37,836 research outputs found

    Hybrid XML Data Model Architecture for Efficient Document Management

    Get PDF
    XML has been known as a document standard in representation and exchange of data on the Internet, and is also used as a standard language for the search and reuse of scattered documents on the Internet. The issues related to XML are how to model data on effective and efficient management of semi-structured data and how to actually store the modeled data when implementing a XML contents management system. Previous researches on XML have limitations in (1) reproduction of XML documents from the stored data, (2) retrieval of XML sub-graph from search, (3) supporting only top-down search, not full-search, and (4) dependency of data structure on XML documents. The purpose of this paper is to present a hybrid XML data model architecture for the storage and search of XML document data. By representing both data and structure views of XML documents, this new XML data model technique overcomes the limitations of previous researches on data model for XML documents as well as the existing database systems such as relational and object-oriented data model

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    Data replication and update propagation in XML P2P data management systems

    Get PDF
    XML P2P data management systems are P2P systems that use XML as the underlying data format shared between peers in the network. These systems aim to bring the benefits of XML and P2P systems to the distributed data management field. However, P2P systems are known for their lack of central control and high degree of autonomy. Peers may leave the network at any time at will, increasing the risk of data loss. Despite this, most research in XML P2P systems focus on novel and efficient XML indexing and retrieval techniques. Mechanisms for ensuring data availability in XML P2P systems has received comparatively little attention. This project attempts to address this issue. We design an XML P2P data management framework to improve data availability. This framework includes mechanisms for wide-spread data replication, replica location and update propagation. It allows XML documents to be broken down into fragments. By doing so, we aim to reduce the cost of replicating data by distributing smaller XML fragments throughout the network rather than entire documents. To tackle the data replication problem, we propose a suite of selection and placement algorithms that may be interchanged to form a particular replication strategy. To support the placement of replicas anywhere in the network, we use a Fragment Location Catalogue, a global index that maintains the locations of replicas. We also propose a lazy update propagation algorithm to propagate updates to replicas. Experiments show that the data replication algorithms improve data availability in our experimental network environment. We also find that breaking XML documents into smaller pieces and replicating those instead of whole XML documents considerably reduces the replication cost, but at the price of some loss in data availability. For the update propagation tests, we find that the probability that queries return up-to-date results increases, but improvements to the algorithm are necessary to handle environments with high update rates

    The ViP2P Platform: XML Views in P2P

    Get PDF
    The growing volumes of XML data sources on the Web or produced by enterprises, organizations etc. raise many performance challenges for data management applications. In this work, we are concerned with the distributed, peer-to-peer management of large corpora of XML documents, based on distributed hash table (or DHT, in short) overlay networks. We present ViP2P (standing for Views in Peer-to-Peer), a distributed platform for sharing XML documents based on a structured P2P network infrastructure (DHT). At the core of ViP2P stand distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. ViP2P allows user queries to be evaluated over XML documents published by peers in two modes. First, a long-running subscription mode, when a query can be registered in the system and receive answers incrementally when and if published data matches the query. Second, queries can also be asked in an ad-hoc, snapshot mode, where results are required immediately and must be computed based on the results of other long-running, subscription queries. ViP2P innovates over other similar DHT-based XML sharing platforms by using a very expressive structured XML query language. This expressivity leads to a very flexible distribution of XML content in the ViP2P network, and to efficient snapshot query execution. ViP2P has been tested in real deployments of hundreds of computers. We present the platform architecture, its internal algorithms, and demonstrate its efficiency and scalability through a set of experiments. Our experimental results outgrow by orders of magnitude similar competitor systems in terms of data volumes, network size and data dissemination throughput.Comment: RR-7812 (2011

    REALIZATION OF A SYSTEM OF EFFICIENT QUERYING OF HIERARCHICAL DATA TRANSFORMED INTO A QUASI-RELATIONAL MODEL

    Get PDF
    Extensible Markup Language was mainly designed to easily represent documents; however, it has evolved and is now widely used for the representation of arbitrary data structures. There are many Application Programming Interfaces (APIs) to aid software developers with processing XML data. There are also many languages for querying and transforming XML, such as XPath or XQuery, which are widely used in this field. However, because of the great flexibility of XML documents, there are no unified data storing and processing standards, tools, or systems.On the other hand, a relational model is still the most-commonly and widely used standard for storing and querying data. Many Database Management Systems consist of components for loading and transforming hierarchical data. DB2 pureXML or Oracle SQLX are some of the most-recognized examples. Unfortunately, all of them require knowledge of additional tools, standards, and languages dedicated to accessing hierarchical data (for example, XPath or XQuery). Transforming XML documents into a (quasi)relational model and then querying (transformed) documents with SQL or SQL–like queries would significantly simplify the development of data-oriented systems and applications.In this paper, an implementation of the SQLxD query system is proposed. The XML documents are converted into a quasi-relational model (preserving their hierarchical structure), and the SQL–like language based on SQL-92 allows for efficient data querying

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    VAMANA : A High Performance, Scalable and Cost Driven XPath Engine

    Get PDF
    Many applications are migrating or beginning to make use native XML data. We anticipate that queries will emerge that emphasize the structural semantics of XML query languages like XPath and XQuery. This brings a need for an efficient query engine and database management system tailored for XML data similar to traditional relational engines. While mapping large XML documents into relational database systems while possible, poses difficulty in mapping XML queries to the less powerful relational query language SQL and creates a data model mismatch between relational tables and semi-structured XML data. Hence native solutions to efficiently store and query XML data are being developed recently. However, most of these systems thus far fail to demonstrate scalability with large document sizes, to provide robust support for the XPath query language nor to adequately address costing with respect to query optimization. In this thesis, we propose a novel cost-driven XPath engine to support the scalable evaluation of ad-hoc XPath expressions called VAMANA. VAMANA makes use of an efficient XML repository for storing and indexing large XML documents called the Multi-Axis Storage Structure (MASS) developed at WPI. VAMANA extensively uses indexes for query evaluation by considering index-only plans. To the best of our knowledge, it is the only XML query engine that supports an index plan approach for large XML documents. Our index-oriented query plans allow queries to be evaluated while reading only a fraction of the data, as all tuples for a particular context node are clustered together. The pipelined query framework minimizes the cost of handing intermediate data during query processing. Unlike other native solutions, VAMANA provides support for all 13 XPath axes. Our schema independent cost model provides dynamically calculated statistics that are then used for intelligent cost-based transformations, further improving performance. Our optimization strategy for increasing execution time performance is affirmed through our experimental studies on XMark benchmark data. VAMANA query execution is significantly faster than leading available XML query engines

    XML Integrated Environment for Service-Oriented Data Management

    Get PDF
    The proliferation of XML as a family of related standards including a markup language (XML), formatting semantics (XSL style sheets), a linking syntax (XLINK), and appropriate data schema standards have emerged as a de facto standard for encoding and sharing data between various applications. XML is designed to be simple, easily parsed and self-describing. XML is based on and support the idea of separation of concerns: information content is separated from information rendering, and relationships between data elements are provided via simple nesting and references. As the XML content grows, the ability to handle schemaless XML documents becomes more critical as most XML documents do not have schema or Document Type Definitions (DTDs). In addition, XML content and XML tools are often required to be combined in effective ways for better performance and higher flexibility. In this research, we proposed XML Integrated Environment (XIE) which is a general-purpose service-oriented architecture for processing XML documents in a scalable and efficient fashion. The XIE supports a new software service model that provides a proper abstraction to describe a service and divide it into four components: structure, connection, interface and logic. We also proposed and implemented XIE Service Language (XIESL) that can capture the creation and maintenance of the XML processes and the data flow specified by the user and then orchestrates the interactions between different XIE services. Moreover, XIESL manages the complexity of XML processing by implementing an XML processing pipeline that enables better management, control, interpretation and presentation of the XML data even for non-professional users. The XML Integrated Environment is envisioned to revolutionize the way non-professional programmers see, work and manage their XML assets. It offers them powerful tools and constructs to fully utilize the XML processing power embedded in its unified framework and service-oriented architecture

    Bulkloading and Maintaining XML Documents

    Get PDF
    The popularity of XML as a exchange and storage format brings about massive amounts of documents to be stored, maintained and analyzed -- a challenge that traditionally has been tackled with Database Management Systems (DBMS). To open up the content of XML documents to analysis with declarative query languages, efficient bulk loading techniques are necessary. Database technology has traditionally been offering support for these tasks but yet falls short of providing efficient automation techniques for the challenges that large collections of XML data raise. As storage back-end, many applications rely on relational databases, which are designed towards large data volumes. This paper studies the bulk load and update algorithms for XML data stored in relational format and outlines opportunities and problems. We investigate both (1) bulk insertion and deletion as well as (2) updates in the form of edit scripts which heavily use pointer-chasing techniques which often are considered orthogonal to the algebraic operations relational databases are optimized for. To get the most out of relational database systems, we show that one should make careful use of edit scripts and replace them with bulk operations if more than a very small portion of the database is updated. We implemented our ideas on top of the Monet Database System and benchmarked their performance
    corecore