
Bulkloading and Maintaining XML Documents

Albrecht Schmidt and Martin Kersten
CWI

P. O. Box 94079
NL-1090 GB Amsterdam

First.Last@cwi.nl

ABSTRACT
The popularity of XML as a exchange and storage format
brings about massive amounts of documents to be stored,
maintained and analyzed – a challenge that traditionally has
been tackled with Database Management Systems (DBMS).
To open up the content of XML documents to analysis with
declarative query languages, efficient bulk loading techniques
are necessary.

Database technology has traditionally been offering sup-
port for these tasks but yet falls short of providing efficient
automation techniques for the challenges that large collec-
tions of XML data raise. As storage back-end, many ap-
plications rely on relational databases, which are designed
towards large data volumes. This paper studies the bulk
load and update algorithms for XML data stored in rela-
tional format and outlines opportunities and problems. We
investigate both (1) bulk insertion and deletion as well as
(2) updates in the form of edit scripts which heavily use
pointer-chasing techniques which often are considered or-
thogonal to the algebraic operations relational databases are
optimized for. To get the most out of relational database
systems, we show that one should make careful use of edit
scripts and replace them with bulk operations if more than
a very small portion of the database is updated.

We implemented our ideas on top of the Monet Database
System and benchmarked their performance.
Keywords. XML, Document Databases, Document Ware-
houses, Maintenance, Relational Databases

1. INTRODUCTION
The Extensible Markup Language (XML) [19] is exten-

sively used as a data exchange and storage format. However,
due to the lack of query engines that go beyond search engine
functionality the massive amounts of XML data produced by
today’s applications often escape attempts to disclose them
for analysis and maintenance. While it is certainly possible
to convert XML data to other formats for which solutions
exists, from a software engineering point of view it would be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2002, Madrid, Spain
Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

preferable to go for ‘all XML’ solutions. A viable approach
to achieving this goal is to adapt relational database technol-
ogy to store and maintain XML documents such as proposed
in, e.g., [7, 8, 10, 17]. The advantage of this approach is that
the XML repository inherits all the power of mature rela-
tional technology like indexes, transaction management etc.
As a first step towards this goal several declarative query
languages [4] and data models have been proposed.

Traditionally, database technology has been offering sup-
port for processing large amounts of data. Whereas there
has been considerable research into query languages and log-
ical data models for XML data [1, 3], there have only been
few proposals to tackle the problem of extending current
technology to cope with the needs of applications that rely
on intensive usage of XML resources. Recent research has
provided valuable insights into the nature of semistructured
and XML data and has positioned them in the database
field. However, there are still challenges that have to be met
to scale XML databases up to production levels as achieved
by relational engines and, thus, to gain acceptance amongst
practitioners. Naturally, XML warehouses inherit the power
of relational warehouses [13] but they also face the same
challenges; in particular, update and consistency problems
of materialized replicated and aggregated views over source
data need to solved.

As a step towards making XML the language of all web
databases, we propose a framework that builds on well-
understood relational database technology and enables ef-
ficient management of large XML repositories. To get the
most of relational database systems, we propose to do away
with the pointer-chasing tree traversing operations and re-
place them with set-oriented operations: many applications
generate updates in the form of edit scripts. Edit scripts [5,
6] have been long known in text databases and are similiar
in behavior to Document Object Model (DOM) [18] traver-
sals, which are standard in the XML world; they clearly
disadvantage relational technology due to their excessive
use of pointer-chasing algorithms. We investigate the use
of these scripts and propose alternative strategies for cases
when they perform poorly.

We implemented our ideas in the XML extension of the
Monet Database System [14, 15] and benchmarked their per-
formance: it turns out that the use of edit-scripts is only
sensible if they only update a rather small fraction of the
database; once a certain threshold is exceeded, the replace-
ment of a complete database segment is preferable. We dis-
cuss this threshold and try to quantify the trade-off for our
example document database.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The application scenario which motivates our research
consists of a set of XML data sources, feature detectors that
monitor multimedia data sources and analyze their content;
they feed their protocols of the analysis into a central data
warehouse. The warehouse now provides the following ser-
vices:

(1) insertion of a documents (a data source transmits a
single protocol of an analysis to the warehouse),

(2) insertion of versioned sets of documents (a set of check-
out points transmits the result of a bulk analysis tran-
script to the warehouse),

(3) deletion of documents and sets of documents (a doc-
ument is deleted from the warehouse because it has
become invalid or stale; duplicate analyses and erro-
neous insertion also happen frequently and need to be
corrected), and,

(4) execution of edit scripts that are transmitted from the
sources and systematically correct errors in already in-
serted documents; for example, a posteriori normaliza-
tion of feature values is required frequently.

XML warehouse

local XML sources

documents

edit scripts

Figure 1: Application Scenario

While (1) is just a special case of (2) and hence is not
treated separately in this paper, there is an obvious trade-
off between a combination of (2) and (3) and the use of
edit-scripts (4). More precisely, the question is: When is it
cheaper to delete invalid data and re-insert a new consistent
version than to use an edit script to ‘patch’ the warehouse?
This and other questions will be dealt with in detail later.

The rest of this paper is organized as follows: Section 2
introduces the experimental and theoretical framework; Sec-
tion 3 describes the bulk loading techniques used to popu-
late a database. We then discuss how edit scripts and bulk
deletion are applied to document databases and assess their
performance quantitatively. The last section summarizes
the results and outlines future work.

2. PRELIMINARIES
XML documents are commonly represented as syntax trees.

This section recalls some of the usual terminology we need
to work with XML documents. In the sequel, string and
int denote sets of character strings and integers and oid a
set of unique object identifiers. We can now define a XML
document formally (a/b denotes that b is a child element
or descendant of a, a[b] means that b is an attribute of a,
see [19] for details):

<image key="134" source="/cdrom/img1/293.jpeg">

<date> 999010530 </date>

<colors>

<histogram> 0.399 0.277 0.344 </histogram>

<saturation> 0.390 </saturation>

<version> 0.8 </version>

</colors>

</image>

Figure 2: Example document

Definition 1. An XML document is a rooted tree d =
(V, E, r, labelE , labelA, rank) with nodes V and edges E ⊆
V × V and a distinguished node r ∈ V , the root node. The
function labelE : V → string assigns string labels to nodes,
i.e., element denominations. labelA : V → string → string
assigns pairs of strings, attributes and their values, to nodes.
Character Data (CDATA) are modeled as a special attribute
of cdata nodes, rank : V → int establishes a ranking to
allow for the textual order among sibling nodes.

Figure 2 shows an XML fragment, which is taken from the
area of content-based multimedia retrieval [16]; Figure 3 dis-
plays the corresponding tree (arrows indicate XML attribute
relationships, straight lines XML element relationships).

image

colors
source

key

/cdrom/img1/293.jpeg

date

999010530 histogram

0.399 0.227 0.344

saturation

0.390

134

version

0.8

Figure 3: Syntax tree

Before we discuss techniques how to store a tree as a
database instance, we introduce the notion of associations.
They are used to cluster semantically related information
in a single relations and constitute the basis for the Monet
XML Model; the aim of the clustering process is to enable
efficient scans over semantically related data, i.e., data with
the same element ancestry, which are the physical backbone
of declarative associative query language like SQL.

Definition 2. A pair (o, ·) ∈ (oid×oid∪oid×string∪
oid× int) is called an association.

The different types of associations play different roles: as-
sociations of type oid× oid represent parent-child relation-
ships. Both kinds of leaves, attribute values and character
data are modeled by associations of type oid×string, while
associations of type oid× int are used to keep track of the
original topology of a document.

Definition 3. For a node o in the syntax tree, we denote
the sequence of labels along the path (vertex and edge labels)
from the root to o as path(o).

Paths describe the position of the element in the graph
relative to the root node and we also use path(o) to denote
the type of the association (·, o). The set of all paths in a
document is called its Path Summary, which plays a central
role in our query engine. The main rational for the path-
centric storage of documents is to evaluate the ubiquitous
XML path expressions efficiently; the high degree of seman-
tic clustering achieved distinguishes our approach from other
mappings (see [8] for a discussion). Our approach is to store
all associations of the same ‘type’ in one binary relation. A
relation that contains the tuple (·, o) is named R(path(o)).
We can now define the mapping.

Definition 4. Given an XML document d, the Monet
transform is a quadruple Mt(d) = (r,E,A,T) where r re-
mains the root of the document and

E =
⋃

(oi,oj ,s)∈Ẽ

R(path(oi)/s)〈oi, oj〉,

A =
⋃

(oi,s1,s2)∈labelA

R(path(oi)[s1])〈oi, s2〉,

T =
⋃

(oi,i)∈rank

R(path(oi)[rank])〈oi, i〉
)
;

r is the root of the document, E the relations that describe
element relationships, A those for attributes, and T records
the topology among elements.

Encoding path to a component into the name of the rela-
tion achieves a significantly higher degree of semantic clus-
tering than implied by plain data guides [9]. In other words,
we use path to group semantically related associations. A
direct consequence of the decomposition schema is that we
do not need to cope with irregularities induced by the semi-
structured nature of XML, which are typically taken care of
with NULLs or overflow tables [7]. The rest of this paper
will now deal with the machinery we need to convert docu-
ments to Monet format and bulkload them efficiently. Also
note that we are able to reconstruct the original document
given its Monet transform:

Proposition 1. The above mapping is lossless, i.e., for
an XML document d there exists an inverse mapping M−1

t

such that d and M−1
t (Mt(d)) are isomorphic.

A discussion of the inverse mapping can be found in [15].
The Monet transform also enables an object-oriented per-
spective, i.e., object as node in the syntax tree, which is
often more intuitive to the user and is adopted by standards
like the DOM [18].

Definition 5. An object o is a set of strong and weak
associations {A1〈o, o1〉, A2〈o, o2〉, . . . }. A strong association
is an association that is present in every object of the same
type (i.e., path); a weak association is an association that is
not present in every object of the same type.

This perspective is used when we need to DOM-like traver-
sals or run edit-scripts against the database.

3. POPULATING THE XML WAREHOUSE
There are two basic notions of interest that we are go-

ing to discuss in this section as indicated in the Introduc-
tion: Populating a database from scratch, i.e., bulk load,

1 <image key="134" source="/cdrom/img1/293.jpeg">

2 

Figure 4: Path sequences in the example document

image

colorsdate

histogram saturation

PCDATA PCDATA

PCDATA

key
source

version

PCDATA

All Documents

R1

R4

R2
R3

R5

R6

R7

R8

R9

R10

R11

R12

R1:
R2:

/image
/image[key] R4:

R3: /image[source]
/image/date

R5: /image/date/PCDATA
...

Figure 5: Schema tree of example document

and incremental insertion of new data into an already exist-
ing database. However, we use the same technique for both
cases. Let us consider an example first.

There are two standard ways of accessing XML docu-
ments: (1) a low-level event-based, called SAX [11], which
scan a XML document for token like start tag, end tag,
character data etc.; user supplied functions are called on en-
countering for each type of token. The advantage of the SAX
parsers is they only require minimal resources to work effi-
ciently. There is also a high-level DOM interface [18] which
provides a standard interface to parse trees of complete doc-
uments. In terms of resources, the memory consumption of
DOM trees is much higher, linear in the size of the docu-
ment; thus, it may happen that large documents exceed the
size of available memory. In this chapter we propose a bulk
load method that has only slightly higher memory require-
ments than SAX – O(height of document) – but still keeps
track of all the contextual information it needs and which
would otherwise only available through a DOM interface.
Thus, the memory requirements of the bulkload algorithm
we use are very low as it does not materialize the complete
syntax tree to generate insertion statements.

Since Monet XML stores complete paths, the bulk load

routine need to track those paths. We do this by organizing
the path summary as a schema tree which we use to map
efficiently paths to relations. Each node in the schema tree
represents a database relation and contains a tag name and
reference to the relation. Figure 4 shows the path sequences
generated by combining the SAX events of the parser and a
stack.

We can now attach OIDs to every tag when we put it on
the stack. This way, we are able to record all path instances
in the documents without having to maintain a syntax tree
in (main) memory – an advantage that lets us process very
large amounts of documents in relatively little memory. The
function that performs the actual insertion is insert(R, t)
where R is a reference to a relation and t is a tuple of the
appropriate type. A first naive approach would thus result
in the following sequence of insert statements (disregarding
the order in the document due to lack of space):

1. insert(sys, 〈o1, image〉)
2. insert(R(image[key]), 〈o1, “134 ′′〉)
3. insert(R(image[source]), 〈o1, “/cdrom/img1/293 .jpeg ′′〉)
4. insert(R(image/date), 〈o1, o2〉)
5. insert(R(image/date/pcdata), 〈o2, “999010530 ′′〉)
6. insert(R(image/colors), 〈o1, o3〉)
7. insert(R(image/colors/histogram), 〈o3, o4〉)
8. insert(R(image/colors/histogram/histogram),

〈o4, “0 .3990 .2770 .344 ′′〉)
9. insert(R(image/colors/histogram/pcdata),

〈o4, “0 .3990 .2770 .344 ′′〉)
10. insert(R(image/colors/saturation), 〈o3, o5〉)
11. insert(R(image/colors/saturation/pcdata), 〈o5, “0 .390 ′′〉)
12. insert(R(image/colors/version), 〈o3, o6〉)
13. insert(R(image/colors/version/pcdata), 〈o6, “0 .8 ′′〉)

Note that this sequence of insert statements requires us
to hash the complete path to a relation name. By exploiting
the hierarchical structure of the schema tree we can do much
better. So we now address the question how to map the
paths efficiently to relations. We can do away with much
of the hashing if keep track of the context, i.e., the current
node, in the schema tree: when we encounter a start tag,
we look at the sons of the current context. There are now
two cases: (1) we find a son that represents the tag, or,
(2) there is no son that represents the tag. In the first case,
we simply push the son on the stack, thus making it the
current context, and store the OIDs in the relation that
is associated with the son. If we don’t find a child node
that represents the tag, then the path does not yet exist
in the database. In this case, we create a node and the
respective relation and continue processing with the newly
created node as in (1). If we encounter an end tag we ‘pop’
the stack twice, i.e., pop both the start and corresponding
end tag. The performance analysis at the end of this paper
quantifies the improvement this simple trick brings about.

We note that we can easily extend the bulkload procedure
to records extents of elements, i.e., the textual position of
a start tag and its corresponding end tag. In [20], the au-
thors present such a schema to improve the performance of
containment queries. We can also use the extent mechanism
to implement a multi-attribute schema for documents which
come along with a DTD by reserving slots for every 1 : 1
parent-child relationship specified in the DTD and flushing
tuples once the end of their extent is reached.

4. MAINTAINING THE DATABASE
Once data reside in a database, maintenance of these data

becomes an important issue. In this paper, we distinguish
between two different maintenance tasks: First, the update
of existing data via edit-scripts for propagating changes of
source data to the warehouse, and, second, the deletion and
insertion of complete versions of documents which may have
become stale or need to be added to the warehouse.

The concept of edit scripts to update hierarchically struc-
tured data is both intuitive and easy to implement on mod-
ern database systems; it is defined in [5, 6]; the scripts com-
prise four basic operations (we do not mention other opera-
tors that traverse the syntax tree, see [6, 3]) for transforming
the syntax tree:

1. insert(n, f, k) add a leaf n as kth to node f ,

2. delete(n) remove a leaf n,

3. update(n, a, v) change the attribute a of node n to v,

4. move(n, m, k) a node n into the position of the kth son
of m.

We also view these operations as representatives for traver-
sals that are defined in the DOM standard [18]. Note that [5]
do not assume the presence of object identifiers; in our case,
these identifiers are provided by either the database or the
source data (or both) so that we can make use of this feature
at no cost. Following our example, an edit script could in-
sert additional subtrees that describe textures in the images
or delete items that appear twice in the database. Typically,
an edit script first pins the location of nodes to be changed;
this process is often done by navigating through the syntax
tree as object identifiers in the database are often not ac-
cessible to other applications. Once the location is found,
the scripts then apply update, delete, and insert operations.
Conceptually, an edit script may do two kinds of changes:
systematic and local changes. Systematic changes may be-
come necessary if a faulty application produced data with
errors that are spread over parts of the XML document; in
this case, the edit script traverses large parts of the syntax
graph and applies changes. In the relational context of our
work, this may be an expensive restructuring process. On
the other hand, if changes are only local, the script just vis-
its a small number of nodes and patches them. This should
be no resource-intensive problem, not in relational, object
or native systems.

We do not have the space to discuss edit scripts in depth
here and refer the reader to the above citations. However, we
demonstrate their use with an example similar to that used
in the performance discussion. Consider again Figure 2. A
systematic change would, for example, require us to change
all dates from Unix system time, i.e., seconds since January
1 1970, to a more human readable format. The way we go
about creating the appropriate edit script is the following:
We look up all associations which assign a value to an at-
tribute unit. Then, for all these nodes, we calculate the new
date and replace the old one. Techniques for constructing
automata that do the traversal can be found, e.g., in [12].
Once such an automaton finds a node n that needs to be up-
dated, it executes an update(n, date,new date format) state-
ment. On the physical data model of Section 2 this is trans-
lated into a command that replaces the value of the respec-
tive association.

The point that is important for us is that edit scripts tra-
verse parts of the XML syntax graph and manipulate indi-
vidual nodes. This is in stark contrast to the second method
mentioned above, bulk deletion and re-insertion where we
delete a complete segment of the database and re-insert a
corrected version. In the example scenario, this means that
an individual detector re-sends the corrected version of a
previously submitted instead of a patching edit script. Gen-
erally, the underlying assumption is that the aforementioned
data sources provide the capability of sending both, the edit-
script and a complete updated document; however, this as-
sumption holds for many practical applications as well as for
our example: a detector may either send an edit script or re-
transmit a corrected version of the complete document. Ad-
ditionally, all data items items have a unique identifier which
then can be used as an orientation to replace the automa-
ton that guides the edit script by algebraic joins which were
been shown to have a more efficient execution model [15].

The algebraic algorithm that deletes a complete database
segment with root r looks as follows:

razor (relation roots)
o1, . . . , on := offspring relations(roots)
foreach o ∈ {o1, . . . , on} do

if (offspring(o) 6= ∅) do
razor(offspring(o))

end
end
delete(o1, ..., on)

end

Note that this algorithm is efficient because it visits ev-
ery node once in a breadth-first search like manner, imitat-
ing a single scan over the relevant parts of the document
(for simplicity, we left out the deletion of rank information).
The complementary question, how to translate an edit script
into algebraic insert question, is rather straight forward: the
trick is to dump those parts of the database that are to be
inserted or updated into relations and then add those rela-
tions to the database.

Still, we need to discuss when to use bulk deletion com-
bined with re-insertion and when to use edit scripts. The
next section looks quantitatively at when to go for what.

5. QUANTITATIVE ANALYSIS
This section presents performance impressions of a data

warehouse containing actual feature more elaborate but sim-
ilar to the ones used in the example. The data warehouse
uses the physical storage model of Section 2; thus, our re-
sults may need slight modifications if applied to systems
that use other data models. However, we believe that re-
lational database management systems should behave in a
similar manner as our implementation on top of the rela-
tional Monet database kernel [2].

Figure 6 displays the relationship between database size
and insertion speed. The figure displays the naive approach
and the optimization with the schema tree. As one might ex-
pect the insertion into an empty database is faster than into
an already densely populated one if no intelligent caching
is used. As the database gets larger, insertion speed con-
verges to a ratio of about 390 KB/sec. If schema trees are
used, bulk load speed more that triples showing the poten-
tial of this technique, which has been explained in Section 3.

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200

In
se

rt
io

n
sp

ee
d

(K
B

/s
ec

)

Size of database in MB

bulkload
cached bulkload

Figure 6: (incremental) Bulkload performance

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0 20 40 60 80 100

D
el

et
io

n
sp

ee
d

(M
B

/s
ec

)

Percentage of Database deleted

bulk deletion

Figure 7: Bulk deletion

Note that neither bulk load method blocks not block the
database; both operate interactively and do not interfere
with the transaction system.

Bulk deletion is assessed in Figure 7. The algorithm pre-
sented in Section 4 is run against the database created in the
previous experiment. Each run, segments of around 55 MB
are deleted. Note that the insertion performance in Figure 6
includes converting the textual representation of a document
to executable database statements and, thus, random mem-
ory accesses (which can be alleviated with path caching),
whereas deletion can be done as sequential scans.

Eventually, with respect to when to choose which tech-
nique, the two lines in Figure 8 show that once more then
approximately 220 entries are changed by the edit script, one
should consider reverting to bulk operations for performance
reasons. The threshold of 220 entries is suprisingly low; how-
ever, one should keep in mind that relational databases are
not optimized for pointer-chasing operations. We also re-
mark that the threshold also depends on the characteristics
of the XML document, especially on the ratio between text
and mark-up. Nevertheless, it does not vary greatly for dif-
ferent types of documents.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50 100 150 200 250 300 350

edit script
algebra

Figure 8: Edit scripts versus bulk deletion and in-
sertion

6. CONCLUSION AND FUTURE WORK
This paper discussed performance considerations for typi-

cal problems in relational XML document data warehousing,
especially the trade-off between algebra and pointer-chasing
algorithms. For practical purposes, it turned out that it of-
ten is better to replace a complete database segment and
re-insert the updated data than to patch an existing ver-
sion with expensive edit-scripts. In particular, our experi-
ments showed that once the patched data volume exceeds a
small percentage of the database, one should resort to bulk
replacement. For good insertion performance, the use of
schema trees has been beneficial.

Concerning future work, we concentrate on developing a
cost model for choosing automatically when to use which
update technique, edit scripts or their algebraic equivalents.
We are also looking at how to provide efficient versioning
and replication support.

7. REFERENCES
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. L. Wiener. The Lorel Query Language for
Semistructured Data. International Journal on Digital
Libraries, 1(1):68–88, 1997.

[2] P. A. Boncz and M. L. Kersten. MIL Primitives for
Querying a Fragmented World. The VLDB Journal,
8(2):101–119, 1999.

[3] P. Buneman, S. B. Davidson, G. G. Hillebrand, and
D. Suciu. A Query Language and Optimization
Techniques for Unstructured Data. In Proc. of the
ACM SIGMOD Int’l. Conf. on Management of Data,
pages 505–516, Montreal, Canada, 1996.

[4] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery: A Query Language for XML,
February 2001. available at
http://www.w3.org/TR/xquery.

[5] A. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change Detection in Hierarchically
Structured Information. In Proc. of the ACM
SIGMOD Int’l. Conf. on Management of Data, pages

493–504, 1996.

[6] S. Chawathe and H. Garcia-Molina. Meaningful
Change Detection in Structured Data. In Proc. of the
ACM SIGMOD Int’l. Conf. on Management of Data,
pages 26–37, 1997.

[7] Alin Deutsch, Mary F. Fernandez, and Dan Suciu.
Storing Semistructured Data with STORED. In Proc.
of the ACM SIGMOD Int’l. Conf. on Management of
Data, pages 431–442, Philadephia, PA, USA, 1999.

[8] D. Florescu and D. Kossmann. Storing and Querying
XML Data Using an RDBMS. Data Engineering
Bulletin, 22(3), 1999.

[9] R. Goldman and J. Widom. Approximate
DataGuides. In Proceedings of the Workshop on Query
Processing for Semistructured Data and Non-Standard
Data Formats, Jerusalem, Israel, 1999.

[10] M. Klettke and H. Meyer. XML and Object-Relational
Database Systems - Enhancing Structural Mappings
Based on Statistics. pages 63–68, 2000.

[11] D. Megginson. SAX 2.0: The Simple API for XML.
http://www.megginson.com/SAX/, 2001.

[12] F. Neven and T. Schwentick. Query Automata. In
Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 205–214, 1999.

[13] N. Roussopoulos. Materialized Views and Data
Warehouses. In Proceedings of the 4th KRDB
Workshop, 1997. available at
http://SunSITE.Informatik.RWTH-Aachen.DE/

Publications/CEUR-WS/Vol-8/.

[14] A. Schmidt, M. Kersten, and M. Windhouwer.
Querying XML Documents Made Easy: Nearest
Concept Queries. In Proceedings of the IEEE
International Conference on Data Engineering, pages
321–329, 2001.

[15] A. Schmidt, M. Kersten, M. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval of
XML Documents. In International Workshop on the
Web and Databases, pages 47–52, Dallas, TX, USA,
2000.

[16] A. Schmidt, M. Windhouwer, and M. L. Kersten.
Feature Grammars. In Proc. of the Int’l. Conf. on
Information Systems Analysis and Synthesis, Orlando,
Florida, 1999.

[17] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In Proc. of the Int’l. Conf. on Very
Large Data Bases, pages 302–314, Edinburgh, UK,
1999.

[18] W3C. Document Object Model (DOM). available at
http://www.w3.org/DOM/, 1998.

[19] W3C. Extensible Markup Language (XML) 1.0.
available at
http://www.w3.org/TR/1998/REC-xml-19980210,
1998.

[20] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. In Proc. of
the ACM SIGMOD Int’l. Conf. on Management of
Data, 2001.

