c+ 1 = 0.
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Now if we raise this to the 2n−k-th power, we see

c2
n−k(2k+1) + c2

n−k

+ 1 = 0,

c2
n+2n−k

+ c2
n−k

+ 1 = 0,

c2
n−k+1 + c2

n−k

+ 1 = 0,

c2
l+1 + c2

l

+ 1 = 0,

with l = n− k, and it follows that AB1 = AC0. Finally, condition BC1 implies

c−1 + ((1 + c)−1)2
k

+ 1 = 0,

multiplying this by c(1 + c)2
k we see

(1 + c)2
k

+ c+ c(1 + c)2
k

= 0,

1 + c2
k

+ c+ c+ c2
k+1 = 0,

c2
k+1 + c2

k

+ 1 = 0,

and it follows that AB1 = AC0 = BC1.

3. Condition AC1 implies

c+ ((1 + c)−1)2
k

+ 1 = 0,

for some k = 0, . . . , n− 1. Multiplying the above equation by (1 + c)2
k we see

c+ c2
k+1 + (1 + c)2

k

+ 1 = 0

c2
k+1 + c2

k

+ c = 0.

Condition BB1 implies

c−1 + (c−1)2
k

+ 1 = 0,

and multiplying this by c2
k+1 we get

c2
k+1 + c2

k

+ c = 0,

and it follows that AC1 = BB1.
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4. Condition BC0 implies

c−1 + ((1 + c)−1)2
k

= 0,

for some 0 ≤ k ≤ n− 1. Multiplying this equation by c(1 + c)2
k we get

(1 + c)2
k

+ c = 0,

c2
k

+ c+ 1 = 0,

which obviously corresponds to AA1, so BC0 = AA1.

We essentially have five conditions and their corresponding equations that can affect

the size of a wall. We note that AA0 just correspond to ⟨c⟩ belonging to a subfield, so

we will focus on the remaining four cases:

AB0 = {c ∈ F2n | (∃k)c = (c−1)2
k

, 0 ≤ k ≤ n− 1} x2k+1 + 1 = 0; (2.4)

AB1 = {c ∈ F2n | (∃k)c = 1 + (c−1)2
k

, 0 ≤ k ≤ n− 1} x2k+1 + x2k + 1 = 0; (2.5)

BB1 = {c ∈ F2n | (∃k)c−1 = 1 + (c−1)2
k

, 0 ≤ k ≤ n− 1} x2k+1 + x2k + x = 0; (2.6)

AA1 = {c ∈ F2n | (∃k)c = 1 + c2
k

, 0 ≤ k ≤ n− 1} x2k + x+ 1 = 0; (2.7)

AA0 = {c ∈ F2n | (∃k)c = c2
k

, 0 ≤ k ≤ n− 1} x2k + x = 0. (2.8)

This motivates the following definition.

Definition 2.2.1. The collapsing set C of F2n is

C = AB0 ∪ AB1 ∪BB1 ∪ AA1,

and it consists of the elements in F2n representing walls of size less than 3n.

In the following lemmas we give a series of classifications that can be used to construct

the elements of the collapsing set without having to go through all elements of the finite

field. This makes the collapsing set very easy to compute, even for extremely large

dimensions. For the upcoming proofs we will occasionally need the following lemma

from [8], and we also introduce the notation Pd to denote the set of zeroes of xd = 1,



24 Contributions

that is,

Pd = {x ∈ F2n | xd = 1}.

Lemma 2.1 [8]. Let d = gcd(α, e), then

gcd(2α + 1, 2e − 1) =

1 if e/d is odd;

2d + 1 if e/d is even.

We will now present several lemmas that can be used to classify the elements of the

sets AB0, AB1, BB1 and AA1. For instance, the following lemma characterizes the case

when an element from the cyclotomic coset of ⟨c⟩ coincides with an element from the

cyclotomic coset of ⟨c−1⟩.

Lemma 4. (AB0) Let n be even, and let f(x) = x2k+1 + 1.

1. The set of solutions to (2.4), i.e. f(x) = 0 belong to the subfield F2k+1.

2. f(x) = 0 has solutions if and only if k | n/2.

Proof. Assuming k | n/2, then k | n and gcd(n, k) = k. This means n = 2bk for some b,

and so
n

gcd(n, k)
=

n

k
= 2b,

and 2k + 1 | 2n − 1 by Lemma 2.1 [8]. Conversely, assuming 2k + 1 | 2n − 1, then

gcd(2k + 1, 2n − 1) = 2k + 1, so gcd(n, k) = k by Lemma 2.1 and k | n. Assume to the

contrary that k does not divide n/2, then n = 2en1 and k = 2ek1 for some e ≥ 1 with

n1, k1 odd. Then n/k = n1/k1 is odd, meaning gcd(2k +1, 2n − 1) = 1 and consequently

2k + 1 does not divide 2n − 1 contrary to assumption.

The following lemma handles the case when an element from the cyclotomic coset of

⟨c−1⟩ coincides with the sum of 1 ∈ F2n and another element from that same cyclotomic

coset.

Lemma 5. (BB1) Let d = gcd(k, n) and let f(x) = x2k+1 + x2k + x. Then, the set of

solutions Z of equation (2.6), i.e. f(x) = 0 in F2n is

Z = P2d+1 + 1.
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Proof. Note that we can alternatively write the equation as

f(x) = (x+ 1)2
k+1 + 1 = 0.

The set of solutions Z of f(x) = 0 also satisfies (x + 1)2
n−1 = 1. Therefore the set of

zeros is given by

Z = {x | (x+ 1)gcd(2
k+1,2n−1) = 1}.

If gcd(2k + 1, 2n − 1) = 1, then we only get the solution x = 0. Otherwise the set of

solutions is

Z = {x | (x+ 1)2
d+1 = 1},

and Z = P2gcd(k,n)+1 + 1.

Lemma 6. (AA1) Let f(x) = x2k + x + 1. The set of zeroes of (2.7), i.e. f(x) = 0,

belong to the subfield F2gcd(2k,n) when gcd(2k, n) > 1 and gcd(k, n) ̸= gcd(2k, n).

Proof. If we raise the equation to the 2k-th power, we see

x22k + x2k + 1 = 0

but x2k = x+1, so x22k = x. We note that this means that x has an order of 2gcd(2k,n)−1.

If gcd(2k, n) = 1, then x must belong to F2, but obviously 0 and 1 are not solutions

to the equation, and furthermore if gcd(k, n) = gcd(2k, n), then x22k + x2k = 1 and we

reach a contradiction.

Lemma 7. (AB1) The solutions of f(x) = x2k+1+x2k +1 = 0 in F2n belong to F2gcd(3k,n)

when gcd(3k, n) > 1.

Proof. We note that f(x) = 0 can be written as

x2k =
1

x+ 1
.

If we raise this to the 2k-th power, then we see

x22k =
1

x2k + 1
=

1
1

x+1
+ 1

=
x+ 1

x
,
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again raising it to the 2k-th power, we finally get

x23k =
x2k + 1

x2k
=

1
x+1

+ 1
1

x+1

= x.

This means that all the zeroes of f in F2n are in F2gcd(3k,n) . In particular if gcd(3k, n) = 1,

then there are no solutions in F2n because 0 and 1 are clearly not solutions to f(x) =

0.

Lemma 8. (AB1) Let f(x) = x2k+1 + x2k + 1 and let g(x) = f(x + 1). The equation

g(x) = 0 has 2k + 1 solutions in F23k and the set of solutions is

{x = z2
k−1 | Tr3kk (z) = 0, z ∈ F23k}.

Proof. Substitute x = z2
k−1 into the equation g(x) = 0 and multiply by z. We then get

that

zg
(
z2

k−1
)
= z2

2k

+ z2
k

+ z = 0 = Tr3kk (z).

This trace condition has 22k solutions for z in F2n , but we note that x = z2
k−1 = (az)2

k−1

for any a ∈ F2k . Therefore the 22k − 1 non-zero solutions in z of Tr3kk (z) = 0, only give

(22k − 1)/(2k − 1) = 2k + 1 solutions of x in g(x) = 0. But we also note that g(x) is

of degree 2k + 1, so we have all the solutions to g(x) = 0 in F23k . Finally we see that

x = z2
k−1 + 1 is a solution to f(x) = 0.

In the following table we compile some data to show how efficient the collapsing set is

at eliminating non-0-APN exponents. Let SF denote the set of monomials which vanish

on a subfield in dimension n, and let C denote the set of monomials that vanish on C in

dimension n. Here the second column counts the number of distinct monomials up to

cyclotomic equivalence.
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n #(Monomials) #(Non-APN monomials) |SF| |C| |C \ SF|

8 8 5 0 2 2

9 26 18 12 14 2

10 30 26 5 3 2

12 48 45 24 25 1

14 378 373 21 25 24

15 904 892 527 481 25

16 1024 1017 256 308 52

18 2592 2587 1458 1549 91

20 12000 11992 2800 1641 375

21 42340 42325 22346 21925 714

22 60016 60007 341 2636 2635

Table 2.3: Relation between the sets SF and C

When computing the collapsing set in dimension n it is beneficial to be able to

compute the set of zeroes to the equation xd = 1 when d divides n. This is a cyclic

subgroup of F2n , so finding a generator is enough to characterize it. Below we outline

an efficient approach to finding a generator of this subgroup.

Observation 3. Let d | 2n−1 and let Pd denote the set of zeros to the equation xd = 1.

Pd is the cyclic subgroup

Pd =
⋃
m|d

{x | ord(x) = m},

where ord(x) is the order of x.

By Theorem 1.15 (iv) [17],

|Pd| =
∑
m|d

φ(m), where m | 2n − 1, (2.9)

where φ is Euler’s totient function, i.e.

φ(m) = |{k ∈ N | 1 ≤ k < m, gcd(k,m) = 1}|.

Since Pd is cyclic we know it can be generated by αe for some e, where α is the primitive
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element in F2n . We see that

|Pd| = |{(αe)k | k ∈ N}| = 2n − 1

e
,

where e is such that

e =
2n − 1

|Pd|
,

and |Pd| can be computed from (2.9).

As discussed previously, Proposition III.1 [16] gives a lower bound on the number of

vanishing affine flats on which a non-APN monomial vanishes. For dimension n, we have

|VBn,F | ≥


2n+1
3

if n is odd;

2n−1
3

if n is even.

The total number of affine flats in dimension n can be seen to be

|Bn| =
2n−2(2n−1 − 1)(2n − 1)

3
,

so the proportion of vanishing flats to the total number of flats is

|VBn,F |/|Bn| =
2n ± 1

2n−2(2n−1 − 1)(2n − 1)
,

and this is approximately equal to

1

2n−2(2n−1 − 1)
.

Using our approach, if we consider only the linear flats on which a monomial F vanishes,

then we have seen by Observation 1 that either F vanishes on C, or the number of

vanishing SLFs is bounded below by 3n. In the latter case the proportion of linear flats

on which a monomial vanishes to the total number of linear flats in dimension n > 4 is

3n

2n−1 − 1
.

This bound is better than the one in [16]. For instance, a non-0-APN monomial in

dimension 9 will either vanish on C or it will vanish on at least 10% of all linear flats.
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Implementation

Now that we have introduced the relevant theoretical groundwork we can start to talk

about how it can be used computationally to search for 0-APN exponents in high di-

mensions, and how effective this approach is in practice. We recall that the Dobbertin

conjecture has been tested up to dimension 34, and so an important question is how well

does this approach scale to high dimensions in practice. Most of the implementation has

been done in the Magma computer algebra system, as it provides good tools for working

in finite fields, but some parts have been implemented in C when we ran into time or

memory constraints. All of the following computations have been run on the department

server running in parallel on an Intel Xeon E5 CPU.

3.1 Overview

In the following sections, we describe the individual parts of our implementation. Our

general strategy consists in performing the following steps (for some dimension n):

• We generate a list of exponents, up to cyclotomic equivalence, that are not equiv-

alent to the known families, and may potentially be APN (that is, they do not

vanish on a subfield);

• If it exists, we compute the collapsing set C of F2n , and remove all exponents that

vanish on C;

• We compute the set of wall representatives of F2n , and remove all exponents that

vanish on one of them.

After this we are left with only the 0-APN monomials in F2n .
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In the following sections, we describe how each of these steps is implemented and

how it performs.

3.2 Generating candidate exponents

The first thing we implemented was a way to generate all the possible candidates for

new APN exponents up to cyclotomic equivalence. This was originally implemented in

Magma, but in higher dimensions we had to outsource some of the computations to C

for the sake of efficiency. If the dimension is even, then we only consider the exponents

2 ≤ e ≤ 2n−2, such that gcd(e, 2n−1) = 3. If the dimension is odd, then we only consider

the exponents such that gcd(e, 2n−1) = 1. We then take the smallest representative from

each exponent’s cyclotomic coset, or possibly from the cyclotomic coset of its inverse if

it has one. Then, we remove those exponents that are cyclotomic equivalent to any of

the known families; this can be directly computed from the characterizations found in

Table 1.1. Finally, we remove all of the exponents that vanish on a subfield of F2n ; since

even for large values of n, the dimensions of the subfields are relatively small, this entire

process can be performed quite fast.

3.3 Generating the set of wall representatives

Generating the wall representatives can be done fairly easily in Magma for small dimen-

sions n. The fastest way to do this, is to begin with a set S containing all elements of

F2n . We extract an element c from S at random, generate the wall W containing c, i.e.

the set consisting of the cyclotomic cosets of all of the elements

c, 1 + c, c−1, 1 + c−1, (1 + c)−1, 1 + (1 + c)−1,

and remove W from S. We extract the smallest element in W and add it to a set of

representatives. Exactly how this minimum element is defined is not really important as

long as it is consistent. In our case we used the built-in Magma function Minimum which

orders finite field elements by their discrete logarithm.

Unfortunately, in order to take this approach, the entire field needs to be stored

in memory, and this is not possible on our hardware for dimensions higher than 30.
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In order to handle these cases, we take an alternative approach which is slower and

somewhat more complicated, but allows us to compute the set of wall representatives

without exceeding the memory limit.

The basic idea is to split the elements of F2n into small, manageable “chunks”, and

process them one at a time in Magma, by computing the wall representatives of the

elements in each “chunk”. These representatives are stored on the computer’s hard drive,

which allows the RAM to be reused for another “chunk”. After all such “chunks” have

been processed, the files containing the wall representatives are merged into one big file

containing the representatives of the entire F2n .

A natural question is: how to represent finite field elements when storing them in

an external file. The simplest way to express an element g ∈ F2n would be to record

the exponent i for which g = αi, where α is a primitive element of F2n . In other words,

we would record the discrete logarithm of g. Unfortunately, this is only possible in

small dimensions; indeed, Magma only represents elements of F2n in terms of discrete

logarithms for n up to 20. For n > 20, Magma instead represents elements of F2n

using coordinate vectors, i.e. binary vectors giving the coordinates of g with respect

to the standard basis of F2n over F2. We make use of this, and simply interpret the

coordinate vector of g as the binary expansion of a decimal number. We then record this

decimal number in the file. As an example, Magma will represent the finite field element

α22 ∈ F221 as α7 + α6 + α3 + α, which we would represent by the decimal expansion

27 + 26 + 23 + 21 = 202.

We can observe that if two integers i and j belong to the same cyclotomic coset, then

⟨αi⟩ and ⟨αj⟩ belong to the same wall. Therefore, a natural first step is to partition

all possible exponents i between 0 and 2n − 2 into cyclotomic cosets. For the sake of

efficiency, we do this in C.

We then split the cosets into smaller “chunks”, and process each “chunk” in Magma.

More precisely, for every integer i, we generate the wall containing αi, and we output

the integer representation (as discussed above) of its smallest element into an external

file.

Using this approach it is possible that we encounter the same representative in mul-

tiple files. We dealt with this problem by first using the UNIX command sort to sort
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the files individually. We then used the command sort -m to merge all of our sorted

“chunks” into one big file, and finally we used uniq to remove the duplicates that might

have been introduced by using this approach.

3.4 Generating the collapsing set

• We will first tackle how to generate AB0 (2.4) and BB1 (2.6). Recall that we

denote Pd as the set Pd = {x ∈ F2n | xd = 1}, and by Observation 3 we have a

method to compute a generator of Pd. That is, we can compute the exponent, e,

of the generator αe of Pd by taking e = (2n − 1)/|Pd|. We can efficiently compute

the size of Pd in Magma by considering the identity

|Pd| =
∑
m|d

φ(m), where m | 2n − 1.

In the case of AB0 we can choose k such that 2k mod n = 0 according to Lemma

4, and take the union of several sets P2k+1. Recall that 2.4 and 2.6 are the same

with x subsituted for x+ 1, so we can use the same approach for BB1.

• By Lemma 7 the set of solutions of (2.5), i.e., AB1, belong to the subfield F2gcd(3k,n) ,

and the non-trivial solutions belong to F2n when n = 3k. By Lemma 8 we know

that these are (2k − 1)-th powers satisfying x = z2
k−1 with trace Trnk(z) = 0.

We generate the 2k − 1-th powers as x = α(2k−1)i (i ∈ N), and check whether

Trnk(α
i) = 0. If the trace condition is satisfied we append x and x + 1 to the set

AB1.

• By Lemma 6 we know that the set AA1 (2.7) belongs to the subfield F2gcd(2k,n) ,

and the solutions of interest are those which belong to F2n where n = 2k. We can

also tell from the definition that x2k + x = 1, meaning Tr2kk (x) = 1. The elements

x of the half-field, that is x ∈ F2n/2 , satisfy Tr(x) = 0, so we generate these as

powers of α2k+1, and having generated this we search for a single element a such

that Tr(a) = 1. Our solution set is then the additive coset

AA1 = {x ∈ F2n | Trnk(x) = 0}+ a.
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3.5 Computational observations

Generating the wall representatives in dimension n = 35 took about 9 to 12 days,

and we were left with an approximately 2 GB large file consisting of 166,489,130 wall

representatives. We decided to split this file into sixteen different files consisting of

ten million wall representatives each, so that we could run several tests in parallel.

Generating the exponents up to cyclotomic equivalence takes around 10 minutes using

the C program. These are then loaded into Magma where we remove all exponents that

are cyclotomic equivalent to the known families of which there are 1855, and so we have

a 4.5 GB file consisting of 464,635,753 exponents which need to be checked. Checking

whether one of these exponents vanishes on any of the wall representatives in dimension

35 takes roughly 3 minutes running in parallel on ten million wall representatives each.

It is then clear that even using the wall construction, conducting a full search for 0-APN

monomials in dimension 35 is not feasible, and a dedicated effort would be needed to

exploit this further.

With this in mind, we decided to limit the number of exponents we have to consider by

only looking at monomials which are cyclotomic equivalent to a monomial of algebraic

degree 3 or n − 3 (which we call anti-cubics), 4 or n − 4 (anti-quartics) and 5. The

exponents were generated in the following way: we generate all possible exponents of

given algebraic degree, we remove the ones that are cyclotomic equivalent to one of the

known families, and finally we remove the ones that vanish on the subfields F27 and F25 .

These tests were run over the course of three weeks, and we noticed some interesting

results. In the case of the cubics and anti-cubics we only have to consider 153 cubic, and

184 anti-cubic exponents up to cyclotomic equivalence. Interestingly we were not able to

eliminate any cubic exponents, meaning all of the cubic monomials in dimension 35 are

0-APN. However, out of all monomials cyclotomic equivalent to ones of algebraic degree

n− 3 we were able to verify that the two exponents 1799777019 and 6239770235 are not

0-APN. For the quartics and anti-quartics we only need to consider 1279 quartic, and

1137 anti-quartic exponents (up to cyclotomic equivalence), and we were able to verify



34 Implementation

that the exponents

548865, 136193, 12545, 280577, 1327105, 557569, 6860173,

704111761, 7879741117, 1646159603, 894429997, 7879741117,

are not 0-APN. In the case of quintics we only need to consider 7297 exponents up to

cyclotomic equivalence, and we were able to verify that

2179585, 787201, 4202627, 2150401, 8913425, 8585345,

8408065, 69214337, 278577, 4718723, 1131521, 2097701,

1441801, 198145, 1073409, 2101393, 37905, 2170889, 3601,

17827905, 32977, 4198411, 819713, 11777, 2115589, 68161665,

135685, 1118211, 33687617, 17834001, 65873, 98325,

are not 0-APN in dimension 35.

The relevant Magma and C code can be found at https://github.com/Omeletil/

0APNTest/, together with some more details on the computational results.

https://github.com/Omeletil/0APNTest/
https://github.com/Omeletil/0APNTest/
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A doubly infinite family of 0-APN mono-
mials

As noted in the previous chapter, one of our interesting computational results was the

fact that all of the cubic monomials in dimension 35 are 0-APN. Naturally this lead us

to consider what is special about these exponents. In [3] the authors prove that the

function F (x) = x21 is 0-APN if and only if n is not a multiple of 6. We note that

F (x) is cubic, and the exponent is equal to 21 = 24 + 22 + 1. This appears to be a nice

structure worthy of further investigation. This lead us to cubic exponents of the form

ek = 22k + 2k + 1 for some natural number k, and we were able to prove the following:

Lemma 9. Let F (x) = x22k+2k+1. If n and k are natural numbers such that gcd(3k, n) =

gcd(2k, n) = 1, then the cubic monomial F (x) is 0-APN in F2n .

Proof. We consider the equation characterizing the 0-APN-ness of F (x), that is

F (a) + F (a+ x) + F (x) = 0.

In the case of monomials, this becomes

1 + F (x) + F (x+ 1) = 0.

Denoting the expression on the left-hand side above by D(x), we see that D(x) = 0 can

be expressed as

x22k+2k+1 + (1 + x)2
2k+2k+1 + 1 = 0,

x22k+2k + x22k+1 + x22k + x22
k+1

+ x2k + x = 0. (4.1)
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By raising the above equation to the 2k-th power, we get that

x23k+22k + x23k+2k + x23k + x22
2k+2k

+ x22k + x2k = 0. (4.2)

Adding equations (4.1) and (4.2), we see that

x23k+22k + x23k+2k + x23k + x22k+1 + x2k+1 + x = 0,

x23k
(
x22k + x2k + 1

)
+ x

(
x22k + x2k + 1

)
= 0,

which can be factored as

(
x23k + x

)(
x22k + x2k + 1

)
= 0.

This can have non-trivial solutions if

x23k + x = 0,

meaning x ∈ F2gcd(3k,n) . However if we look at

x22k + x2k + 1 = 0, (4.3)

then we see that by raising (4.3) to the 2k-th power, we get

x23k + x22k + 1 = 0. (4.4)

Adding equations (4.3) and (4.4), we have

x23k + x2k = 0,

x22k + x = 0,

meaning x ∈ F2gcd(2k,n) . Combining the above, we see that if gcd(3k, n) = gcd(2k, n) = 1,

then we only have the trivial solutions x ∈ F2 and F is 0-APN.

However, this can be generalized further. Let e(l, k) =
∑l−1

i=0 2
ik for some natural

numbers k and l. For any choice of l and k, we give a list of dimensions n over which
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xe(l,k) is 0-APN. In this way, we construct infinitely many monomials F (x) = xe(l,k), each

of which is 0-APN for infinitely many dimensions n. In this sense we define a “doubly

infinite” family of 0-APN monomials.

Theorem 1. Let n, l, k be natural numbers such that gcd(kl, n) = 1 and

gcd(e(k, l − 1), 2n − 1) = 1,

then xe(l,k) is 0-APN over F2n .

Proof. Denote e = e(l, k). Suppose that x ∈ F2n satisfies xe + (x + 1)e + 1 = 0. For

natural numbers a ≤ b and a set I, let [a, b] = {a, a + 1, . . . , b}, and let PI denote the

power set of I. Furthermore, let x2kI denote
∏

i∈I x
2ki . Then xe + (x + 1)e + 1 = 0 can

be written as

xe +
∑

I∈P[0,l−1]

x2kI + 1 =
∑

I∈P[0,l−1]
I ̸=∅,[0,l−1]

x2kI = 0. (4.5)

Raising this to the power 2k yields

∑
I∈P[1,l]
I ̸=∅,[1,l]

x2kI = 0.

Adding the two expression above together causes all terms x2kI corresponding to subsets

I that contain neither 0 nor l to cancel out, leaving us with

∑
I∈({0}∪P[1,l−1])

I ̸=[1,l−1]

x2kI +
∑

I∈(P[1,l−1]∪{l})
I ̸=[1,l−1]

x2kI = 0.

This then becomes

x

 ∑
I∈P[1,l−1]
I ̸=[1,l−1]

x2kI

+ x2lk

 ∑
I∈P[1,l−1]
I ̸=[1,l−1]

x2kI

 =
(
x+ x2lk

) ∑
I∈P[1,l−1]
I ̸=[1,l−1]

x2kI

 = 0.

If x+x2lk = 0, then we must have x ∈ F2gcd(n,lk) . However, by assumption, gcd(n, lk) = 1,
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and so x ∈ F2. If x ̸= x2lk , then we must have

 ∑
I∈P[1,l−1]
I ̸=[1,l−1]

x2kI

 =

 ∑
I∈P[0,l−2]
I ̸=[0,l−2]

x2kI


2k

= 0

instead. Comparing this with (4.5), we see that this is simply

(xe(l−1,k) + (x+ 1)e(l−1,k))2
k

= 0,

and hence

xe(l−1,k) + (x+ 1)e(l−1,k) = 0. (4.6)

Assuming x ̸= 0, the above implies ( x
x+1

)e(l−1,k) = 1. If the second condition of the

hypothesis is satisfied, i.e. gcd(e(l−1, k), 2n−1) = 1, then we immediately have x
x+1

= 1,

i.e. x = x+ 1, which is impossible. Therefore, xe(l,k) is 0-APN.

Remark. The proof above could have also been continued by adding (4.6) to its 2k-th

power; this would have produced the same equation as if we had added the derivative

xe(l−1,k) + (x + 1)e(l−1,k) + 1 to its 2k-th power since the extra term 1 cancels out. By

induction on l, we would have obtained the condition that if gcd(ik, n) = 1 for i =

2, 3, . . . , l, then xe(k,l) must be 0-APN. We have tested these conditions computationally,

and have seen that the condition in the statement of Theorem 1 always produces a set

of dimensions n that subsumes those given by the alternative condition described in

this remark. We have thus formulated the theorem only in terms of this more general

condition. The less general condition gcd(ik, n) = 1 for i = 2, 3, . . . , l could be useful

in some contexts, however, since it does not require the explicit computation of the

exponent e(l, k) and its GCD with 2n − 1.

Remark. We can see that representatives from some of the known infinite families of

APN monomials can be expressed in the form e(l, k). The Gold functions x2k+1 can

clearly be expressed as e(2, k). The inverse function can be written as e(n − 1, 1) =∑n−2
i=0 2i = 2n−1−1. We have also observed that in some cases, e.g. for l = (n−1)/2 and

k = 2, or for l = (n − 1)/2 + 1 and k = 1, e(l, k) is equivalent to a Gold function. We

leave the characterization of cases when e(l, k) is equivalent to the known APN families



39

as a problem for future work.

In the following table we summarize the differential uniformity of F (x) = xe(l,k) for

suitable l and k in dimensions 8 through 13, and note when F is equivalent to a monomial

from a known family. Here ∆F in the fourth column denotes the differential uniformity

of F . The fifth column lists the entire cyclotomic coset of e(l, k). Finally, the last column

indicates which monomial family the exponent e(l, k) belongs to in the case when it is

APN. We note that when the dimension is odd, our construction can be equivalent to

a Gold function, the inverse of a Gold function and the inverse function. In the even

case, we can only obtain a Gold function in the case that xe(l,k) is APN. We note that

the inverse function can still be expressed as xe(n−1,1) in the case of even dimensions,

although then this function is not APN (in fact, it is differentially 4-uniform), and so we

do not indicate it in the last column.
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F2n (l, k) e(l, k) ∆F Cyclotomic Coset Family
F28 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 129, 192} Gold

(2, 3) 9 2 {9, 18, 33, 36, 66, 72, 132, 144} Gold
(2, 2) 5 4 {5, 10, 20, 40, 65, 80, 130, 160}
(3, 2) 21 4 {21, 42, 69, 81, 84, 138, 162, 168}
(7, 1) 127 4 {127, 191, 223, 239, 247, 251, 253, 254}
(3, 1) 7 6 {7, 14, 28, 56, 112, 131, 193, 224}
(6, 1) 63 6 {63, 126, 159, 207, 231, 243, 249, 252}
(4, 1) 15 14 {15, 30, 60, 120, 135, 195, 225, 240}
(5, 1) 31 16 {31, 62, 124, 143, 199, 227, 241, 248}

F29 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 192, 257, 384} Gold
(2, 2) 5 2 {5, 10, 20, 40, 80, 129, 160, 258, 320} Gold
(2, 4) 17 2 {17, 33, 34, 66, 68, 132, 136, 264, 272} Gold
(5, 1) 31 2 {31, 62, 124, 248, 271, 391, 451, 481, 496} Gold
(8, 1) 255 2 {255, 383, 447, 479, 495, 503, 507, 509, 510} Inverse
(3, 1) 7 6 {7, 14, 28, 56, 112, 224, 259, 385, 448}
(3, 2) 21 6 {21, 42, 84, 133, 161, 168, 266, 322, 336}
(6, 1) 63 6 {63, 126, 252, 287, 399, 455, 483, 497, 504}
(2, 3) 9 8 {9, 18, 36, 65, 72, 130, 144, 260, 288}
(4, 1) 15 8 {15, 30, 60, 120, 240, 263, 387, 449, 480}
(4, 2) 85 8 {85, 149, 165, 169, 170, 298, 330, 338, 340}
(7, 1) 127 8 {127, 254, 319, 415, 463, 487, 499, 505, 508}

F210 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 192, 384, 513, 768} Gold
(2, 3) 9 2 {9, 18, 36, 72, 129, 144, 258, 288, 516, 576} Gold
(2, 2) 5 4 {5, 10, 20, 40, 80, 160, 257, 320, 514, 640}
(2, 4) 17 4 {17, 34, 65, 68, 130, 136, 260, 272, 520, 544}
(3, 2) 21 4 {21, 42, 84, 168, 261, 321, 336, 522, 642, 672}
(9, 1) 511 4 {511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022}
(3, 1) 7 6 {7, 14, 28, 56, 112, 224, 448, 515, 769, 896}
(3, 3) 73 6 {73, 137, 145, 146, 274, 290, 292, 548, 580, 584}
(4, 1) 15 6 {15, 30, 60, 120, 240, 480, 519, 771, 897, 960}
(7, 1) 127 6 {127, 254, 508, 575, 799, 911, 967, 995, 1009, 1016}
(8, 1) 255 6 {255, 510, 639, 831, 927, 975, 999, 1011, 1017, 1020}
(4, 2) 85 10 {85, 170, 277, 325, 337, 340, 554, 650, 674, 680}
(5, 1) 31 30 {31, 62, 124, 248, 496, 527, 775, 899, 961, 992}
(6, 1) 63 32 {63, 126, 252, 504, 543, 783, 903, 963, 993, 1008}

F211 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 192, 384, 768, 1025, 1536} Gold
(2, 2) 5 2 {5, 10, 20, 40, 80, 160, 320, 513, 640, 1026, 1280} Gold
(2, 3) 9 2 {9, 18, 36, 72, 144, 257, 288, 514, 576, 1028, 1152} Gold
(2, 4) 17 2 {17, 34, 68, 129, 136, 258, 272, 516, 544, 1032, 1088} Gold
(2, 5) 33 2 {33, 65, 66, 130, 132, 260, 264, 520, 528, 1040, 1056} Gold
(6, 1) 63 2 {63, 126, 252, 504, 1008, 1055, 1551, 1799, 1923, 1985, 2016} Gold
(10, 1) 1023 2 {1023, 1535, 1791, 1919, 1983, 2015, 2031, 2039, 2043, 2045, 2046} Inverse
(3, 1) 7 6 {7, 14, 28, 56, 112, 224, 448, 896, 1027, 1537, 1792}
(3, 2) 21 6 {21, 42, 84, 168, 336, 517, 641, 672, 1034, 1282, 1344}
(3, 3) 73 6 {73, 146, 265, 289, 292, 530, 578, 584, 1060, 1156, 1168}
(4, 1) 15 6 {15, 30, 60, 120, 240, 480, 960, 1031, 1539, 1793, 1920}
(4, 2) 85 6 {85, 170, 340, 533, 645, 673, 680, 1066, 1290, 1346, 1360}
(5, 1) 31 6 {31, 62, 124, 248, 496, 992, 1039, 1543, 1795, 1921, 1984}
(5, 2) 341 6 {341, 597, 661, 677, 681, 682, 1194, 1322, 1354, 1362, 1364}
(7, 1) 127 6 {127, 254, 508, 1016, 1087, 1567, 1807, 1927, 1987, 2017, 2032}
(8, 1) 255 6 {255, 510, 1020, 1151, 1599, 1823, 1935, 1991, 2019, 2033, 2040}
(9, 1) 511 6 {511, 1022, 1279, 1663, 1855, 1951, 1999, 2023, 2035, 2041, 2044}

Table 4.1: Continued on the next page
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F2n (l, k) e(l, k) ∆F Cyclotomic Coset Family
F212 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 2049, 3072} Gold

(2, 5) 33 2 {33, 66, 129, 132, 258, 264, 516, 528, 1032, 1056, 2064, 2112} Gold
(2, 2) 5 4 {5, 10, 20, 40, 80, 160, 320, 640, 1025, 1280, 2050, 2560}
(3, 3) 73 4 {73, 146, 292, 521, 577, 584, 1042, 1154, 1168, 2084, 2308, 2336}
(11, 1) 2047 4 {2047, 3071, 3583, 3839, 3967, 4031, 4063, 4079, 4087, 4091, 4093, 4094}
(3, 1) 7 6 {7, 14, 28, 56, 112, 224, 448, 896, 1792, 2051, 3073, 3584}
(5, 2) 341 6 {341, 682, 1109, 1301, 1349, 1361, 1364, 2218, 2602, 2698, 2722, 2728}
(2, 3) 9 8 {9, 18, 36, 72, 144, 288, 513, 576, 1026, 1152, 2052, 2304}
(10, 1) 1023 8 {1023, 2046, 2559, 3327, 3711, 3903, 3999, 4047, 4071, 4083, 4089, 4092}
(4, 2) 85 10 {85, 170, 340, 680, 1045, 1285, 1345, 1360, 2090, 2570, 2690, 2720}
(4, 1) 15 14 {15, 30, 60, 120, 240, 480, 960, 1920, 2055, 3075, 3585, 3840}
(8, 1) 255 14 {255, 510, 1020, 2040, 2175, 3135, 3615, 3855, 3975, 4035, 4065, 4080}
(2, 4) 17 16 {17, 34, 68, 136, 257, 272, 514, 544, 1028, 1088, 2056, 2176}
(5, 1) 31 16 {31, 62, 124, 248, 496, 992, 1984, 2063, 3079, 3587, 3841, 3968}
(9, 1) 511 16 {511, 1022, 2044, 2303, 3199, 3647, 3871, 3983, 4039, 4067, 4081, 4088}
(3, 2) 21 20 {21, 42, 84, 168, 336, 672, 1029, 1281, 1344, 2058, 2562, 2688}
(6, 1) 63 62 {63, 126, 252, 504, 1008, 2016, 2079, 3087, 3591, 3843, 3969, 4032}
(7, 1) 127 64 {127, 254, 508, 1016, 2032, 2111, 3103, 3599, 3847, 3971, 4033, 4064}

F213 (2, 1) 3 2 {3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 4097, 6144} Gold
(2, 2) 5 2 {5, 10, 20, 40, 80, 160, 320, 640, 1280, 2049, 2560, 4098, 5120} Gold
(2, 3) 9 2 {9, 18, 36, 72, 144, 288, 576, 1025, 1152, 2050, 2304, 4100, 4608} Gold
(2, 4) 17 2 {17, 34, 68, 136, 272, 513, 544, 1026, 1088, 2052, 2176, 4104, 4352} Gold
(2, 5) 33 2 {33, 66, 132, 257, 264, 514, 528, 1028, 1056, 2056, 2112, 4112, 4224} Gold
(2, 6) 65 2 {65, 129, 130, 258, 260, 516, 520, 1032, 1040, 2064, 2080, 4128, 4160} Gold
(7, 1) 127 2 {127, 254, 508, 1016, 2032, 4064, 4159, 6175, 7183, 7687, 7939, 8065, 8128} Gold
(12, 1) 4095 2 {4095, 6143, 7167, 7679, 7935, 8063, 8127, 8159, 8175, 8183, 8187, 8189, 8190} Inverse
(3, 1) 7 6 {7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 4099, 6145, 7168}
(3, 2) 21 6 {21, 42, 84, 168, 336, 672, 1344, 2053, 2561, 2688, 4106, 5122, 5376}
(3, 3) 73 6 {73, 146, 292, 584, 1033, 1153, 1168, 2066, 2306, 2336, 4132, 4612, 4672}
(3, 4) 273 6 {273, 529, 545, 546, 1058, 1090, 1092, 2116, 2180, 2184, 4232, 4360, 4368}
(4, 1) 15 6 {15, 30, 60, 120, 240, 480, 960, 1920, 3840, 4103, 6147, 7169, 7680}
(4, 3) 585 6 {585, 1097, 1161, 1169, 1170, 2194, 2322, 2338, 2340, 4388, 4644, 4676, 4680}
(5, 1) 31 6 {31, 62, 124, 248, 496, 992, 1984, 3968, 4111, 6151, 7171, 7681, 7936}
(6, 1) 63 6 {63, 126, 252, 504, 1008, 2016, 4032, 4127, 6159, 7175, 7683, 7937, 8064}
(6, 2) 1365 6 {1365, 2389, 2645, 2709, 2725, 2729, 2730, 4778, 5290, 5418, 5450, 5458, 5460}
(8, 1) 255 6 {255, 510, 1020, 2040, 4080, 4223, 6207, 7199, 7695, 7943, 8067, 8129, 8160}
(9, 1) 511 6 {511, 1022, 2044, 4088, 4351, 6271, 7231, 7711, 7951, 8071, 8131, 8161, 8176}
(10, 1) 1023 6 {1023, 2046, 4092, 4607, 6399, 7295, 7743, 7967, 8079, 8135, 8163, 8177, 8184}
(11, 1) 2047 6 {2047, 4094, 5119, 6655, 7423, 7807, 7999, 8095, 8143, 8167, 8179, 8185, 8188}
(4, 2) 85 8 {85, 170, 340, 680, 1360, 2069, 2565, 2689, 2720, 4138, 5130, 5378, 5440}
(5, 2) 341 8 {341, 682, 1364, 2133, 2581, 2693, 2721, 2728, 4266, 5162, 5386, 5442, 5456}

Table 4.2: Continued
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